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Abstract

A new development of the theory of Grothendieck polynomials based on an exponential
solution of the Yang-Baxter equation in the degenerate Hecke algebra is given.

1. Introduction.

In this paper, we continue to study (cf. [FK1, FK2]) the connections between the Yang-
Baxter equation and the theory of symmetric functions and Schubert and Grothendieck
polynomials, with the emphasis on the latter ones.

It was shown in [FKl] that, for any exponential solution of the YBE, a theory of gencr-
alized Schubert polynomials and corresponding symmetric functions can be constructed.
The solution related to the nilCoxeter algebra of the symmetric group gives the Schubert
polynomials of A. Lascoux and M. -P. Schiitzenberger, as shown in [FS].

In this paper we study the solution (first mentioned in [FK1]) related to the degenerate
Hecke algebra. We show that this solution leads to the Grothendieck polynomials of
A. LELSCOUX and M. -P. Schutzenberger [LS, L] who introduced them in their study of the
Grothendieck ring of a flag manifold. These are non-homogeneous polynomials that can
be defined inductively via isobaric divided differences TT;; the lowest-degree homogeneous
component of a Grothendieck polynomial is the corresponding Schubert polynomial.

Tlius, we give a new combinatorial definition of Grothendieck polynomials. As in the
Schubert case, it can be formulated either in terms of "reduced decompositions and coin-
patible sequences" (cf. [BJS, FS]) or in terms of "resolved braid configurations" [FKl].

Typeset by 4,^5-TE.K
-183-



And even in the case of Schubert polynomials, our proof of the equivalence of the two
definitions (cf. Theorem 2. 3) is much simpler than the ones of [FS] and [BJS].

Furthermore, we define, for ajiy number /0, a polynoraial which we call a ^-polynomial.
This polynomial reduces to Schubert and Grothendieck polynomials in the cases ,3=0
and /9 = -1, respectively.

Stable /3-polynomials are also defined. They are certain formal power series in ft whose
coefRcients are syminetric functions. Again, the lowest-degree coefficient is the correspond-
ing stable Schubert polynomial.

The theory of Schubert polynomials is a well-known tool in the enumerative combina-
tones of reduced decompositions. Likewise, the /3-polynoinials allow to obtain enumerative
results concerning so-called "sorting sequences .

A generalization is given for the formula of Macdonald [M] for the sum of the products
of entries of reduced decompositions.

In Section 2 of this extended abstract, we give a full proof of the main result (Theo-
rem 2. 3) that justifies a combinatorial definition of /?-polynomials (and thus of the Grothen-
dieck and Schubert polynomials as their special cases). Section 3 contains statements
(without proofs) of some results about these polynomials that we have been able to obtain
using this approach.

ACKNOWLEDGEMENT. The authors are grateful to Curtis Greene, Alain Lascoux, and
Richard Stanley for helpful discussions. The first version of this text was completed when
tlic aiithors were visiting LaBRI, Bordeaux, thanks to Maylis Delest and Xavier Viennot.

2. Generalized Schubert and Grothendieck polynomials

Let A' be a field of zero characteristic, and let /3, 3:1, a;2, ... , be formal variables. Define
;i /?-divided-difference operator TT^ ' acting in K[xi, x-z,... } by

_(/?)^_ _ ^ (1 4-/?a-, +i)/(2;i, 2-2,... )-(l+/?2-, )/(..., a;,+i, a-;,...)
1r, ' f{x}. ix2i-.. ) = ~ ' ^ -^- ;

X, - 2-. +1

in other words, TT^ = 5, o (1 + PX, +i') where 9i is the usual divided difference operator
and Xt+i is the operator of multiplication by a:,+i.

2. 1 Definition. Generalized Schubert/Grothendieck polynomials. Let 5'n be the sym-
metric group of permutations of n elements; 5, = (i i + 1) is an adjacent transposition;
l(w) is the length of a permutation w   5'n, i.e., the number of inversions; wo is the per-
mutation of maximal length. For any w C 5'n, define the /3-polynomial £^ (ii,..., x^-i)
recursively by

(i) ^\X,,. . . , 2:^-l) - ^r^r2... ^-i;

(ii) £^) = TT,(/?)£L/?,), whenever l^ws, ) = l(w) + 1.

Tliis definition is self-consistent because operators TT^ satisfy the Coxeter relation

7T^)7T,^;7T,(/3) = ^\TTW^\ (SCO [L]). In the case /?= 0 the corresponding polynomials
arc, by definition, the Schubert polynomials of Lascoux aiid Schutzenberger (see, e. g., [M]).
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In the case ̂ 3 = -1 we obtain, after a change of variables a-,- <- 1 - a;,, the Grothendieck
polynomials of the same authors [LS, L]. We are going to give a direct combinatorial
interpretation of these polynomials that extends the one(s) of [BJS, FS, FKI]; this will
show, in particular, that £(u?), as a polynomial in /3, a;i, ... , a:n-i, has nonnegative integer
coefficients.

2. 2 Definition. Let A(n be the algebra with generators ui, ... , Un-i satisfying commu-
tation relations

UiUj =UjUi , \i-j\>2;
U, U,-+lUi = 'Ut+lutui+l ;

u] = f3ui .

In particular, Aw is the nilCoxeter algebra of the symmetric group [FS] and ̂ ^-I) is the
degenerate Hecke/Iwahori algebra 'Kn(O). Note that Aw has a natural linear basis formed
by permutations of Sn; namely, each u?   5'n is identified with a product Ua, ... Ua, where
ai ... a; is any reduced decomposition of w.

It was shown in [FK1] that the elements /i,-(t) = e<u' satisfy the Yang-Baxter equation
hi(t)hi+^t + s)hi(s) = hi+^s)hi{t + 5)/i, +i(f) ;

varioiis consequences of this fact have been then obtained. Following [FS], let us define
A^t) = hn-, (t)hn-^t) . . . hi(t)

;iiid

(2. 1) ©(<l,..., (n-l)=Ai(<i)A2(<2)---An-l(<n-l) ;
tlic latter is the generalized Schubert expression. It was shown in [FS] that in the case f3 = Q
the coefficients of © in the basis of permutations are exactly the Schubert polynomials.
Below we generalize this statement to the case of zin arbitrary ^.

Let us first note that /i,-(<) = ctu' = 1 + xui where x = e-^1; we will write x = [(]^.
Tlie map t -^ [t}/3 converts the ordinary addition into the operation © defined by

x@y=x+y+ 0xy ;

in other words, [t}^ ® [s}p = [t + s}^. (Also note that (1 + a;u. )(l + !/u>) = 1 +(a; ® y)",.
Correspondingly, the /3-subtraction 9 is defined by

z-y
Z6y=^ty

which is equivalent to y®(z 9y) = z. Also, (1 + 3:u, )(l + (9a:)u, ) = 1 where 62; = 06 2;.
The generalized Schubert expression (2. 1) can be rewritten in terms of the variables

x, = [t, }/3 by using the formula /i, (fj) = 1 + 3;jUi; thus we get
n-1 j

(2. 2) ^\x^..., Xn-, )=G(x^..., Xn^)= JJ ]^ (l+iyu,)
j=l i=n-l

wliere the interchanged bounds for i mean that the corresponding factors are inulti plied
in descending order, starting with i = n-\. Now, as in [FS, FK1], let us expand the last
expression in the basis of permutations.
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2. 3 Theorem. £^(a:i,... , ^_Q = ^g^ £,w w .
In other words, to find a ^-polynomial £^?), one needs to take a coefficient of w in the

expression (2.2).

2.4 Example, n = 3 .

2,(0\xi, xi) = (1 + a;iU2)(l + a;iui)(l + xiu^)
= 1 + a;iui + (a;i + a-2 + ftx\x-i)u-i + ̂ i^Uiu? 4- s^uzui + a;^2U2UiU2

Therefore, e.g., £,\^f = 3:1 + 3:2 + px^x-2. Corresponding Schubert and Grothendieck poly-
nomials are x^ +3:2 and (1 -a;i)+(l - ^2) - (1 -a'i)(l -2:2) = -.ria;2 + 1, respectively.

To prove Theorem 2. 3, we will need the following lemmas.

2. 5 Lemma. Let f be a polynomial in xi, 3:2, ... ; denote

Then

/(... , 3;,, a;;+i,... ) =/(... , a;,+i, 2;,-,... ) .

/-/(^)+W=
a-.+i 6 Xi

Proof.

(. ;'"+/,)/=(l+^-)/-(l+fcV\^= l+fc(/_y)=^^. D
2:1 - 3;,+1 ' ' -TI+I - -TI " ' ' 3:14-1 0 X,

2. 6 Lemma. [FKl] Let a, (a:) = A. (<) wAere a: = [t]^; in other words,

cr. (.r) = (1 +a-Un_i)(l +.rUn_2) . . . (1 + xu, ) .

Then, for any variables x and y, the expressions o', (a;) and o', (y) commute. C]

Proof of Theorem 2. 3. In the notation of Lemma 2. 6,

£(/?)(3:l,..., ^_l)
= ai(2;i) . . -an-i(xn-i)
= 0-l(3;i) -. . Q', (z, )Q';(3;, +i) (l+(e2 ;,+l)u, ) C(,-+2(3-l+2)---Qn-l(. rn-l) .

Lemma 2. 6 implies that in the last product the expressions to the left and to the right of
(1 + (Q3:, 4-i)ui) are symmetric in x, and a;f+i. Therefore they behave as constants with
respect to divided differences. Since, according to Lemma 2. 5,

(^)+^)(i+(er, +i)u.. )=

(1+(2:, +1 QX, )U{)-1^

(i+(e2 :, )u, )-(i+(ea;. +i)u,)

x,+i Qx,

x,+\ Q x,

(i+(e3 ;,+i)u, )=(i+(e2 :,+i)u, )u,
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r and u. commutes with a.+2(a;.-+2) . . . o;n-i(3:n-i), we conclude that

(2. 3) (7TW + P^w{^,. . . , ̂ n-1 ) = ^\X, ,. . . , a:n-l)". .

This identity contains the recurrence (ii) of Definition 2. 1. Indeed, let £.^\xi,..., Xn-^) be
the coefficient of a permutation w in Qw(x^... , in-i). ^Assume^J(w5, ) = /(w) + 1. Then
the coefficlent of W5, in the right-haiid side of (2.3) is £(u?) +^£^). whereas the coefficient
of ws, in the left-hand side is^^. + ̂ (4);^this Sives the desired re^rence. It only
remains to check that the coefficient of wo in 2,w{x^. .., a;n-i) is x^~tx^ . . . 2n-i; this
follows from the fact that the only way to obtain WQ from (2. 2) is to take XjU, from each
other. D

3. Further results

Stable ^-polynomials.
One can define stable /3-polynomials fm\S\x, , 3:2,... ) similarly to the stable Schubert

polymomials, or Stanley's symmetric functions [S], as done in [FK1]. Namely, let

a, (x, )a, (x^---= ^ OT^w .
w Sn

Tlicn fm(u?) are some power sertes in /? whose coefficients (OT(uf))j arc symmctric functions
in 2:1, 12... (cf. Lemma 2. 6). The constant term (OT(u?))o is the corresponding stable
Schubcrt polynomial. In general, (Q7l(.?)), Is a homogeneous symmetric function of degree
IW+3-

The'following are some of the examples of stable /3-polynomials we computed:

<) = 1
w^=^)=se ^l/?'

<L = E(fc + l)efc+2^fc
m?(^, =E(elefc+l-efc+2)/3':

<L. =E(£e^le^2-^+l)efc+3)/?fc .
1=0

^

Sorting sequences.
An elementary sorting operation u. compares the ith and (i + l)st elements of a permu-

tation in Sn and switches them if they form an inversion. A sequence of s"ch_ operations
is called a "sorting sequence" if it sorts out any permutation. ^ For example, 21323212 is
a sorting sequence for'^4. In general, a sequence is sorting if and only if it contains a
reduced decomposition of WQ.
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Let 'R.nL be the set of sorting sequences of a given length L. The cardinality NnL of
this set is the coefficient of a square-free mouomial in the symmetric function (SHwo )^_^-"^.
Thus one can obtain a formula for NnL by computing these symmetric functions (we have
a conjectured determinantal formula for them).

For example, for 8-2, 5"3, and 84 this approach gives the following number of sorting
sequences of length L:

s, :
S3 :
s, :

N^L = 1 ;
N,, L = 2L -2£ ;
N^, L = 3L - 2L~\L - !)(£ -2)-2£2 - 1 .

Stability and limits.
Both /?-polynomials and the stable ones are independent of the parameter n of the

symmetric group Sn; that is, they are well-defined for the elements w   5'oo. There is
a formula that explicitly expresses stable /?-polynomials in terms of the "unstable" ones.
Also the W\^"s caji be obtained from £u^/'s by a certain limiting procedure. These results
are analogous to their counterparts in [FK1].

Generalized Macdonald formula.

The following formula for the specialization x\ =3:2 =... = 1 generalizes the one of
Macdonald [M]:

E E a!a2zr-^ ̂  = <c' - l'(;)
L (ai,..., ar) '^n,L

or, equivalently,

E
(ai,..., a£) 'Rn,L

aia'2 . . . OL == IQ\ S[L, lo] , lo =

where 5'[... ,... ] are the Stirling numbers of the second kind. This reduces to Macdonald's
formula when 0=0.

Tlicrc is an analogous formula for any dominant (cf. [M]) perinutation.

Other identities for i( =3:2 = . -. =1.
For /? = -1 (the case of Grothendieck polynomials),

pcrmiitation w.

For an arbitrary /?,

£^(1, 1,..., 1)=^.\(1, 1,..., 1).

p(/?)
.<^w (1, 1,..., !) = 1 for any

Double /?-polynomials and the Cauchy identity.
The notion of the double Schubert/Grothendieck polynomials caji be straightforwardly

generalized along the lines of [FS,FK1] to obtain the double /3-polynomials and corre-
spending super-symmetric functions. The Cauchy identity in this case becomes

^o)(y^)= H (^+y, +/?2:, y,)
i+j<,n
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where £,w(y, x) is the double /3-polynomial.
The Bn case.

It is possible to combine the main constructions of [FK3] and the present paper to
obtain the Bn-analogues of the ^-polynomials and Grothendieck polynomials.
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