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LATTICE PATH PROOFS FOR DETERMINANTAL FORMULAS FOR

SYMPLECTIC AND ORTHOGONAL CHARACTERS
(Shortened version. The full-length article will appear elsewhere)

MARKL'S FULMEK- AND CHRISTIAN KRATTENTHALER

ABSTRACT. We give l)ijective proofs for Jzicobi-Thidi-type and Giambelli-type identities
for symplectic and orthogonal characters. These proofs are based on inteqireting King and
El-Sharkaway's s>-mplectic tableaux. Proctor's odd and intennediate symplectic tableaux,
Proctor's ortliogonal tableaux, and Sundaram's odd orthogonal tableaux m terms of certain
families of nonintersecting lattice paths. This work is intended to be the counterpart of
the Gess<?l-V~icnnot proof of the Jacobi-Tbjdi identities for Schur functions for the case of
symplectic and orthogonal characters.
RESUME. On doniie dcs demonstrations bijectives des identites de type Jacobi-Thidi et
Giambelli poiu- lcs caracteres symplectiques et orthogonaux. Ces demonstrations sont basees
sur one intcqiretation des tableaux symplectiques de Kmg et El-Sharkaway, des tableaux
symplectiques impairs et symplectiques intennediaires de Proctor, des tableaux orthogonaux
de Proctor, ct des tableaux orthogonaux impairs de Sundaram en tennes de certaines families
dc chemins qui ne s'cntrecoupent pas. Le but de ce travsdl est de proposer, dans Ie cas des
caractercs symplectiqucs et orthogonaux, des demonstrations analogues a la preuve de Gessel
et Viennot des identites de Jacobi-Trudi pour les fonctions de Schur.

1. Introduction. Schur functions, the irreducible general linear characters, can be combi-
natorially defined by means of semistandard Young tableaux (see [5, I, (5. 12)]). There are
several detenninant formulas for Schur functions. Those which are relevant for this paper
are the Jacobi-Trudi identity and its dual form, and the Giambelli identity (see [5, I, (3. 4),
(3. 5). p. -30. Ex. 9]). In their well-known (yet unpublished) paper [3] Gessel and Viennot
give a beautiful bijcctive proof for the Jacobi-Trudi identities for Schur functions (see also
[12. sec. 7+1]). It bases on interpreting semistandard tableaux as families of nonintersecting
lattice paths. As was shown by Stembridge [12, sec. 9], also the Giambelli identity allows a
bijcctive proof l>y using nonintersecting lattice paths.

There are Jacobi-Tnidi-type and Giambelli-type determinant formulas for irreducible sym-
plectic and orthogonal characters (see [2, Prop. 24. 22, Cor. 24. 24, Prop. 24. 44, Prop. 24. 33,
(24. 47)]). too. Since tliere are also tableaux descriptions for symplectic and orthogonal char-
acters, it is natural to ask for bijcctive proofs of the symplectic and orthogonal Jacobi-Trudi
aiid Giambelli identities. First attempts in this direction for the Jacobi-Trudi identities were
made by Bressoud aiid Wei [I], and more successfully by Okada [6]. However, the determi-
iiant formulas that Okada proved bijectively are different from the Jacobi-Trudi identities
(but are interesting in tlieir own right). Additional algebraic steps were necessary to prove
the Jacobi-Trudi identities themselves.

We solve the problem completely for the symplectic case and partially for the orthogonal
case. For the bijectivc proofs of tlie symplectic identities we utilize lattice path interpreta-
tions of the tableaux given by King and El-Sharkaway [4]. Particularly nice is the bijective
Iiroof for the dual symplectic Jacobi-Trudi identity, which combines the Gessel-Viennot
inethod with a modified reflection principle. The bijective proof for the "ordinary" symplec-
tie Jacobi-Trudi identity is inore elaborate. On the other hand, the bijective proof of the
syinplectic Giambelli identity is almost trivial. In addition, we are able to provide bijec-
tive proofs for all of Proctor's [7, 9. 10] Jacobi-Trudi identities for his odd symplectic and
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intermediate symplectic characters.

There are several candidates for orthogonal tableaux. We show that Proctor's orthogo-
nal tableaux [10, 8] are the "right" tableaux for proving the dual orthogonal Jacobi-Trudi
identity. As might be surprising at first sight, these tableaux have a ven' natural lattice
path interpretation. The proof itself is very illustrative. It also employs the Gessel-Viennot
method and some kind of reflection argument. Unfortunately, we were not able to use the
same tableaux in order to bijectively prove the "ordinary-" orthogonal Jacobi-Trudi identity
and the orthogonal Giambelli identity. As a substitute, by using Suudaram's tableaux [14]
at least we are able to give bijective proofs for the odd orthogonal Giambelli identity and
for determinant, formulas that are only slight variations of the odd orthogODa! Jacobi-Trudi
identities.

2. Some Definitions. By paths we always mean lattice paths in the plane integer lattice Z2
consisting of unit horizontal and vertical steps in the positive direction, unless we explicitly
allow other steps. Given points u and v, we denote the set of all lattice paths from u to
v by P(u, v). If u = (ui,..., Un, ) and v = (i>i,... , Vn, ) are vectors of points, we denote
the set of all m-tuples (Pi,... , Pm) of paths, where P, runs from u; to r;, i == 1,... , m, bv
P (u, v). A set of paths is said to be nonintersecting if no two paths of this set have a point
in common. Otherwise it is called intersecting. If to each horizontal edge a in Z2 a weight
w(a) is assigned, the weight w(P) of a path P is defined to be the product of the weights
of all its horizontal steps. The weight w(P) of an m-tuple P = (Pi,. .., ?") is defined to
be the product Y[^ w(P. ) of the weights of all the paths in the m-tuple. Given any weight
function w defined on a set A, by the generating function GF (A) we mean Erg^ w(x).

3. Bijective proofs for symplectic identities. BUECTIVE PROOF OF THE SYMPLECTIC
DUAL JACOBI-TRUDI IDENTITY. Let A = (Ai,..., AJ be a partition of length r <, n.
A (semistandard) tableau T of shape A with entries from {1, 2,... } is called a symplectic
(semistandard) tableau (see [7, 13]) if it obeys the additional constraint

(3. 1) Ti^2i-\.

Let X = (3-i, 3-i~l, 3:2, ^21r . . ̂ n^n1)- The weight of a symplectic tableau T is given by

(3.2) xT=n^^=2-l^-i^-t=2'}i.
t

The symplectic character associated to A is combinatorially dcfiiied by (see [7, 13])
5?2n (^< x) = Er XT, where the sum is over all symplectic tableaux T of shape A with entries
^2n.

We are going to sketch a bijective proof of the symplectic "e-formula" (sec [2, Car, 24. 24])

(3-3) sp^(X^) = |eA^. -j+, (x)-eA^-j-;(x)|A, xA,.

Here, Cm(x) denotes the elementary symmetric function of order m in the variables x. As
usual, A' denotes the partition conjugate to A. Fonnula (3. 3) is the symplectic analogue of
the dual form of the Jacobi-Trudi identity for Schur functions.
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Figure 1

First we interpret symplectic tableaux in terms of lattice paths. Let T be a symplectic
tableau of shape A with entries ^ 2n. where A is a partition of length r < n. With T
we associate a Ai-tuple (Pi,..., PA, ) of nonintersecting lattice paths, where Pj runs from
Uj = (-J +1J - 1) to Vj = (\'j -j +l, 2n- X'^+j -1}, by reading Pj off the j'-th column.
Here we use the e-labelling of horizontal edges which is e. g. explained in [11, ch. 4] (see
Figures 1 and 2).

Obviously, T obeys the symplectic constraint if and only if the first path of the associated
Ai-tuple of paths does not cross the line y = x -1. The following figure gives an example
forn=3 and A= (4, 3, 2).

-4 -3 -2 -I 123^5

Figure 2

If we define the weight of a horizontal edge with e-label (cf. Figure 1) 2i - 1 to be x,, and
the weight of a horizontal edge with e-label 1i to be .c,- then the correspondence depicted in
Figure 2 is weight-preserving with respect to the weight (3. 2). Therefore the left side of (3. 3)
can be interpreted as the generating function for all Ai-tuples (Pi,..., P^i) ofnonintersecting
lattice paths, where Pj runs from (-j +1J -1) to (A^ -j+ l, n- A^. +j - 1) and does not
cross y = x -1.

Next we give the lattice path interpretation of the right side of (3. 3). Let R denote the
reflection in the line y = x -2. For a permutation a   S\^ denote (uo-(i),.. . , VO. (A, )) by Vy.
For e G {1, -1} denote by u(f) the Ai-tuple of points whose j-th component is Uj if £j = 1
and R(uj) if £j = -1. We consider the set U^g^^ E {I,_I}AI P(u(£), Vg. ). It is easy to see
that the detenninant in (3. 3) can be written as a certain generating function for this set,

leY. _, +, (x) - ev. -, _. (x)|,, ", = ^ sgn (<7) sgn (e) GF (^ (u(£\ v, )) ,
<7 5-A,, ^6{l, -l}Ai

where sgn(f-) = T[^ £,. In order to establish (3. 3), we have to give an involution that in the
right-hand side sum cancels all contributions ofAi-tuplesofpaths in U^gs^ eg{i,_i}Ai P(vi{ },
Vo. ) that are either intersecting or contain a path that crosses the line y = x -1.
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This is done by a combination of the Gessel-Viennot method [3, 12, sec. 1] and a modified
reflection principle. A path P crossing the line y = x-\ must meet the line i/ = a- -2. Let
s be the last meeting point. Now, to P's initial portion up to s apply the following modified
reflection iu y = x-2, which is exemplified in Figure 3. All points (.r, y) e P with 3- + y=0
(mod 2) (call them even points) are reflected in the usual way, i.e., (x, y) ̂  (y + 2, a- - 2),
and so are all odd points (x +y = 1 (mod 2)) whose adjacent steps are both vertical or
both horizontal. The remaining case is a "kink" in an odd point p, i.e., a horizontal step of
the path meets a vertical one in p. Here the whole kink is shifted until its even points have
reached their new (reflected) positions.

Now we are able to describe the desired weight-preserving and sign-reversing involution.
For a Ai-tuple (Pi,... , P^J containing a path meeting the forbidden line y = r-2, choose »
minimal such that P, meets y = a-- 2, and replace P, 's portion up to the last meeting point
with the line y = x-2by its modified reflection. Clearly, this mapping is weight-presen'ing
and sign-reversing. It reverses sign since it changes the sign sgn (f) of e while leaving a
invariant. On Ai-tuples of paths that do not contain any path crossing </= T- 1 but arc
intersecting we apply the Gessel-Viennot involution. Clearly, we thus obtain again a Ai-tuplc
of paths that does not contain any path crossing y= x - 1 but is intersecting. It is easy to
see that this mapping is a weight-preserving and sign-reversing involution. Thus onlv those
Ai-tuples remain that are nonintersecting and none of their paths cross tlie line y= r - I.
But as was exhibited above, these Ai-tuples correspond to symplectic tableaux. D

Figure 3

BUECTIVE PROOF OF THE SYMPLECTIC JACOBI-TRUDI IDENTITY. Let A = (AI,.. . , A,)
be a partition of length r ^ n A bijective proof for the symplectic "/i-formula", the symplec-
tie analogue of the "ordinary" Jacobi-Trudi identity for Schur functions, (see [2, Prop. 24. 22})
(3. 4) ^^(A, X)=|^, _.. +1(X) : /lA, -,+;(x)+^, -. -, +2(x)|. xr,
is more difficult. Here, h^(x) denotes the complete homogeneous symmetric function of
order m in the variables x. We shall give only a rough sketch of the algorithm without
rigorous argumentation. This time we encode symplectic tableaux of shape A in terms of
r-tuples (Pi,... Pr) of nonintersecting lattice paths where P, runs from u, = (r - i, 1) to
Vi = (A, +r-i, 2n), by reading P, from the ?-th row of the tableau. Here we use the usual
/(-labelling of horizontal edges [11, ch. 4] (see Figure 1). The symplectic constraint simply
says that P, must not contain a horizontal step strictly below the line y = 2i- 1. We define
the weight of a horizontal edge with /i-label 2i - 1 to be x,, and the weight of a horizontal
edge with /i-label 2i to be a;,-1 in order that this correspondence is weight-preserving with
respect to the weight (3. 2).

Let now R denote the reflection in the line a- = r- l. We shall consider the set
U<res,, £ {i}x{i, -i}'-i P(u{£\v^). The notation u(£) has to be understood in the same sense
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as above, only the reflection R has a different meaning now. The determinant in (3. 4) can
be written as

|/<A, -. +i(x) : /i,. _. ^(x)+/iA. -, +2(x)|^r- E sgn(a)GF(P(u(£\v, )).
a6S,, £6{l}x{l, -l}-»

The following algorithm performs a cancellation in the set Utres^egnyxn. -i^-i ^)(u(£))v<r)
such that only those r-tuples of paths survive for which £. =(!,..., l), and where P, does
iiot contain any liorizontal step strictly below the line y = 2i-l. In the final step we shall
apply Gessel-Viennot involution to cancel all intersecting r-tuples. Thus only those r-tuples
will remain which correspond to symplectic tableaux.

Let (P|, .... Pr) be an r-tuple of paths where there is either a path P. containing a hori-
zontal step below y= 2i- 1 or where the associated e diflFers from (1, 1,..., !).

At first, we adjoin to each patli P, a set M, of variables. M, is defined by

(3. 5) M. =
0 if £.-=1

{.ri, j-i'l,...,. E, _i, 2;,L\} ife; = -1.

\\c are thus concerned witli objects of the form

(3. 6) [(Pi, Mi),..., (P,, M, ), (T, £],
where (P[, ... , P^) is au r-tuple of paths with associated a and e, and the M.-'s are subsets
from the sequence x. The \'alues f, actually are encoded in the sets M,-. Note that for
the above object the j-coordinate uf of the starting point of P, can be expressed in M, 1s
cardinality, uf = |;\/, | + r - i.

The algorithmic involution consists of several steps, each yielding "intermediate" objects.
This set of intermediate objects, which we denote by 0, is the set of all objects of the form

(3. 7) [(P,,. Vi),..., (P,, M, ), (7],
siibject to

(3. 8) P, runs from (u^, 1) to (A<, (, ) + r - a (?) , 2n)

(3.9) . V, C{ri, ^',...,. c. _i,. c,-_\}
(3. 10) |.V, |=«f-r+i.

Together, conditions (3. 9) and (3. 10) imply r-i<u^^r+i-2.
We define the weight of an intermediate object in 0 to be the weight of the r-tuple of the

()aths times the product of all variables contained in the multiset union of the sets.
On the set 0 we define two operations, A and B. First we define operation A. Let k be

iiiiniinal such that either Pk contains a horizontal step at height /i < 2A;-1 or its adjoined
-set .\/(. contains the /i-th component of x (x(h+i)/2 ̂  h is odd and x^ ifh is even); let h be
iniiiimal. too. Now replace (P^,. \/^. ) by

\{P, Uh, Mk\[h}) if/i6Mfc,
|(P, \/i, MfcU{/i}) \fh^Mk.

This lias to be read in the following sense. If the h-th component of x is in Mfc, remove it
and insert a horizontal step in Pk at height /i, fixing the end point (this shifts the starting
poiiit one iinit to the left). If not. remove one horizontal step at height h in Pk, fixing the
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end point (this shifts the starting point one unit to the right) and adjoin the /i-th component
of x to Mk.

Two paths in an intermediate object may have a common starting point, or the reflection
of a starting point in the line x = r-1 may coincide with the starting point of another path.
For these two cases, we define operation B. Let (k, l) be a (lexicographic) minimal pair of
distinct indices so that either u^ = u] (starting points of /^, P; coincide) or u^+uf = 2r- 2
(starting points of Pjt., P; lie symmetrically with respect to. r = r- 1).

In the first case, simply interchange Pk and P;, and multiply o- with the transposition
(l, k). This results in

(3. 11) [... , (P,, M, ),..., (P;, A/, ),..., <7o(/, fc)],
where P^ = P{ and P/ = P^.. Clearly, conditions (3. 8), (3. 9) and (3. 10) are satisfied.

In the second case, again interchange paths Pk and P/, and multiply a with the transpo-
sition (/, /;); in addition, replace Mk, Mi by their "complements" A^, M/, resulting in

(3. 12) [... , (P,, A/, ),..., (P;, ^;),..., ao(;, fc)],

where?, =P,, P/ = P^ and M, := {.n, ^l....,. r, -i..r^i}\A4-1, A^f; := {^i, ^1,... , 3-, _i,
j-/~_li} \ M;-l. Here, Mfc-l means the set {y~l : y C A/i, }, and the same for M; l

Now we start with an object defined by (3. 6) and (3. 5), and forget the £-, thus obtaining
an object [(?i, Mi),..., (P^, Mr), a], satisfying (3. 8)-(3. 10). Hence, it is an element of 0.
We define a weight-preserving mapping by applying operation A to this object, then B,
then A again, etc., (formally: B^° or ̂  o (A o B)" o A), as long as the particular operation is
applicable.

It is not difficult to see that the algoritlim terminates with an application of A. Let
[(Pi, A/i) . (P,., Mr), a], be the terminal object. It is easy to show that u^ C {r - i,
r +i ~ 2^-_ (u^ denotes the ̂ -coordinate of the starting point of P.. ) Besides, if uf = r- z
we have M, = 0, and ifuf = r+z- 2 we have A?; = {.ri, 3-F1,... , 2;, _i, a:.-_\}. In the first
case we set £< = 1, in the latter e, = -1. We tlius obtain an object

(3-13) [(Pi, A-A),..., (P,, M, ), a, f].

Thus (Pi,..., P^) is mapped to (Pi,..., ̂ ). It is true that the permutation a exactly
corresponds to the permutation of the end points of Pi,..., Pr, and e corresponds to the
.

Tight" reflections of the starting points of Pi,... , P^. It can be shown that this algorithm
is weight-preserving and sign-reversing (i. c. that a and a differ in sign).

Among the remaining r-tuples we apply tlie Gessel-Viennot involution thus cancelling all
intersecting r-tuples. It can be shown that, altogether, this defines a weight-preserving and
sigu-reversing involution. - Q

BlJECTIVE PROOF OF THE SYMPLECTIC GlAMBELLI IDENTITY. The symplectic analogue
of the Giambelli identity for Schur functions reads (see [2, (24. 47)])
(3-14) ^2n ((^l/?) , X) = |5p^ ((Q, |/?, ) , X)|, ^.
Here, (a\f3} is the Frobenius notation for partitions (cf. [5]) and m is the number of cells
m the main diagonal of (a, /?). Again, we consider paths in the integer lattice consisting of
horizontal steps in the positive direction. The direction of a vertical step, however, is only
positive if it is strictly to the right of the y-axis, and is negative if it does not lie strictly to
the right of the y-axis.
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To the left of the horizontal axis we consider a "shifted" /i-labelling by assigning label t +1
to a step at height i, while we consider the "usual" e-labelling to the right. Given a tableau
of shape (a\f3} with entries from (1, 2,..., 2n}, we associate to its z-th principal hook a path
P. from (-a,, 27i - 1) to (f3, 4- l, 2n - /3, - 1) by interpreting the entries of the hook (read
from "right to bottom") as labels of the corresponding steps of P,.

Figure 4 shows an example (with n = 3) of this correspondence between noniatersecting
lattice paths and symplectic tableaux.

-< -3 .2 -I

^

1234

Figure 4

As is clear from the pictiire, the symplectic constraint translates into the condition that
tlie first path must not cross the line y = x -I. Obviously, the set of all m-tuples of lattice
paths subject to his condition (where m denotes the rank of the partition A) is invariant
under GesseI-Viennot involution. Therefore the same arguments as in Stembridge's [12,
sec. 9] proof of the "ordinary" Giambelli identity establish (3.14). d

BlJECTIVE PROOFS OF JACODI-TRUDI TYPE IDENTITIES FOR PROCTOR'S ODD AND

INTERMEDIATE SYMPLECTIC CHARACTERS. In [7, 9, 10] Proctor introduces odd symplectic
characters, and. more generally, intermediate symplectic characters that interpolate between
Schur functions and (even) symplectic characters. These characters can also be described
combinatorially by means of tableaux which (roughly speaking) obey the symplectic con-
straint (3. 1) for the first few rows and an additional rather intricate constraint involving the
jcu <le taquin. In certain special cases, he gives Jacobi-Trudi identities for these characters
[7. p. 317], [9. Prop. 8. 1], [10. App. A. 2]. It comes as no surprise that, because in these cases
the second constraint is either superfluous or very simple, the above proof methods for the
symplectic e-formula (3. 3) and the symplectic /i-formula (3. 4) also suffice to yield bijective
I)roofs of Proctor's Jacobi-Trudi identities.

4. Bijective proofs for orthogoaal identities. In [10, 8] Proctor gave tableaux inter-
pretations for orthogonal characters. In fact, Proctor defined two slightly different types of
orthogonal tableaux, coarse orthogonal tableaux (to be defined below) and fine orthogonal
tnbleatix. The number of coarse tableaux of shape A equals the dimension of the irreducible
representation of the orthogonal group indexed by X. However, the coarse tableaux are uot
ver\f well suited for describing tlic irreducible characters. This task is better performed by
t lie fine orthogonal tableaux. Orthogoiial characters are indexed by A^-orthogonal partitions
[10. 8]. These are partitions witli \\ + \'^ <, N. They obey the orthogonal "e-formula", the
orthogonal analogue of the dual form of the Jacobi-Trudi identity,

(4. 1; o.v (A, x) = |eA^-, +i (x) ; ev. _j+. (x) +eA^. -j-. +2(x)|AixAi.
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Here, x = (a;i,.Ef1,... .En, ^1) if N is even, and x = {i^x^\.. . x^, x-,, \\) if Ar is odd.

Setting all .r, equal to 1, one obtains

(4.2) o^(A, (l^))=^_, +i((l/v)) ; ey_, +, ((lA'))+ey_, _, ^((rv))k..,
((lyv) is the abbreviation for the A^-tuple (1, 1,..., !). ) As is well-known, when we replace
in o/y (A, x) each 3;, by 1 we obtain the dimension of the corresponding irreducible rcpre-
sentation. As mentioned above, this dimension is equinumerous witli the coarse ortliogonal
tableaux of the shape A with entries <, N. Therefore, we may write

(4. 3) o^(A, (1^)) = |{T : T coarse orthogonal, T^ ^ A'}| .
We are able to give a bijective proof for (4. 1) by using Proctor's fine ortliogonal tableaux.

However, there is not enough space to describe it here. Instead, we describe a bijective proof
for the weaker (4. 2) by using coarse orthogonal tableaux and the interpretation (4. 3). The
proof idea for (4. 1) is the same, however the argumentation has to be more careful bccaiise
we have to take care of weights which is not the case for our proof of (4. 2).

BlJECTIVE PROOF OF THE ORTHOGONAL DIMENSION FORMULA (4. 2). Let A = (AI
\r) be an N-orthogonal partition of length r. A tableau is called coarse orthogonal if it
satisfies the value p case of the coarse orthogonal condition for all p   N. A tableau T of
shape A is said to satisfy the value p case of the coarse orthogonal condition if the number
of entries < p in T's first two columns does not exceed p.

By reading Pj from the j-th column of the tableau and using the e-labelling. a coarse
orthogonal tableau of shape A corresponds to a Ai-tuple (Pi,..., P^) of nonintersecting
lattice paths, where Pj runs from Uj = (-j+ l, j- 1) to v, = (A^. -j+ 1, A'- A^ +j - 1)~.
and where the reflection of Pi in the line y=x does not intersect P^. This is exemplified in
Figure 5.

-3 -2 -I/ 12345

Figure 5

Let us denote the reflection in the line y = x by R. For the bijective proof of (4. 2) we
consider the set U<,gs ee{i}x{i, -i}^i-' 'P(u<£), v<, ). It is easy to see that the dctemiiiiant in
(4. 2) equals the weighted sum Ep sgn (a) where the sum is over all Ai-tuples P of paths in
this set.

We shall give a sign-reversing involution that cancels all Ai-tuples (Pi,... , P^, ) that arc
either intersecting or contain two paths P., P,, i ^ j, such that P, intersects R(P, j. Suppose
that this had been done. The remaining A i-tuples are nonintersecting and for all pairs P,, P^
the reflected path P, and the path R(Pj) do not intersect. In particular, the paths P,, ; > 2,
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neither meet Pi nor R (PI ). A moment's thought shows that, because of the order of the end
points (u^+i lies in the North-West of vj, j = 1, 2,. .., Ai - 1, and in addition 1/2 lies in the
North-West ofR(i;i); the latter is true because A is an N-orthogonal partition), this implies
that the end point of Pi must be i'i. Since for / ^ 2 the end points Vi lie in the North-West
of fi and R (i'i), the complete paths P;, i ^ 2, must lie in the North-West of Pi and R (Pi),
not intersecting any of them. Since also PI,... , P\^ are nonintersecting, because of the order
of the starting and end points, for t ^ 2 P, must run from u, to v,. In other words, the
remaining Ai-tuples are those for which a = id and e = (1,..., 1), which are nonintersecting,
and where R(P|) for i^ 2 does not meet P,. This would prove the assertion.

Now we define the involution. First cancel all intersecting Ai-tuples by the Gessel-Viennot
involutiou. For a remaining Ai-tuple, look for the lowest level x +y = c containing a point
p of intersection above y = x of P, and R(Pj). Choose (f, j) to be minimal in lexicographic
order. Now. as in the Gesscl-Viennot involution, interchange terminal portions of R(Pj)
and P, beginning from p, obtaining P', and P/. Then reflect back P,/, thus obtaining R(P, /)
and PJ. The following figure illustrates this operation. " " " "Pj'" *

.
R. (", ) 1 . .

Figure 6

Tlius. from the original Ai-tiiple of paths we obtain a new Ai-tuple by replacing P, by R (P,)
and Pj by P/. It does not introduce a new point of (ordinary) intersection in the resulting
Ai-tuplc. ID fact. there cannot l)e such a point above level x +y = c; and there is no such
l)oint l)elo\v. because c was chosen to be minimal. This mapping is sign-reversing since the
associated permutatioiis differ by the transposition {i, j). And it is straight-forward to verify
tliat it is an involution. D

BlJECTIVE PROOFS FOR ODD ORTHOGONAL IDENTITIES BY MEANS OF SUNDARAM'S

ODD ORTHOGONAL TABLEAUX. Sundaram's odd orthogonal tableaux [14, 13] are tableaux
with entries from the alphabet !<2<---<2n<ooin the usual sense, except that column
strictness does not extend to symbol oo (i.e., the symbol oo may occur more than once in a
co/umn). which obey the symplectic constraint (3. 1), and in addition have at most one entry
30 in each row. The weight of a Sundaram tableaux is defined by (3. 2), entries oo do not
contribute to the weight. Since the difference with symplectic tableaux is not too big, slight
niodifications of the above proofs for the symplectic Jacobi-Trudi identities (3. 3) and (3. 3)
can be used to prove tlie odd ortliogonal Jacobi-Trudi type identities

(4. 4)

0.., n+l(A. x) =

and

(4. 5)

^ PA; -, +;-Jt. (ri, J-r', . . . , -Cn, . Tn1) - ^ eA;_,-, -A: (3:i, 3-f1, . . . , ^, ^^
il->0 fc>0 lAixAi

02n+l (A. X) = l/l^. ^t 
: h^_^ (X) + <. -. _, +2 (X)lr xr,
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where h'^ = hk - hk-2 and x = {xi^x^ ,..., Xn, x^l, l}. The proof of the odd orthogonal
Giambelli identity (see [2, (24. 47)])

(4. 6) 02»+i ((a|/?) , X) = |o2n+i ((Q, |^) , X)|, ^,
by means of Sundaram's tableaux is similar to the one given for the syinplectic Giambelli
identity (3. 14) (see Figure 4). The lattice path interpretation ofSundaram's tableaux is the
same as in the symplectic case, besides the entries oo are interpreted as downward diagonal
steps. This correspondence maps Sundaram's tableaux to sets of nouintersecting lattice
paths that contain at most one diagonal step (with label oo) in the left half-plane. and that
do not cross the line y = x -1. We give an example for n = 4 in Figure 7. Application of
the Gessel-Viennot method immediately implies (4.6).

JL

2. 3.

2

4

00

30

3C

oc

^... -....
-3-2-1 1234

Figure 7
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