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Abstract. This paper describes a simple procedure for constructing large families of
statistics which are equidistributed on the set of rearrangements of an arbitrary word.
We describe couditious which guarantee that all members of a family so generated
do indeed have the same distribution. As dn application, we use the procedure to
construct a family of Malionian statistics which includes a number of well-known
statistics as special cases.

Generalisations de la statistique de Denert

Abstrait. Get article decrit une procedure assez simple pour construire des grandes
fdinilles de statistiques equidistribuees sur la clcLsse de rearrangements d'un mot quel-
conque. Nous decrivons des conditions qui garantissent que tons les membres d'une
famiUe aiusi engendree auront vraiment la m. eme distribution. Comme application,
nous utilisons cette procedure pour construire une famille de statistiques mahoniennes
qui inclut quelques statistiques blen connues comme des cas speclaux.

In receut years a new statistic on permutations was introduced by Marleen Denert
in connection with her work on genus zeta functions of local minimal hereditary orders
[2]. D. Foata and D. Zeilberger [3] have shown that Denert's statistic ("den") has the
Mdhomau distribution on Sn. Subsequently, G. -N. Han showed that Denert s statistic
is also Malionian on arbitrary words [4]. There dre a number of other statistics
which also have the MaJionian distribution, on arbitrary words - perhaps the best
known are the inversion number, "inv", and the major index, "maj". Thus the
statistics "den", "inv" and "maj" are equidistributed. The principal result of this
paper is a simple procedure for constructing large families of equi distributed statistics,
a procedure which is rooted in the relationship between Denert's statistic and the
inversion number.

After providing the necessary definitions and notation, we describe the procedure
for some interesting special cases, and then discuss the conditions under which our
results can be generalized. We conclude with some remarks about the possibility of
even wider application of these results.
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If a is any word on the alphabet {1,2, ..., n} we will write W{a) to denote the
collection of all rearrangements of the word a. If w G W{a) we let w denote its non-
decreasing rearrangement. The classical statistics which are of pajticular interest are
described m the following definition:

DEFINITION: If J is any set of (non-negative) integers, we write ̂ J to denote the
cardinality of J and Y^J\. o denote the sum of the elements of J. Let a be given, and
let w £ l^(a). We set

(i) inv w = #{2 < j : w, > Wj}
(h) maj w = ^{z : w. > w,+i}.

Let a = 1P12P2 . . . fcpk with ̂ p, = n. As is well-known, both maj and inv have the
Mahonian distribution on W(a), that is,

E 9mvu= E ?
u/gW(a) w6W(a)

.maj w _
n

LP1.P2, , pk\

In the course of showing that Denert's statistic is Mahonian on 5'n, Foata and
Zeilberger gave a convenient encoding which extends easily to arbitrary words. We
take this encoding as a definition:

DEFINITION: If w is any word aud w its non-decreasing rearrangement we define
den w =J^ d, {w) where

d. (w} = J ^tj < ! : w; ^ WI or w\> Wt^ ^ wt < wi

-t^-y - ^ ^^. ^ ^ ^ ^ ^ ^ ^W, } if W; ̂  W, "

EXAMPLE 1: Let w == 3122314211. We have

w: 1111222334
w: 3122314211
d, {w) :0022324256

so that den w = E^, (u;) == 26.

An alternative description of the Foata-Zeilberger encoding can be given in terms
of cyclic intervals [4]:

-202-



DEFINITION: Let x and y be elements of {1, 2,... , fc}. We defiue C(a;, y), the
cyclic interval a.ssocia. ted to the pair (a;, y) by

{x+l, x+2,..., y} [fx^y
[xfy)=\{l, 2,..., y}U{x+l, x+2,..., k} [tx>y .

Thus rf, (w) = #{j <i : Wj- 6 C'(w,, w;)}.

We are now m a position to describe the key relationship between Denert's statistic
and the inversion number. First, recall that if w £ W(a) then inv w = ^, 6, (w) where

6, (w) = #{j < i : w^,- > w;}.

Thus if w = 3122314211 then invu;=0+l+l+l+0+4+0+3+6+6=22.
We can use this encoding to obtain Denert's statistic as foUows: decompose the

word w into blocks according to the value of w, :

w : 1111 222 33 4
w : 3122 314 21 1.

Working from right to left, and treating each block in turn, first compute the con-
tribution of the right-most block to the encoding of the inversion number of w, and
then act on the remaining blocks with the cyclic permutation. 7 = 2341 (one-Une
notation). Thus at each iteration the contribution from the right-most block is com-
puted on the basis of the entries to the left which resulted from the previous action of
7. It is convenient to represent these calculations using the following scheme, where
the contribution at each iteration is underscored:

w : 3122 314 21 1
4233 421 32 6
1344 132 2^
2411 324
0022

Note that the contributions of each positioa are exactly the values of c?, (w) obtained
via the Foata-Zellberger encoding; thus the sum of these contributions is also equal to
den w. Indeed, the cyclic interval description of the d, guarantees that this procedure
always yields Deuert's statistic.

The procedure described above can be generalized. If w is a word of length n on
{1, 2,..., k} and 0-   5'jc then we write aw to represent the action of o- on w, that is,
aw = cr(wi) . . . o-(wn). Let C = (C'i,..., Cr) be any composition of n, and let cr =
(o-i,. .., o-r) where each o-^ G 5'j(:. First, decompose the word a-rW into blocks B-^,... , Br

^
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of sizes C'i,... , C'r respectively. Now compute the contribution of the letters m block
Br to the encodmg of the inversion number of a-rW and then act on the reniammg
blocks with the permutation o-r_i. Continue computing the contributions of each block
in this way, working from right to left and usmg the permutations o-r,... , 0-1 in turn.
More precisely, for each j = 1,... , r we compute the contribution of (o-j . . . o'r)(wfl )
to the encodmg of the inversioa number of o-, . . . o-r(u;B; . . . wg. ). The value of the
generalized Denert statistic on w is given by the sum of the contributions from each
block. We wiU denote this value by GINV^C, o-)(w).

EXAMPLE 2: With w = 3122314211 as before, C = (3, 5, 2) and er =(4312, 1432, 2341)
we have:

w: 312 23142 11
(action of o-a) 423 34213 22
(action of o-s) 243 32413 QS.
(action of o-i) 321 13062

012

So GINV{C, o-)(w) =0+1+2+1+3+0+6+2+5+5= 25.

Note that if w   W(a) where a = 1" ... kpk, then choosing C = (pi,... , p(;),
o-j = 7 = 23- . -fcl forj = l,..., fc-l and a-k = 'L2- . . k yields the Mahonian statistic
den. In fact, we have the following theorem:

Theorein 1: Let a = lpl ... kpk with J^p, = n. For each choice of a composition
C = (C'l, . . . , Cr) of n and r-tuple of permutations a-, the statistic GINV(C, a-) has
the Mahonian distribution on W[a).

Thanks to a result of G. -N. Han [4] a similar Mahonian statistic manufacturing
machine can be constructed with the major index, maj, playing the role of inv.

DEFINITION: Let a = lpl ... k"1' with EP< = ", and let u; 6 W(a); also, let
a; 6 Z U {0x3}, aud set Un+i = x. For each i, 1 ^i ^n, let

h^w)=#{j<i:w, eC{w,, w^)}

and let mr(w) = E/i?(^).

EXAMPLE 3: Let w = 3122314211. Then

mco(w) =0+0+0+1+1+4+4+5+0+6=21
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while

rn. 3(w) =0+0+0+1+1+4+4+5+0+5= 20.

Note that m the previous example, maj w = 21 = m°°(w). Han has shown that for
any w   W(a), mco(w) = maj w, so that m°° is certainly Mahonian, and in general
we have:

Proposition 2: Let a = lpl . . . kpk with^, p, = n. If x   ZU{oo} then the statistic
m2: has the Mahonian distribution on W{a).

A new family of statistics, GMAJ, can now be constructed: As before, let w be a
word of length n on the alphabet {1, 2,..., fc}, let C = (C'i,..., Cr) be a composition
of n and let o- = (o-i,... , o-r) where each o-j £ 5'jk. Again, decompose o-riu into r
blocks of sizes (7i,... , C'r. For j = l,..., r- 1 let Sj be the first letter in block j of
Oj- . . CTr(w5, . . . ws. ), and let x^ = co. Begin by computing the contribution of o-rWg,
to m°°(w) = m°°(w5^ . . . wsj, and continue, working right to left, computing at each
stage the contribution of a-j- .. ar{wB,} to mx'(a-j . . . cr^wg^ . . . WB, )). Then sum the
contributions to obtain GMAJ{C, o")(w).

EXAMPLE 4: Let w= 41321314221443, 0= (5, 3, 4, 2) and o-= (2341, 2143, 4231, 1234).
The scheme below shows the value of each xj in bold-face, while the contributions of
the positions in each block are underscored:

w : 41321 314 2214 43oo
14324 341 22414 94
23413 4322 0529
341244 440
00020

So C?MAJ(C, o-)(w) =0+0+0+2+0+4+4+0+0+5+2+9+9+4= 39.

Theorem 3: Let a = lpl ... kpk with ̂ p; = n. For each choice of a composition
C = (C'i, . . . , Cr) of n and r-tuple of permutations cr, the statistic GM'AJ^C, cr) has
the M'ahonian distribution on W(a).

As m the case of GINV the proof rests on certain properties shared by the "gen-
erating" statistics, inv and mx :

^
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(i) Each of these statistics has the same distribution on W(a) as it does on W{cra)
for any a S Sk. (We say that the distribution is permuteable.)

This is really a property of the distribution, a property which is also enjoyed by other
distributions, e. g., the Eulerian distribution.

(ii) Suppose that w 6 W(a) is decomposed as w = uu; then each of these statistics
can be written as a sum of contributions from the subwords u and v. This
decomposition (or splitting) has the following properties:

a) The contribution of v depends only on the content (or type) of u.
b) Let v be fixed and consider the contribution of the various rearangements

of u. Then this contribution, considered as a statistic on W(u), has the
Mahonian distribution.

For suppose that u; = uu and that u is a word of length I. Then

while

inv w = inv u + ^ 6, (w)
l=(+l

mr(w)=mwl+l(u)+ ^ h^w).
>=(+l

The main result of this paper is, in essence, that any statistic which splits and has
a permuteable distribution can serve as the progenitor of a family of equidistributed
statistics, just as mv and mr generate the Mahonian families GINV and GMAJ.
In fact, an even more general result can be obtained by allowing a new choice of
progenitor at each iteration of the procedure. In order to make this more precise, we
make the following definitious:

DEFINITION: Let W denote the collection of all words of finite length and let W be
the set of their uon-decreasing rearrangments. If T is any collection of statistics then
we say that T is equidistributed with distribution F if there is a function F :W -^
such that for every t eT, 'if tis defined ou W{a) then

E qt (w)=F{a).
w6W(a)

DEFINITION: Let T be an equidistributed collection of statistics, and let r :
W xW -^T bea. map which satisfies the following properties:

(1) r(w, a) is a statistic defined on W(a};
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(ii) for each (w, a) eW xW, t{w, a] splits.
Under these circumstances we will say that r is admissible for T. .

The purpose of the map r is to select a (possibly new) statistic from T at each
iteration, yielding a statistic Gr. As an example we describe a family GM'AJ0 :

EXAMPLE 5: Let 6 :WxW -^ ZU {oo}. For any pair (w, a) e W xW let
MAJff(w, a) == m8(w'a^. Then MAJ$ is admissible for any family ofMahonian statistics;
when 8{w, a) = w^ we obtain the statistic GMAJ described earlier. More generally,
we have

G'MAJfi(C, o-)=G'MAJ'(C, o-).
To illustrate the construction, let C and <r be as in Example 4, and again set

w ^= 41321314221443. Suppose that MAJ<? selects the statistics ml, m°°, m2 and
finally m3. To compute the value of GMAJe{C, o-) we first find the contribution of
CT^WB^ to ml(o-ru), then use m°°, m2 and m3 for the remammg iterations:

w: 41321 314 2214 431
14324 341 2241co 98
23413 4322 0529
341243 440
00023

Summing the contributions from each block, we have GMAJe(C, cr){w) = 46. It
can be shown that this statistic is equldistributed with the statistics in T, that is,
GMAJ$(C, <r) is Mahouiaa. In general, we have:

Theorem 4: LetT be an equidistributed collection with a permuteable distribution
F^ and let r be an admissible mapforT. Let k be any positive integer, and suppose that
a = lpl ... kpk with ̂  p, = n. T/ien /or eac/i choice of a composition C, an<f r-tuple
o-, the statistic GT {C, cr) is equidistributed with the statistics in T. Equivalently,

^ ^r(C, <T)(w) ̂  ^^
u6W(a)

Proof: The proof is by induction on r, the number of blocks.

REMARKS: (i) It is not difficult to show that if 0(w, a) = co then there is a pair
(C', o-/) with the property that GMAJ$(C, o-) = GINV[C', 0-'}. Thus the statistic
GMAJ9 actually subsumes the GINV family. By making appropriate choices for 6,
we find that GMAJe can also be specialized to Han's statistic "den°" or to Rawling's
mterpolating statistic r-maj [8, 9]
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(ii) For certain classes of maps 0 it is possible to define a Mahoniaji statistic GZe
which is related to GMAJ9 in the same way that the Z-statistic of the g-Dyson
Theorem is related to the major index [l]; that is,

GZe{C, <r)(w) = ^ GMAJ$(C, <7)(w, <).
J<:

Li addition, one of us (DW) has used some of our ajiciUaLry results to construct a
bijection on arbitrary words which sends "Z" to "maj", giving yet another proof that
the Z-statistic is Malioniaji. (See [5] for a similar result.)

(iii) Although the Eulerian distribution is pennuteable, it can be shown that no
Eulerian statistic splits (except in a few trivial cases). Nevertheless, there appear
to be instances of equidistributed families generated by Euleriaji statistics using the
procedure described here.

(iv) A slight adaptation of our procedure leads to a family of ̂ -Stirling distributed
statistics on restricted growth functions, using the statistic "Ib" as the generating
statistic [7, 11, 12]. It appears that these methods will extend to other combinatoriaJ
objects as wed, e. g. barred permuta-tions [10]
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