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SL-MMARY In [5] Stanley associated to a (finite) graph G a symmetric function XG gen-
eraiizing the chromatic polynomial of G. Using an involution on a special type of arrays
constructed by Gessel and Viennot [I], we show that if G is the incomparability graph of a
(3 + l)-free poset, then XG is a nonnegative linear combination of Schur functions. Since
the elementary symmetric functions are nonnegative linear combinations of Schur functions,
this result gives supportive evidence for a conjecture of Stanley and Stembridge ([5, Conjec-
ture 5. 1] or [6, Conjecture 5.5]).

Dans [5], Stanley associe a tout graphs (fini) G une fonction symetrique XG qui generalise
Ie polynome chromatique de G. En utilisant ime involution sur certains tableaux con-
struits par Gessel et Viennot [I], nous demontrons que si G est Ie graphe de la relation
d'incomparabilite d'un ensemble partiellement ordone qui ne contient pas (3 +1), alors XG
est une combinaison lineaire de fonctions de Schur dont les coefficients sont positifs. Puisque
les fonctions symetriques elementaires sont des combinaisons lineaires de fonctions de Schur
dont les coefficients sont positifs, notre resultat confirme une conjecture de Stanley et Stem-
bridge ([5. Conjecture 5. 1] ou [6, Conjecture 5. 5]).

1. Introduction

Let G lie a (finite) graph with vertex set V = V{G} = {ui, -U2,... ̂ d}. A coloring of G
is a function AC: V -» P, where P = {1, 2,... } is the set of colors. A coloring K is called
proper, if /<(u) 7^ /c(u) whenever u and u are the vertices of an edge of G. The chromatic
polynomial of G is the function >:c : P -^P such that XcW is the number of proper
colorings of G with n colors. (It is not difficult to see that \c is indeed a polynomial of
degree d. } In [5] Stanley introduced and studied a symmetric function XG, generalizing
\c- It is defined as follows. Let 3:1, 3:2,... be commuting indeterminates. Then

Xc = Xc{x} = Xc(2;i, a;2, ... ) = ^ 3;K(V1)^K(V2) . . . ̂K (va)

^

where the sum ranges over all proper colorings of G. It is immediate from the definition
that Xc(ln) = Xc(n}, where Xc(ln) is the specialization of XG obtained by letting
2:1 ==l2 = ... =2'n = 1 and 3;n+i = 3;n+2 = ... = 0. One very interesting question is to
study the coefficients that arise in the expansion of XG in terms of the "natural" bases for
the vector space ofsymmetric functions A. (In [5] many results related to this question are
proved. ) In particular, we may ask whether these coefl&cients are nonnegative. Following
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[5] we say that a symmetric function / is u-positive. where {u\} is a basis for A, if the
coefficients d\ in the expansion / = ^^ d\u\ are all nonnegative. A graph G is said to be
u-positive if XQ is u-positive. Let s and e stand for the Schur functions and the elementary
symmetric functions, respectively. A poset P is called (a + b)-free if P does not have an
induced subposet isomorphic to the direct sum a + b of an a-element chain and a b-
element chain. The incomparability graph of a finite poset P, inc(P), is the graph with
vertex set P and edge set E = {(u, r)   P | u and v are incomparable in P}. Stanley
stated the following conjecture [5, Conjecture 5. 1]. which as he mentions is equivalent to
[6, Conjecture 5. 5].

Conjecture 1 (Stanley-Stembridge). If P is (3 + l)-free, then inc(P) is e-positzve.

This conjecture has been verified for all posets with at most 7 elements by Stanley and
Stembridge [6, pp. 277-278] and for all 8-element posets by Stembridge.

Since each e\ is s-positive, Conjecture 1 implies that the incomparability graphs of
(3 + l)-free posets are s-positive. Further evidence in support of Conjecture 1 is Theo-
rem 1 below, which as is mentioned in [5, p. 18] follows easily from a result of Haiman [2,
Theorem 1. 4]. An indifference graph (or unit interval graph) is an incomparability graph
of a poset which is both (3 + l)-free and (2 + 2)-free.

Theorem 1. Let G be an indifference graph. Then G is s-positive. D

To prove his result Haiman iises deep machinery from the theory of Hecke algebras and
Kazhdan-Lusztig polynomials, in particular the Kazhdan-Lusztig conjectures on compo-
sition series ofVerma modules (proved by Beilinson-Bernstein and Brylinski-Kashiwara).

Stanley remarked that there should be a proof of the innocent sounding Theorem 1
wliicli does not use the Kazhdan-Lusztig conjectures.

In this paper we prove (a generalization of) the following theorem.

Theorem 2. If G is the incomparability graph of a (3 + l)-/ree poset, then G is s-
positive. D

This theorem provides new evidence in support of Conjecture 1. Its proof is relatively
short and uses only standard facts from the theory of symmetric functions. In particular,
it yields a simple proof of Theorem 1.

2. The main result

Definition. Let G be a graph with vertex set V = {ui, i;2,... , Ud}. A multicoloring of G
is a function /t: V -» 2P, where 2P is the set of all subsets of P = {1, 2,... }, including
the empty set. The multicoloring is proper if h;(u) n K(v) = 0 whenever u and v are the
vertices of an edge of G. If m = (mi, ms,.... md) is a sequence of nonnegative integers,
then an m-multicoloring is a multicoloring K such that \^(vi)\ = m; for i = 1, 2,... , d.
For a finite subset S = {si, S2r . . } of P we define 2:5 = z;Sl-rS2
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Definition. Let m = (mi, 77221 . . . > md) be as above. Define

X^ = X^(x) =X^(x^x^... )=^ x^)x^) ... x^, ) ,y
-^-f

where the sum ranges over all proper m-multicolorings K:V -> 2 .

It is clear that Xgl generalizes XG in the sense that ^-(1'1'---'1) =; ^ Then Theorem 2

is a special case of the following theorem.

Theorem 3. If G is the incomparability graph o/ a (3 + l)-free poset with d elements.
and m = (mi, mz,... , md) is any sequence of nonnegative integers, then X^ is s-positive.

Proof. Let P = (P, -<) be a partially ordered set. We define a P-array to be an array

aii ai2 ...

"21 "22 . . .

of elements in P, arranged in left-justified rows, and satisfying the following condition:

(2. 1) a^ -< a, j+i

A P-tableau is a P-array, satisfying the additional condition:

(2. 2) Ifai+i.j is defined, then a^j is defined and ai+ij -^ Oy.

Such arrays were first considered by Gessel and Viennot [1]. The weight of an array T with
entries in P is the sequence wt(T) = (ni. ns,... ) , where n; is the number of occurences
of vi in T. Let G be the incomparability graph of P. To each proper multicoloring K. of G.
we can associate a P-array T^ in the following way.

For any i ^ 1, let [v[i\v^i\... } = K~l{i). Since K is proper, it follows that K~l{i) is
a stable subset of V, i. e., no two vertices in K~ {z) are connected by an edge in G. This
implies that K~l(i) is a chain in P. so we may assume that vw ̂  u^) -< ... . Then T^ is
the array

v
(1) ,. (1)

V.

v
(2) ,. (2)

u"

It is clear that for any P-array T, there is a unique multicolormg K of G such that T = T^.
For a partition A, let m\ and h\ denote respectively the monomial synunetric function
and the complete symmetric function indexed by A. It is well known (see [3, Chapter I.
j4] for example) that the s\ form an orthonormal basis for A with the inner product
defined by (m^, ^) = 6^. Therefore, if X^ = E^C^SA, then CA = (XSI, SA). Let 1{X)
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be the length of A. Then the Jacobi-Trudi identity (see e. g. [3, Chapter I, (3. 4)] or [4,
Theorem 4. 5. 1]) is the following:

(2. 3) s\ = det(/iA, -i+j)i^ij<((A)

Let Si denote the group of permutations of {1, 2,... , ^}. If A = (Ai,... , A;) is a partition
of length 1, and TT   Si, then we denote by TT(A) the sequence {A^Q-) - Tr(ji') + J"}^i.
Expanding the determinant on the right side of (2. 3) we get that

s\= ^ sgn(7r)/i^(^),
7T 5|

where, for any integer sequence o; = (ai,... , Q;(). ha = /IQ; ... /IQ(. (We set /ir = 0 if
r < 0.) Thus c^ = Ew 5isen(7rXX51 '/l7r(A)^ where <X51 '^(^)) is) by the definition

of the inner product {-), the coefficient of m^^ in Xgl, i. e., the coefficient of xvw

in Xgl, which in turn is the number of proper m-multicolorings of G' with weight TT(A).
(The weight wt(/c) of a multicoloring K is the sequence (|/<-1(1)|, |K-1(2)|,.. . ). ) Since the
shape of T^ is wt(K), we get that {X^, h^^} is the number of P-arrays of shape TT(A)
and weight in. Let

A = {(7T, T) | 7r65( and Tis a P-array of shape TT(A) and weight m}.

Then CA = E(^,T)gAsen(^)- Let

B =- {(7r, T)  A | Tis nota tableau}

and note that if T is a tableau, then 7r(A)i ^ 7r(A)2 ^ ..., hence TT == id. Thus to prove
that CA > 0 it will be enough to find an involution ip: B -* B such that if (cr, T') = y{iT, T),
then sgn(o-) = -sgn(7r). One such involution is constructed in [1, Proof of Theorem 11].
We describe a slight modification of it below. Let

QII 012...

1 = Q2l 022. ..

and let c = c(T) be the smallest positive integer such that (2. 2) fails for some i and j = c.
Let r = r(T) be the largest i with this property. Then define <7 = TT o (r, r+ 1), where
(r, r + 1) is the permutation that interchanges r and r + 1. Define

fel l bi2 ...

T = b^ 622 ...

by letting

bij == aij if? 7^ r, r+ 1 or i = r and j ^ c- 1
or i= r +1 and j <: c ;
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brj == a^+ij+i if j ^ c and a^ 4-1^4. 1 is defined ;
far +ij = ar, j-i ifj > c+ 1 and arj_i is defined.

Since by assumption arc is not defined or ar+i, c -< a-rc, it follows that T satisfies (2. 1)
fori = r+ 1. So to show that T' is a P-array, it suffices to show that T satisfies (2. 1)
for i = r. i. c.. Qr. c-i . < ar+i. c+i- But ar+i, c-i -< ar+i, c ~< ar+i, c+i is a 3-element chain
in P and Qr+i.c-i -^ ar, c-i< so by the assumption that P is (3 + l)-free, it follows that
Qr.c-i -< ar+i.c+i. Thus T' is a P-array which is not a tableau (br+i, c = ar+i, c ^< brc =
a^+i. c+i if brc is defined) and clearly c(T/) = c(T) and r(T') = r(T). This shows that
(^(o-, r/) = (7r, T), so (^? is an involution. Moreover, sgn(o-) = -sgn(Tr). D

From the proof of Theorem 3 we get the following combinatorial interpretation of the
coefficicnts c\.

Theorem 4. // X^ = ^^ CAS^, ^en c^ zs the number of P-tableaux of shape X and
weight m. D
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