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Abstract

We investigate reduced expressions in the irreducible affine Weyl groups. A bal-
ance condition, similar to the condition defining the balanced tableaux of Edelman and
Greene [4], is introduced to give a geometric characterization of the reduced expres-
sions. Finite automata are constructed so that the words accepted by the automata
correspond to the reduced expressions. This establishes the existence of a rational
generating function with the values of r(w) ( the number of reduced expressions for
a group element w ), appearing as the coefficients. We also discuss the combinatorial
properties of an arrangement of affine hyperplanes used in one of the constructions.

On etudie les decompositons reduites des elements des groupes de Weyl affine
irreductibles. Une condition dite d'equilibre, est introduite afin de donner un car-
acterisation geometrique des decompositions reduites. Cette condition est similare a
celle qui definit les tableaux equilibres d'Edelman et Greene [4]. On construit des au-
tomates finis, qui sont tels que les mots acceptes correspondent aux decompositions
reduites. Cela entraine 1'existence d'une fonction generatrice rationelle dont les coef-
ficients sont les valeurs de r(w) (Ie nombre de decompositions reduites d'un element
w du groupe). On discute aussi des proprietes combinatoires d'un arrangement affine
d'hyperplans qui est employe dans une des constructions.

^
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1 Introduction

The reduced expressions in finite Coxeter groups are a subject of recent interest. Stanley
showed that there is a connection between the enumeration of reduced expressions in An and
the enumeration of standard Young tableaux [11]. Edelman and Greene introduced balanced
tableaux to find a bijective proof of this result [4]. Similar methods have been used to study
the reduced expressions of Bn and Dn.

This paper is the result of investigations concerning reduced expressions in irreducible
affine Weyl groups. The methods we use lead to some interesting geometric properties of
the affine groups, which will also be discussed.

The results are divided into three parts. First, we show that the concept of balance
found in [4] can be extended to affine Weyl groups. A reduced expression in an affine Weyl
group corresponds to a finite sequence of hyperplanes crossed by a path in affine space. The
balance condition describes the sequences that are possible.

Second, we explore the applications of finite automata to the enumeration of reduced
expressions. We show that there is a rational generating function that counts the number
of reduced expressions for each element of an affine Weyl group. The automaton used to
establish this can be adapted to show that the language of reduced expressions is itself
a regular language; i.e., there is an automaton that accepts precisely this set. We then
introduce another construction of automata accepting the language of reduced expressions,
requiring in general far fewer states. In fact this construction is optimal for An, in the sense
that no automaton with fewer states can accept the language of reduced expressions.

This last construction has a particularly elegant description involving an arrangement
of affine hyperplanes. In the third part we consider some combinatorial properties of this
hyperplane arrangement. Shi encountered the same arrangement in the study of Kazhdan-
Lusztig cells [10]. We apply his results to determine the number of states of the automata. We
also build on Shi's work by applying the theory of intersection lattices to this arrangement.

2 Affine Weyl Groups

Let $ be an irreducible crystallographic root system; i.e., a system of one of the types A-G.
We will assume that $ lies in a real vector space V such that n = dim V is the rank of $.
For a   $, <;   Z, define ̂ , fc to be the affine hyperplane {A   V\(\, a) == A:}, and define
Sc,, k to be the affine reflection through Ha, k- Then the group generated by the s^, k is an
irreducible afiine Weyl group. We will denote the affine group by placing a tilde over the
name of the corresponding root system, and we will refer to an arbitrary irreducible afHne
Weyl group ELS W.

The connected components of V-[J H^, k are called alcoves. If A is a set of simple roots for
<&, and Q- the corresponding highest root, then the set {A|(A, a) > 0 for all a   A, (A, d) < 1}
is an alcove, known as the fundamental alcove, which will be designated Ao.

We list some standard facts:
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. The reflections 5a.o, a   A and 55, 1 (i. e., the reflections through the (n-l)-dimensional
faces of Ao) constitute a Coxeter system for W.

o The action of W on the set of alcoves is transitive, and the map w -» wAo is a bijection
from W to the set of alcoves.

. The minimal length /(w) of an expression for w as a product of elements of the Coxeter
system is equal to the number of hyperplanes Ho,, k separating Ao from wAo. An
expression for w of length l{w) is called a reduced expression.

Standard references for affine Weyl groups are [1] and [6].

3 A Balance Condition

While w can be identified by the hyperplanes separating Ao from wAo, the reduced expres-
sions for w can be identified with certain linear orderings of these hyperplanes. To be precise,
let s^. -. Sr be a. reduced expression for w, and let H, be the hyperplane fixed by 5;. The
hyperplanes separating Ao from wAo are

H-i^SiH'i^SiS-iH^, ... , S-i. . . Sr-lHr.

In fact there exists a continuous path from Ao to wAo, crossing the hyperplanes in the list
in the order given. Such a path visits the alcoves Ao, siAo, SiS-2.. .SrAo = wAo, in that
order. So different reduced expressions for w correspond to different orderings of the set of
hyperplanes separating Ao from wAo.

Of course, not all orderings correspond to reduced expressions; for instance, the first
hyperplane in the list must contain an (n- l)-dimensional face of Ao. The following theorem
gives a characterization of the orderings that do correspond to reduced expressions. The
conditions are related to the conditions in the definition of balanced staircase tableaux [4]
and the root sequences of [7], both of which correspond to orderings of roots in finite Coxeter
groups. There is an analogous result for general Coxeter groups, using the roots of the
geometric representation [5].

Remark: The hyperpianes H^-k and H-a, k are the same. For the statement of the
following theorem, it will be helpful to give each hyperplane a unique labeling. A hyperplane
will be called Ha.k so that A;>0, ora   $~ and fc = 0.

Theorem 3. 1 Let Hi,... , Hn be a sequence of distinct hyperplanes of the form H^.k, labeled
as in the remark above. There exists a reduced expression Si. -. Sn such that H, separates
si .. . 5, -iAo from si .. . 5.-Ao for all i if and only if the following condition is met for all
triples of not necessarily distinct roots Q, /3, -y = coa + C0/3   ̂ , where c^, cp   R+; for all
(np/es of hyperplanes Ha^, Hp, kp, H^^, with Cc, kc, + cgkp = c^k^,

. If H-,, ^ appears in the sequence, then it is preceded by exactly one of H^, ^, Hg. kg-

. // Hc,, k», Hp, kp both appear in the sequence, then exactly one of the two is preceded by
H^.
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4 Finite Automata

Let A be a finite set, which will be called an alphabet. Let A* be the set of words over this
alphabet (i.e., the set of finite sequences of elements of A). A (formal) language is defined
to be a subset of A*. A finite automaton determines a Idnguage. Several definitions of finite
automata exist, all essentially equivalent. For our purposes a finite automaton consists of a
finite set 5' of states, with one state So designated the initial state and a subset designated
as the final states, and a transition map t: S xA-^ SU {0}. A word ai... On is accepted
by the automaton if there exist states 5'i,... , 5'n such that

. t(Si, a,+i) = 5',+i forO ^t ^ n-1

. 5n is a final state.

If a language L is the set of accepted words for some finite-state automaton, then L is said
to be a regular language. If we set ^(a) = ta for a 6 A, then

S ^(ai)... <P(an)
ai. -.angL

is a rational generating function in C[[T , where T is the set of indeterminates {ta]a^A- See
Chapter 4 of 12 (where different terminology is used) for details.

Theorem 4. 1 Let W be an irreducible affine Weyl group. For w G W, let R(w) be the set
of reduced expressions for w, and let r(w) = |^(w)[. Let f{w) = ^\a^+ x^a(w), where na(w)
is the integer such that na(w) ^ (A, a) ^ na(w) + 1 for \ G wAy. Then

E E Aw) = £ r(w)^(w)
u>6W6R(w) weW

is a rational generating function.

Proof-. We construct a finite automaton on the alphabet A = {xQ ^x~yl\Ot   $+}. Let T be

the (finite) group of translations that preserve the alcoves of W, and let 5'o,..., 5'm-i be the
orbits of the T-action on the alcoves, with Ao   .S'o. The set of states of the automaton will
consist of ordered pairs (5',, B), with B a subset of A containing at least one of Xo,, x^1 for
all a   $+. The initial state is (5'o, A), and all states are final. Assume the only hyperplane
separating an alcove of 5', from one of Sj is a hyperplane perpendicular to a. Then we will
write Sj = 5,° if the alcove of Sj is on the positive side (with respect to a) of the hyperplane,
and Sj = Si~a if on the negative side. The transition function is defined by

(S^B-x, 1) if5,a exists and z»   B
5., ^^, ^j=^ g - otherwise

<((5., 5),. r;l)=
(5,-°, B-x^) if 5,-a exists and x^, 1 e B
0 otherwise
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Words accepted by this automaton correspond to the sequence of hyperplanes crossed
by a path from alcove to alcove through affine space beginning at Ao. The words that are
accepted correspond to the paths that never cross a hyperplane in both directions, which are
the paths that never cross a hyperplane twice. Thus, these paths correspond to the reduced
expressions. The image of a word corresponding to path from Ao to wAo in the commutative
formal power series ring over A is clearly /(w), and the result follows. D

It is possible to construct a similar automaton on the alphabet of Coxeter generators so
that the language accepted by the automaton is the language of reduced expressions. If T
is replaced by T F\W m the proof above, then each transition corresponds to paths from
wAo to w5, Ao for some unique 5,. Using this correspondence, we can change the alphabet
of the automaton to the set of Coxeter generators. Such automata on alphabets of group
generators have been the subject of much recent research [3]. A proof that the language
of reduced expressions in an arbitrary Coxeter group is regular appears in [2]; a somewhat
different proof will be presented in [5].

We now give another construction of an automaton that accepts the language of reduced
expressions, a construction leading to some interesting geometry. If s-^ss ... Sk is reduced,
and AQ and s-^s^ .. . SkAy lie on the same side of the hyperplane fixed by Si, then Si... Sk is
reduced. If Ao and s-^sy .. . SkAo lie on opposite sides, then s^s^ ... Sk is not reduced. This
suggests a way to generate reduced expressions from right to left, but since Si.. . Sk'is reduced
if and only if Sk . .. si is reduced, it provides a method for generating reduced expressions
from left to right as well. To employ this in an automaton, we use the following result

Lemma 4. 2 Let /H = {Hc,, k\a   $+, A; = 0, 1}. Let 'R be the set of connected components
ofV- U//6^ H. If Ri ̂ . K, and R\ and AQ lie on the same side of the hyperplane fixed by
s, a generator in the Coxeter system, then sRi is contained in a unique R-i 6 7?..

This allows us to construct an automaton with states corresponding to the members of 72.
so that the automaton accepts the language of reduced expressions. It is a fairly efficient
construction; in fact, it hds the least possible number of states for an automaton accepting
the reduced words of An.

<.

5 The Combinatorics of the Hyperplane Arrangement

In this section 7-i and 7^ will be defined as in last section's lemma. We begin with Shi's result
about |7?. |, the number of states in the automaton described at the end of the last section.

Theorem 5. 1 (Shi) The cardinality of K is (h+ 1)", where n is the rank o/$ and h is the
Coxeter number of the finite Coxeter group corresponding to $.

Shi's method of proof is very diflferent from the usual methods of investigating hyperplane
arrangements and their complements [10]. One such method is the use of the intersection
lattice (or semi-lattice, in the case of arrangements with empty intersection) [9] [13]. Let L
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be the set of nonempty intersections of members of "K, partially ordered by reverse inclusion.
Define the Poincare polynomial of "K to be

7T(^, f)= Z^V, X){-t)codtm(x\
xeL

where fi is the Mobius function of L. Then |7^| = TT(^, 1). In fact, we can combine Shi's
result with information from the tables in [8] to show

TT(H, t)={h+t)n.

An additional fact that can be learned from the Poincare polynomial is the number of
members of K that are bounded, which is v{'H, -1) = {h - 1)".

We have^found intersection-lattice proofs of Shi's result for the arrangements correspond-
ing to An, Bn, Cni and Dn. We will sketch the proof for An. It is easiest to think of An as
lying in a real vector space V of dimension n + 1 generated bye,, 1 ^z ^ n+1. The roots
are the vectors of the form e; - Cj, i ^ j, and H = {x, -x, = k:i <j, k =Q or 1}. Instead
of finding all intersections of members of "K, we examine the situation in each connected
component of V - [j^j{x, - xj = 0}. These are the interiors of the Weyl chambers of the
finite Coxeter group An, and they are in a bijection with the permutations of {!,... , n+ 1}.
These components are open and convex, and this allows us to apply the intersection-lattice
theory to each component. All of the intervals in the resulting posets are Boolean. Letting
C be the set of Weyl chamber interiors, we have

l^l=El{x L:Cnx^0}|.
eec

Reversing the sum, we have

1^1= El{c' C:c'nx^0}|.
xeL

So, given X ^ L, we now find the number of C   C such that C C\ X \s nonempty. We
only need concern ourselves with those X that are not contained in any of the hyperplanes
x, - Xj = 0. These intersections are in a bijection with the partitions of the set {1,... , n+l}.
Let Bi,..., Bk be such a partition. Label the elements of B, as 6;, i, &t.2, . .. so that 6,, isIS
the j-th smallest element of B,. Then the corresponding intersection is (~}{x, -xj = }. : i =
bi,m, j = 6(, m+i for some /, m}.

Theorem 5. 2 If X corresponds to the partition Bi,..., Bk, then \{C  . C :C F\X ^ 9}\=
(n+l)!/(n+2-fc)!.

Sketch of Proof. One way of describing a chamber C with C'nA^ ^ 0 is with an ordered
pair consisting of

1. a permutation r of {!,... , ^} such that a:fc^,,, > Xb^, > ... > 2:1, , in C, and
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2. a subset Pof{l,..., n+l) of size fc - 1, with the property that p   -P implies Xp imme-
diately precedes z;,,, for some i in the linear ordering of the coordinates corresponding
to C.

There are k\ . [^_\) = fc . (n+ !)!/(" + 2 - fc)! such ordered pairs. However, not all of them
correspond to chambers. We also need the condition

^|pnB, (,)|^/, i^/^A;-i, (1)
«=1

because the immediate predecessor of xi, ^^ must correspond to a member of one of the
blocks BT(I), ..., Br(, -. -i).

Let p be the n + 1-cycle (12... k}. We claim that for any choice of r and P, exactly one
of the pairs (r, P), (r/5, P),..., (r/?fc-l, P) satisfies (1). Choose j such that

\^\PnB^\\-j-(k-l)/k
«=1

is minimal for I <:j < k. We can then check that rp} is the proper choice. Thus, |{C1   C :

CHX ̂  0}| = (1/fc) . A;, (n + l)!/(n +2- A;)! = (n+ l)!/(n + 2 - fc)!.a

In terms of Stirling numbers, we see that

\K\ ^ ^^(n + 1, k}{n + l)!/(rz + 2 - fc)!.
k

This sum can be interpreted combinatorially as the number of ways to partition {1,... , n+l}
into blocks and then assign each block a distinct element of {1,... , n+2}, with the condition
that the block containing 1 is assigned 1. Thus, the sum is equal to the number of functions
/ from {!,..., n+ 1} to {!,..., n+2} such that /(I) = 1. This number is clearly (n+2)n,
which is the desired result since the Coxeter number ofAn is n+ 1.

I
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