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§1. Introduction

Consider the transitive action of finite ChevaUey group G = Xi(q) on the set 7;' =
(G : P,) of cosets of P, in G, where / is the rank of G (i.e. the number of nodes in the
Dynkin diagram Xi of G) and P, is the maximal parabolic subgroup corresponding to the
ith node of the diagram. The orbitals of the permutation group (G', 7^) are the relations of
an association scheme, usually denoted X(,,-(g), which is an important object in algebraic
combinatorics (see [BI] and [BCN]). In the case of such schemes which are P-polynomial,
formulas for the intersection numbers and eigenvalues are known (see [UZ-P] and [St],
respectively), and a description of all fusion schemes can be found in [M], [IMU].

In this paper we deterinine the intersection numbers, eigenvalues, and fusion schemes
in the simplest case of an orbital association scheme Xa(q) which is not P-polynomial,
namely the scheme ^3, 2(9) coming from the action of group Bs(q) (equivalently, P5'p(6, g))
on the set of 2-dimensional totally isotropic subspaces in a 6-dimensional symplectic space
over GF(q). Although the relations of B3, 2(g) can be recovered as orbits of edge pairs of
a generalized cubeoctahedron, it is our methodology that we wish to stress here as it has
application to classical orbital schemes for which there is no apparent physical model.

Considerons 1'action transitive du groupe de Chevalley fiu G = Xi(q) sur 1'ensemble
quotient 7,' = (G : P, ), ou / est Ie rang de G (c. a.d. Ie nombre de sommets du graphe
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de Dynkin Xi de G) et P, est Ie sous-groupe parabolique maxunal associe au t som-
met du graphe. Les orbitales du groupe de permutations {G, f'i) sont les relations d'un
schema d association, note d'habitude Xi^(q), qui est un ob jet important en combinatoire
algebrique (voir [BI] et [BCN]). Dans Ie cas de tels schemas qui sont P-polynomiaux, on
connait des formules pour les nombres d'intersection et pour les valeurs propres (voir [UZ-
P] et [St], respectivement), et on trouve une description de tons les schemas de fusion dans
[M], [IMU].

Dans cet artide, on determine les nombres d'mtersection, les valeurs propres, et les
schemas de fusion dans Ie cas Ie plus simple d'un schema d'association orbital Xii(q)
qui n'est pas P-polynoinial, c'est a dire Ie schema 53,2(9) qui provient de 1'action du
groupe By(q) (ou PSp(6, q)) sur 1'ensemble des plzins totalement isotropes d'un espace a,
6-dimensions symplectique sur GF(q). Quoique on puisse retrouverles relations de B3, 2(g)
comme orbites de palres d'aretes d'un cubeoctaedre generalise, c'est sur notre methodologie
que nous voulons mettre 1'accent, puisqu'elle s'applique aux schemas orbitaux classiques
pour lesquels il n'y a pas de modele physique evident.

§2. Association Schemes

An association scheme (-X', {A, }o<«<d) is a set X together with a family of binary
relations RQ, Ri,..., R^ such that:

(i) the relations form a partition of X x X, i.e. X x X = Uo<, <dA, and R, Ft Rj = 9 for
i ^ J\

(ii) RQ is the diagonal relation on X, i.e. RQ = {(a;, a;)|a; 6 X);

(iii) for any relation R,, its transpose relation tR, = {(y, x)\{x, y)   Ri} is again a relation
of the scheme, i.e. tR, = R,, for some i'   {0, 1,.. ., d};

(iv) for any (a-, y)   Rk, the number p,̂ - of elements z ^ X such that (a;, 2) 6 R, and
(z, y)   Rj depends only on z, j, A;, i.e. p^ is independent of the representative (x, y)
from Rk.

The numbers p^- are called the intersection numbers of the association scheme (X, {2Z, }o<, <d)
(see [BI] or [BCN]).

Let (G, X) be a transitive permutation group (so G acts faithfully and transitively on
the set X). An orbital of (G, X) is, by definition, an orbit of (G, X x X), where the action
o{G onX xX is the natural induced action (x, y)g = (xg, yg). It is convenient to consider
orbitals as a binary relations (or directed graphs) on X. When this is done, it is easy to see
that set X together with the family of orbitals of (G', Z) is an association scheme, called
an orbital scheme.

Let (X, {R, }o<, i<d) be an association scheme. The adjacency matrices Ao=J, Ai,..., Ad,
which correspond, respectively, to the relations RQ^RI,. .., R^, generate a vector space A
over the complex numbers, which is closed under matrix multiplication (and so is also an
algebra!). A is called the Bose-Mesner algebra of the scheme (X, {A,-}o<i<d). Moreover,
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the structure constcints of A are precisely the mtersection numbers of the scheme, i.e.
d

A. AJ = s?&Afc-
»=0

In the case of an orbital scheme, the Bose-Mesner algebra is just the Hecke algebra (see
[B]) or, equivalently, the Schur V-ring (see [FKM]).

As an abstract algebra, A is always semisimple. Thus, there exists a basis (unique up
to order) consisting of the primitive orthogonal idempotents EQ = J, Ei,..., EdofA. (Here
J denotes the all-ones matrbc. ) The eigenvalues p, (j") are now defined to be the complex
numbers determmed by

d

Ai=^p, (j)E,.
j=Q

We end this section with the defimtion of fusion scheme. Let X = (X, {A,-}o<t<d) and
y = (X, [Sj}Q<j<e) be association schemes on the common set X. We say y is a fusion
scheme of /f if for every t, 0 <: i <:d, relation A, of /V is a subset of relation Sj of V for
some j, 0 ^ j <: e. That is, fusion scheme V is obtained by fusing together relations from
scheme /V in a very restricted way (so that y is itself an association scheme).

§3. Coxeter and Lie Geometries

An incidence system over type set A is a triple (F, J, (), where F is a set (whose elements
are called objects), I is a, symmetric and reflexive binary relation on F (called the incidence
relation) and (is a map from F into A (caUed the type function). The rank of the incidence
system is defined to be |A|. It is convenient to write T in place of (F, /, () when doing so
will not lead to confusion. Let F and F' be incidence systems defined over the same type
set A. A morphism of T into V is a map <f> :F -*. T' which preserves incidence. We say <f>
is type-preserving if, in addition, ((A) = <(A0) for all A   F.

An important example of the above is the so-called group incidence system F(G, Ga),^s-
Here G is an abstract group and [Gs}s^s is a- family of distinct subgroups of G. The ob-
jects of T{G, Gs)ses are the cosets of G, in G for all possible s ^ S. Cosets a and /3 are
incident precisely when an/? 7^ 0. The type function is defined by t(a) = s where a = xGs
for some x ^G.

Let (W, S) be a Coxeter system, i.e. W is a group with set of distinguished generators
given by 5 = {si, si,.. ., si} and generic relations (5,, 5j)m" = 1. Here M = (m, j) is a
symmetric / x / matrbc with m,, = 1 and off-diagonal entries satisfying m, j- ̂  2 (allowing
m, j = oo as a possibility, in which case the relation (si, Sj)m" = 1 is omitted). Letting
Wi = {S\ {si}), 1 <i <, l, we obtain a group incidence system Tw = ^(W, Wi)^<i<i called
the Coxeter geometry of W. The W, aie referred to as the maximal standard subgroups of
W (see [B]).

Let G" be a group, B and N subgroups of G, and S a collection of cosets of B nN m
N. We call (G, 5, N, S) a Tits system (or we say that G has a BN-pair) if

^
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(i) G ={B, N} aadBnN is normal in N,

(ii) 5 is a set of mvolutions which generate W = N/B n N,

(ili) sBw C BwB U BswB for any 665' and w   W,

(iv) sBs / 5 foraJlfi 6 5.

Properties (i)-(iv) imply that (W, S) is a Coxeter system (see [B]). Whenever (G, B, N, S)
is a Tits system, we caU group W the Weyl group of the system, or, more usually, the Weyl
group of G. The subgroups P.- of 6' defined by P. = BWiB are called the standard maximal
parabolic subgroups of G'. The group incidence system TQ = F(G, Pi)i<i<i is commonly
referred to as the Lie geometry of G (see [T]). Note that the Lie geomet^r of G and the
Coxeter geometry of the corresponding Weyl group W have the same rank. In fact there is
a type-preserving morphism from TQ onto T\v given by gPi ̂  wWi, where w is determined
from the equality BgP^ = BwPi of double cosets. This morphism is called retraction (see
[T]).

For (G, A) a general permutation group with orbits Ai,.. ., Ar and corresponding one-
point stabilizers (7i,.. ., G'r, the orbitals of (G!, A) are in one-one correspondence with the
double cosets GigGj, l^i, j<r, g^G. In the case where G is a Chevalley group and
G, = P, are the maxima! parabolic subgroups of G (so that A coinddes with the set of
objects of Fo), properties (i)-(iv) of a Tits system give a natural one-one correspondence
between double cosets P^gPj of G and double cosets W^wWj of corresponding Weyl group
W. As a consequence we have a natural one-one correspondence between the respective
orbitals of (G>, To) and (W, T'\v)- Finally, this gives a bijection between the respective
relations of the orbital schemes X(,, (g) and Xi^, the latter coming from the action of
W = \V(X, ) acting on the cosets of W. in W.

More explicitly, we can identify FH/ as a subgeometry of TG in the following manner.
For a fixed Borel subgroup B of G, define T = ^\^w Bw . (we also have T = B^\N m
the language of Tits systems. T is called a maximal torus. ) Consider now the subset St
of FG consisting of all cosets which contain T. Then the incidence system (?2, 7o, <n)-
where /n and <n denote the respective restictions of incidence and type in FG to Sl - is
isomorphic to Fw- In fact, restriction to Sl of the retraction morphism defined above yields
an isomorphism. (See [T] for a full discussion on this. ) Thus, not only are the orbitals of
(G', FG) and {W, F\v) in one-one correspondence as mentioned above, but, more strongly,
we can represent each orbital of (G. Fc) by an ordered pair of objects from F(V.

§4. Embeddings in the Lie Algebra

Throughout this section we assume (G>, B, N, S) is a Tits system which arises in con-
nection with Chevalley group G, although we point out that the results of this section
remain valid in a far more general setting (see [U1], [U2], [U3]). We write G = Xi{K) to
signify that G is a Chevalley group over the field K, with associated Dynkin diagram X(.
We are most interested in the case when K is finite, and we shall write X((q) instead of
Xt(GF(q)) in that case.
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So, fix ChevaUey group G = X[(K) with corresponding Weyl group W. As in the
previous section, denote by Tyy a^id FG their associated Coxeter and Lie geometries. Let
C =TiQC+ QC~ be the Lie algebra corresponding to G. Followmg convention, we refer to
7^, C+, C~ and Ji © £+ as, respectively, the Cartan subalgebra, positive root space, negative
root space and (positive) Borel subalgebra with respect to the given decomposition of C. We
also use the familiar bracket notation [, ] to indicate Lie product.

Below, we turn our attention to a method for embedding Tw and FG IQ -C. As the
reader shall see, this method actually embeds T\v in the Cartan subalgebra H and To in
the Borel subalgebra U =HQC+.

It is weU known (see [FV], for example) that the Coxeter geometry Fw of W can be
embedded in /-dimensional Euclidean space, which, m the case when K is the real number
field, can be identified with the Cartan subalgebra H of £. Let's consider this embedding
more precisely.

Let A = (a, j) be the Cartan matrbc corresponding to root system $ of W. We consider
the lattice 7^ which is generated by the simple roots ai,..., a:;, and the reflections ri,.. ., r;
of % defined by the equality

(ctiY' = Q< - OijOj.

The set S = {ri,.. ., r;} is a set of Coxeter generators of Weyl group W. Let {a^,.. ., a^} be
a dual basis of {0:1 ,..., a;}, i.e. a," is the linear functional on 'R. which satisfies a^(ctj) = ^, j.
We define the action of W on the dual lattice %* by /(a;)' = l(xa), where l{x)   7i* and
s   5. Consider the orbit H, = {(a', )w\w   W} of permutation group (IV, 7^*) which
contains a*. We give the set H = |j H^ the structure of an incidence system as follows.
Linear functionals /i(a;) and l^x) are incident if and only if /i(a)/2(o;) ^ Oforall a G $.
The type function is defined by t{l(x)) = i where l(x) 6 Hi. It can be shown that (H, I, t)
is isomorphic to the Coxeter geometry Fiy. (In fact, there is a unique isomorphism of
FW with (H, I, t) which sends IV, to a,*, 1 ^ t^ L) This gives the desired embedding
since H C fi' CH- Moreover, this embedding obtains for K a field of sufficiently large
characteristic since, in that case, H (_ K'®K = H. This latter fact is crucial to what
follows.

We now consider an analogous embedding of the Lie geometry FG of G into the Borel
subalgebra Li =HQC+ of £. Let d= ̂ ^^ a,*. Then we can take

$+ = {a 6 $|d(a) ^ 0}

to be our set of positive roots in $. For any /(z)   7^*, define

r?-(/)={a $+|/(a)<0}.

Let Co, be the root space corresponding to positive root a, so that C+ = ^op<i, + Cy. For
each /i 6 ^ we define the subalgebra C. h = Ea >i-(h) r°- Let ui = {/i+ v|/i 6^., v   -C/i}
and U =[J^ Ui. We give U the structure of an inddence system as follows. Elements h\+vi
and hi + v^ are incident if and only if each of the following hold:
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(i) /ii(o!)/i2(cr) ^ Ofor alia   $, i.e. /ii zind hy are incident in (^, J, (),

(U) [/ll +Ul, /l2+U2] =0.

Element h+v has type iif h+v e Ui. Is. [U2] it is shown that this newly defined incidence
system (U, I, t) is isomorphic to the Lie geometry FQ, provided the characteristic of K is
sufHciently large to ensure isomorphism at the level of the subgeometries (H, I, t) zind Tw
So let's make the cissumption that the characteristic is suffidently large. Then, analogous
to the Weyl case, there exists a unique isomorphism of TG onto {U, I, t) which sends P,
to Q;,*, l ^ i ^ /. This gives an obvious embedding of Ta in U, in which the image of
subset Q is H. ^From our discussion in Section 3, it is dear that each orbital of {G, FG)
can be represented by an ordered pair (/i, /i') of objects from H. Moreover, by transitivity
on objects of fbced type, we can further choose h = a^ where t(h) = i".

Finally, observe that the map /i+ v ^ /i (that is, the canonical projection of K onto
'H) is a type-preserving morphism of incidence systems from (f7, J, <) onto (H, I, t); in fact,
it is essentially the retraction of TG onto Tw introduced in Section 3.

§5. Characterizing Relations in 532(9)

In this section we restrict our attention to the association scheme ^3 2(9), q a prime
power. That is, we consider the orbital scheme which corresponds to the action of Cheval-
ley group Bs(q) on cosets of the maxima! parabolic subgroup which corresponds to the
middle node of the diagram B^. In classical terms, this is the action of the symplectic
group PSp(6, q) on the 2-dimensional totally isotropic subspaces of a 6-dimensional space
equipped with a nondegenerate symplectic form.

A standard model for the Coxeter geometry F(V, W = W(Bs), is obtained by consid-
ering as objects the vertices, edges and facets of the ordinary cube, with usual incidence.
The relations of the scheme ^3, 2 then become the orbits of edge pairs of the cube un-
der its symmetry group. Letting CQ, ei, 02, ea,  4 denote the edges {(0, 0, 0), (1, 0, 0)},
{(0, 0, 0), (0, 1, 0)}, {(0, 1, 0), (1, 1, 0)}, {(0, 1, 0), (0, 1, 1)}, {(0, 1, !), (!, 1, 1)}, respectively,
the relations are characterized below.

Relation:

Edge pair:
Ro

(eo, eo)
Ri

(eo, ei)
R2

(co, e?)
R3

(eo, e3)
R,

(eo, e4)

Although this model provides a nice characterization of the relations of 53. 2, there is
no easy way to extend it to a characterization of the relations of 5s 2(9) that suits our
objective. Thus it is preferable to return to our earlier model of geometry Fw as a subset
H of the Cartan subalgebra T-L.

Let n = {ai, 0:2, cfa} be a fundamental basis of root system $ of W, so that we obtain,
as the set of positive roots,

$+ = {Q'l, Q'l+a2, Q'l+Q'2+Q3, Ct2, 0'2+Q'3, a'l+2o'2+Q!3, 0;3, 2Q;2+Q!3, 2Q;i+2Q:2+03}.
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For each (/i, /i')e5'2, defme

p{h, h') = \{a   $+ : h(a)h\a) < Q}\.

Then p(/i, h') uniquely determines the relation of ̂ 3,2 to which (/i, h') belongs:

Relation:

Value of p:
Ro
0

Ri
1

R2
3

Rs
5

R,
7

^From this characterization one can readUy determme aQ. h' ̂  Hy for which (a^, h')
belongs to relation R, of 53, 2(9) (see Table 1). This suffices to characterize the relations of
53,2(9) since, for any v   ZA', (a^, h' + v) and (Q;, A/) belong to the same relation.

Relation

Ao
Al
Rl
^3
R,

Functionals h' e H^ such that (o'$, ^) belongs to the relation
Q!;

-a^+2Q2*-2aS , -^+3a^, a^-a^+2^, a^+a^-^
2Q^-Q;, -2a^+Q2*
ai*-2a;+2^, asi-2a^ -a^-a^+2a^ -^+a^-2a^
-a'i

TABLE 1. Relations of Bs^{q) characterized by representative pairs.

In what follows, it will be convenient to represent the root aai +602+003 by its coordinate
vector (a, 6, c) with respect to the basis II.

Recall that incidence in (U, I, t) (and so in To) is defined in terms of Lie product. For
completeness, we list below those properties of Lie product which suffice in determining
incidence.

(a) [ , ] is bilinear,

(b) [ , ] is skew-symmetric, i.e. [x, y] = -[y, x] for all a;, i/   Z^,

(c) [/i, /i'j = 0 for aU/i, /i'6 7^,

(d) [/i, e»] == /i(a)ea foraU /i   -^, a e $+,

(e) For a, /?C $+,

ka0 a+0, ifa+/? $+;
lea'^J=lor """ otherwise

where kc, 0 is the (a, /3)-entry in the array of Table 2.

In the above, Co, a   $+, are appropriately chosen root vectors (see discussion on ChevaUey
basis in [C]).

^
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(1, 0, 0)
(0, 1,0)
(0, 0, 1)
(1, 1,0)
(0, 1, 1)
(1, 1, 1)
(0,2, 1)
(1,2, 1)
(2, 2, 1)

(1,0,0)
0

-1
0

0

_-^

0

_^

-2
0

(0, 1,0)
1

0

-1
0

-2
-1

0

0

0

(0, 0, 1)
0

1

0

-1
0

0

0

0

0

(1, 1,0)
0

0

1

0

-1
-2

0

0

0

(0, 1, 1)
1

2

0

1

0

0

0

0

0

(1, 1, 1)
0

1

0

2

0

0

0

0

0

(0,2, 1)
1

0

0

0

0

0

0

0

0

(1,2, 1)
2

0

0

0

0

0

0

0

0

(2, 2, 1)
0

0

0

0

0

0

0

0

0

TABLE 2. Chevalley structure constants ka0 (a, /3   $+)

§6. Intersection Numbers, Eigenvalues and Fusion

Let us say that incidence chain xilx^l.. . Ixm has type t^-t^- . . . -(" if f, = f(z, ) is
the type of object x,, 1 <^i <^m. We begin with a proposition which provides a criterion
for membership in relation Rj of 53, 2(9).

PROPOSITION. Let y, z e Uz, with (z, y)   Rj. Then j is uniquely determined by the
number of chains from z to y of type 2-1-3-2. The correspondence is given in Table 3.

Proof. It is clear that the number of such chains is an invariant of the relation Rj. To
complete the proof, one merely needs to compute the number of chains for a representative
pair from each relation. For example, one can do this for the pairs (a^h') which appear
in Table 1. (Of course for Ri, R-i and Ry, one has a choice of hf.) The number of chains
corresponding to each relation is recorded in Table 3 below. Details on the underlying
computations, as well as complete tables of intersection numbers, can be found in [HUW].

Relation of (2, y)

Ro
Ri
R2
^3
R,

Number of Chains

(<7+1)2
2g+l
?+1

1

0

TABLE 3. The number of chains for each relation.

The eigenvalues of By^^q) are presented in Table 4 as entries of the first eigenmatrbc
P = (pj (Q). They were obtained by standard methods: each row of P corresponds to

a common left eigenvector of the intersection matrices B, = (p,fc,-). The corresponding
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multipUcities are given by mo = 1, mi = g(g+l)(?3+l)/2, m; = g3(g4+g2+l), 7713 =
9 (94+g2+l) and m^ = g(g2^. i)^2^. ^i^ as can be computed directly from the table (see
[BI]).

,1
1

1

1

9(9+1)2
-(9+1)
-(9+1)

(g+l)(9-l)

^(g+i)
9(g2+i)

0

-9(9+1)

?7\<?4(g+D2
-93(9+1) ?4
9(9+1) -<?2

-<7(<7+1)(<7-1) q3
\1 (2g-l)(^+l) g(g+l)(g-l) ^(g-2)(g+l) -g4/

TABLE 4. The first eigenmatrix P = (pj (i)) of 53,2(9).

We now investigate the possible existence of fusion schemes for B^^q). la [V] all
nontrivial fusion schemes of 5;,2 are classified. We see from that article that there are
three such fusion schemes for / = 3: the first results from fusing relations 1 and 3; the
second from simultaneously fusing relations 1 and 3 and relations 2 and 4; the third from
fusing relations 1, 2 and 3. Each of these can easily be checked in the Lie case, and none
works. For example, if the first fusion pattern were to work for general g, we would need

Pl2 +P32 =P'l2 +?32>

which yields (see Tables 7 and 9 of [HUW])

g2+g4=293.

But the only solution to the above is g = 1, bringing us back to the ̂ 3. 2 case. Thus there do
not exist fusion schemes of this type in the Lie case. Similarly, one can check that neither
of the remaining two fusion patterns give rise to fusion schemes in the Lie case.

Finally, it is possible for a fusion scheme to exist for some q -^ \ which does not
correspond to a fusion scheme of 53.2. Of course, since the intersection numbers are
polynoniials, such a fusion scheme could exist for ouly a finite number of values of q.
We checked all such possibilities and no fusion schemes were found. We conclude that
^3,2(9) has no aontrivial fusion schemes.
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