Combinatorial applications of canonical modules of Cohen-Macaulay rings

Takayuki Hibi

Department of Mathematics
Faculty of Science
Hokkaido University
Aita-ku, Sapporo 060, Japan

Abstract

We study combinatorial applications of algebraic techniclie on caronical modules of Cohen-Macaulay rings and obtarn some linear inequalities for Ehrhart polynomials of convex poivtopes and for face numbers of matroid complexes.

Introduction.
Somisinatorlai applications of Cohen-Macaulay rings, which or:gmateci in Staniey [7] (see also [9]), have great influence on sot:- a wetrak combinatorics and commutative algebra. On the other hand. since the manuscript [2] appeared, the concept of aronncia rocdules has been an indispensable tool in the study a: Conen Macaulay rings. In the present paper, after a brief disciasion about canonical modules of Cohen-Macaulay rings (Section 1), we study combinatorial applications of canonical mociles to Enrhart polynomials of convex polytopes (Section 2) ard to face numbers of matroid complexes (Section 3).

1. Canonical modules of Cohen-Macaulay rings

(1.1) Let k be a field and A a commutative k-algebra. We say that A is semn-standard if A has a dires: surm decomposition $A=\oplus n \geq 0 A_{n}$ such that (1) $A_{0}=F$. (11) A is finitely generated as a module over the subalgebra $1:[A \cdot 1$ and (iii) $\operatorname{dim}_{\mathrm{k}} \mathrm{A}_{1}<\infty$. The Hilbert function of A is defined to be

$$
H(A, n):=\operatorname{dim}_{k} A_{n} \quad \text { for } n=0,1, \ldots
$$

while the Hilbert series of A is given by

$$
F(A, \lambda):=\sum_{n=0}^{\infty} H(A, n) \lambda^{n} .
$$

It is known that

$$
F(A, \lambda)=\left(h_{0}+h_{1} \lambda+\ldots+h_{S} \lambda^{s}\right) /(1-\lambda) d
$$

for some integers $h_{0}, h_{1}, \ldots, h_{s}$ with $h_{s}=0$. Here d is the Krull-dimension of A. We say that the vector $h(A):=$ ($h_{0}, \mathrm{~h}_{1}, \ldots, \mathrm{~h}_{\mathrm{s}}$) is the h-vector of A .
(1.2) Suppose that a semi-standard k-algebra A is CoheriMacaulay. Then $h(A) \geq 0$, i.e., each $h_{1} \geq 0$ ($\left.\mid 7\right]$ i. L.et F_{i} denote the canonical module (e.g., [1, Chapter 3]) o: A . Then there exists a graded ideal I of A with $I \cong F: A$ (up to shift in grading) if and only if A is "generically Gorensterr." l.e., the localization Aq is Gorenstein for every minımal prıme ıdeá: q of A .
(1.3) The fundamental technique in the present paper is the following result which first appeared in [11].

LEMMA. Let a Cohen-Macaulay semi-standard k-algebra $A=$ $\oplus n \geq 0 A_{n}$ be generically Gorenstein, and let $I=\oplus n \geq a$ (I $\cap A_{n}$) with $I \cap A_{a}=(0)$ denote a graded ideal of of A with $I \cong K_{A}$. Suppose that there exists a non-zero divisor $\vartheta \in I \cap A_{a}$ on A. Then the h-vector $h(A)=\left(h_{0}, h_{1}, \ldots, h_{S}\right)$ of A satisfies the linear inequality

$$
\begin{equation*}
h_{0}+h_{1}+\ldots+h_{1} \leq h_{s}+h_{s-1}+\ldots+h_{s-i} \tag{*}
\end{equation*}
$$

for every $0 \leq 1 \leq[s / 2]$.
(1.4) We say that a Cohen-Macaulay semi-standard k-algebra $A=\oplus n \geq 0 A_{n}$ is level if the canonical module $K_{A}=$ $\oplus n \geq a\left(K_{A}\right)_{n}$ with $\left(K_{A}\right)_{a} \neq(0)$ of A is generated by $\left(K_{A}\right)_{a}$ as an A-module.

COROLLARY. Suppose that a Cohen-Macaulay semi-standard k-algebra $A=\oplus n \geq 0 A_{n}$ is both generically Gorenstein and level. Then the h-vector $h(A)=\left(h_{0}, h_{1}, \ldots, h_{S}\right)$ of A satisfies the inear inequality $(*)$ for every $0 \leq i \leq s$.

Proot. A routine technique enables us to assume that k is an infimite field. Let $I=\oplus_{n \geq a}\left(I \cap A_{n}\right)$ with $I \cap A_{a} \neq(0)$ denote a graded ideal of A with $I \cong K_{A}$. Thanks to Lemma (1.3), what we must show is the existence of a non-zero divisor $\vartheta \in$ $I \cap A_{B}$ on A. Let η_{A} be the set of prime ideals of A which belong to the ideal (0). Since A is Cohen-Macaulay, we know that the Krull-dimension of A / q equals that of A for each $q \in \Omega_{A}$. We write U for the (set-theoretic) union of all prime ideals $q \in \Omega_{A}$. Recall that the set U coincides with the set of zero-divisors on A. If $I \cap A_{a} \subset U$, then $I \cap A_{a} \subset q$ for some $q \in \Omega_{A}$ since k is infinite. Now, A is level, thus I is generated by $I \cap A_{a}$ as an A-module. Hence, if $I \cap A_{a} \subset q$ then I G. . which contradicts [1, Proposition (3.3.18)]. Q. E. D.

2. Ehrhart polynomials of convex polytopes

(2.1) A polyhedral complex Γ in $\mathbb{R} N$ is a finite set of convex polytopes in \mathbb{R}^{N} such that (i) if $P \in \Gamma$ and \mathcal{F} is a face of P then $\mathcal{F} \in \Gamma$ and (ii) if $P, Q \in \Gamma$ then $\mathbb{Q} \cap Q$ is a face of P and of Q. We are concerned with a polyhedral complex Γ in \mathbb{R}^{N} which satisfies the following conditions: (i) every vertex α of $P \in \Gamma$ has integer coordinates, i.e., $\alpha \in \mathbb{Z}^{N}$, and (ii) the underlying space $X:=\cup \mathbb{P} \in \Gamma P\left(\subset \mathbb{R}^{N}\right)$ of Γ is homeomorphic to the d-ball. Let ∂X denote the boundary of X, thus ∂X is homeomorphic to the $(d-1)$-sphere.
(2.2) Given an integer $n>0$, write $n X$ for $\{n \alpha ; \alpha \in X\}$ and define $i(X, n)$ to be $\#(n X \cap \mathbb{Z})$, the cardinality of $n X \cap \mathbb{Z} N$. In other words, $i(X, n)$ is equal to the number of rational points $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right) \in X$ with each $n \alpha_{1} \in \mathbb{Z}$. It is known that (i) $\mathrm{i}(\mathrm{X}, \mathrm{n})$ is a polynomial in n of degree d , called the Ehrhart polymomial of X , (ii) $\mathrm{i}(\mathrm{X}, 0)=1$ and (iii) $(-1) \mathrm{d}_{\mathrm{i}}(\mathrm{X},-\mathrm{n})=$ $\#\left[n(X-\partial X) \cap \mathbb{Z}^{N}\right]$ for every $n \geq 1$.
(2.3) Define the sequence $\delta_{0}, \delta_{1}, \hat{\delta}_{2}, \ldots$ of integers by the formula

$$
(1-\lambda)^{d+1}\left[1+\sum_{n=1}^{\infty} 1\left(\chi_{n}, n\right) \lambda^{n}\right]=\sum_{i=0}^{\infty} \delta_{i} \lambda^{i} .
$$

Then (i) $\delta_{0}=1$ and $\delta_{1}=\#\left(\mathrm{X} \cap \mathbb{Z}^{N}\right)-(\mathrm{d}+1)$, (ii) $\delta_{1}=0$ for each $\therefore d$, and (iii) $\delta_{d}=\#\left[(X-\partial X) \cap \mathbb{Z}_{2}^{N}\right]$. We say that $\delta(X)=\left(\delta_{0}, \delta_{1}\right.$, $\cdots, \delta d)$ is the δ-vector of X. See, e.g., [3, Chapter IX] for geometric proofs of the above results due to Ehrhart.
(2.4) Fix a field k and let $\xi_{1}, \ldots, \xi_{\mathrm{N}}, \mathrm{t}$ be indeterminates over k. If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in n X \cap \mathbb{Z}^{N}$, then we set $\xi^{\alpha_{t} n=}$ $\varepsilon_{1} \alpha 1 \ldots \mathcal{N}^{\alpha} N_{\mathrm{t}} n$. We write $\left[A_{k}(\Gamma)\right]_{\mathrm{n}}$ for the vector space spanned by all monomials $\xi^{\alpha}{ }_{t n}$ with $\alpha \in n X \cap \mathbb{Z}$. Thus, $\operatorname{dimk}\left[A_{k}(\Gamma)\right]_{n}=1(X, n)$. Let $A_{k}(\Gamma)$ denote $\oplus n \geq 0\left[A_{k}(\Gamma)\right]_{n}$ with $\left[A_{k}(\Gamma)\right]_{0}=k$ and define multiplication $\left(\xi^{\alpha}{ }_{t} n\right)\left(\xi^{\beta} t^{m}\right)$ of monomials $\xi^{\alpha} \alpha_{t} n$ and ξ_{tm} in $\mathrm{A}_{\mathrm{k}}(\Gamma)$ as follows: $\left(\xi^{\alpha}, n\right)\left(\xi_{t} \beta_{m}\right)=\xi^{\alpha+\beta} \beta_{t} n+m$ if there exists $P \in \Gamma$ with $\alpha \in n P$ and $\beta \in \mathrm{mP} ;\left(\xi^{\alpha} \mathrm{t}\right)\left(\xi \beta_{\mathrm{tm}}\right)=0$ otherwise. Then $A_{k}(\Gamma)$ is a Conen-Macaulay semi-standard k-algebra with $h\left(A_{k}(\Gamma)\right)=\delta(X)$ (see [10]). Let $\Omega\left(A_{k}(\Gamma)\right)$ be the graded ideal $\oplus n \geq 1\left[\Omega\left(A_{k}(\Gamma)\right)\right]_{n}$ of $A_{k}(\Gamma)$ generated by those monomials $\xi^{\alpha} n$ with $n \geq 1$ and $\alpha \in n(X-\partial X) \cap \mathbb{Z} N$. Then $\Omega\left(A_{k}(\Gamma)\right)$ is the canonical module of $A_{k}(\Gamma)$.
(2.5) We say that X is "star-shaped" with respect to a point $\alpha \in X-\partial X$ if $t \alpha+(1-t) \beta \in X-\partial X$ for every point $\beta \in X$ and for each real number $0<t<1$.

THEOREM ([6]). With the same notation as above, suppose that the set $(X-\partial X) \cap \mathbb{Z}^{N}$ is non-empty and that the underlying space K is star-shaped with respect to some $v_{1} \in(X-\partial X) \cap \mathbb{Z} N$. Then the s-vector $\delta(X)=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ of X satisfies the :near :nequaities as follows:

$$
\delta_{0}+\delta_{1}+\ldots+\delta_{1} \leq \delta_{d}+\delta_{d-1}+\ldots+\delta_{d-1}, \quad 0 \leq i \leq[d / 2] .
$$

Sketch of proot. Fix an arbitrary polyhedral complex $\Gamma^{\prime}(0)$ in $\mathbb{R} N$ with the vertex set $\partial X \cap \mathbb{Z} N$ whose underlying space is the boundary ∂X of X. Since X is star-shaped with respect to $v_{1} \in(X-\partial X) \cap \mathbb{Z}^{N}$, we can define the cone $\Gamma^{\prime}(1)$ over $\Gamma^{\prime}(0)$ with apex v_{1}. Herce the vertex set of $\Gamma^{\prime}(1)$ is $(\partial X \cap \mathbb{Z} N) \cup\left\{\mathrm{v}_{1}\right\}$
and the underlying space of $\Gamma(1)$ is X. Let $(X-\partial X) \cap \mathbb{Z}^{N}=$ $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\ell}\right\}$ and, for each $2 \leq j \leq \ell$, construct a polyhedral complex $\Gamma^{\prime}(j)$ with the vertex set $(\partial X \cap \mathbb{Z} N) \cup\left\{v_{1}, v_{2}, \ldots, v_{j}\right\}$ and with the underlying space X by the same way as in [5]. We write Γ^{\prime} for $\Gamma^{\prime}(l)$. Then the element $\theta=\xi^{\mathrm{v}} 1_{\mathrm{t}}+\xi^{\mathrm{V} 2} 2 \mathrm{t}+\ldots$ $+\xi \vee \ell_{t}$ of $\left[\Omega\left(A_{k}\left(\Gamma^{\circ}\right)\right)\right]_{1}$ is a non-zero divisor on $A_{k}\left(\Gamma^{*}\right)$. Thus, Lemma (1.3) enables us to obtain the required inequalities.
Q. E. D.

EXAMPLE. Let $N=d=3$ and $X=P \cup Q$, where P (resp. $Q)$ is the tetrahedron in \mathbb{R}^{3} with the vertices $(1,0,0),(0,1,0)$, $(0,0,1),(-1,-1,-1)$ (resp. $(1,0,0),(0,1,0),(0,0,1),(1,1,0))$. Then $(X-\partial X) \cap \mathbb{Z}^{3}=\{(0,0,0)\}$ and $\delta(X)=(1,2,1,1)$. Even though X is star-shaped with respect to, e.g., $(1 / 3,1 / 3,1 / 3), X$ is not star-shaped with respect to $(0,0,0)$.

COROLLARY (Stanley [11]). Let $P \subset \mathbb{R}^{N}$ be an integral convex polytope of dimension d and suppose that $(P-\partial P) \cap \mathbb{Z} N$ is non-empty. Then the δ-vector $\delta(\mathbb{P})=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ of \mathbb{P} satisfies the following linear inequalities:

$$
\delta_{0}+\delta_{1}+\ldots+\delta_{1} \leq \delta_{d}+\delta_{d-1}+\ldots+\delta_{d-1}, \quad 0 \leq i \leq[d / 2] .
$$

3. Face numbers of matroid complexes

(3.1) Let V be a finite set, called the vertex set, and Δ a simplicial complex on V. Thus Δ is a collection of subsets of V such that (i) $\{x\} \in \Delta$ for every $x \in V$ and (ii) $\sigma \in \Delta, \tau \subset$ σ imply $\tau \in \Delta$. Each element of Δ is called a face of Δ. Set $d:=\max \{\#(\sigma) ; \sigma \in \Delta\}$. Here $\#(\sigma)$ is the cardinality of σ as a finite set. Then the dimension of Δ is defined to be $\operatorname{dim} \Delta$ $:=d-1$. We say that Δ is pure if every maximal face has the same cardinality. We write $f_{1}=f_{1}(\Delta), 0 \leq i<d$, for the number of faces σ of Δ with $\#(\sigma)=1+1$. Thus, $f_{0}=\#(V)$.

We say that $\mathrm{f}(\Delta):=\left(\mathrm{f}_{0}, \mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{d}}-1\right)$ is the f-rector of Δ. Define the h-iector $h(\Delta)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of Δ by the formula

$$
\sum_{:=0}^{d} f_{1-1}(\lambda-1)^{d-i}=\sum_{i=0}^{d} h_{i} \lambda^{d-i}
$$

with $f_{-1}=1$.
(3.2) A simplicial complex Δ on the vertex set V is called a matioid compler if the following conditions are satisfied:
(1) If $\sigma, \tau \in \Delta$ and $\#(\sigma)<\#(\tau)$, then there exists $x \in \tau$ such that $x \notin \sigma$ and $\sigma \cup\{x\} \in \Delta$.
(ii) $\operatorname{dim}(\Delta-x)=\operatorname{dim} \Delta$ for every $x \in V$. Here $\Delta-x$ is the subcomplex $\{\sigma \in \Delta ; x \notin \sigma\}$ of Δ on $V-\{x\}$.

We remark that the above condition (ii) is required only to avold the inessential case; if $\operatorname{dim}(\Delta-x)<\operatorname{dim} \Delta$ then Δ is a cone over $\Delta-z$ with apex x, thus we should study $\Delta-x$ rather than Δ

For example, let V be a finite set of non-zero vectors of a vector space over a field and suppose that the subspace spanned by V is equal to the subspace spanned by $V-\{x\}$ for every $x \in V$. Then the set Δ of linearly independent subsets of V is a matroid complex.
(3.3) Now, what can be said about the h-vector of an arbitrary matroid complex?

THEOREM ([4]). Suppose that $h(\Delta)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ is the n-vector of a matroid complex Δ of dimension $d-1$. Then we have the linear inequality

$$
h_{0}+h_{1}+\ldots+h_{1} \leq h_{d}+h_{d-1}+\ldots+h_{d-i}
$$

for every $0 \leq 1 \leq[d / 2]$.

Sketch of Proof. Let $V=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ be the vertex set of Δ and $k[\Delta]=k\left[x_{1}, x_{2}, \ldots, x_{t}\right] / I_{\Delta}$ the Staniey-Reisner ring ([9]) of Δ over a field k with the standard grading, i.e., each $\operatorname{deg} x_{i}=1$. Then the Krull-dimension of $k[\Delta]$ is d, and the Hilbert series of $k[\Delta]$ is $\left(h_{0}+h_{1} \lambda+\ldots+h_{d \lambda} d\right) /(1-\lambda) d$. It is known [8] that $k[\Delta]$ is a level ring with $h_{d}=0$. Moreover, $k[\Delta]$ is generically Gorenstein. Hence, thanks to Coroliary (1.4), we obtain the inequalities as desired.
Q. E. D.

CONJECTURE. (i) $h_{i} \leq h_{d-1}$ for every $0 \leq 1 \leq[d / 2]$;
(ii) $h_{0} \leq h_{1} \leq \ldots \leq h[d / 2]$.

The above Conjecture is true if $h(\Delta)=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ is a pure O-sequence (defined in, e.g., [8]).

References

[1] W. Bruns and J. Herzog, "Cohen-Macaulay rings," Cambridge University Press, Cambridge / New York. / Sydney, 1993.
[2] J. Herzog and E. Kunz, " Der Kanonische Modul eines Cohen-Macaulay-Rings," Lect. Notes in Math., No. 238, Springer, 1971.
[3] T. Hibi, "Algebraic Combinatorics on Convex Polytopes," Carslaw, Glebe, N. S. W., Australia, 1992.
[4] \qquad Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Relsner rings of distributive lattices, Pacific J. of Math. 154 (1992), 253-264.
[5] \qquad A lower bound theorem for Ehrhart polynomials of convex polytopes, Adrances in Matin., to appear.
\qquad Star-shaped complexes and Ehrhart polynomials, Froc. Amer. Math. Soc., to appear.
[i] R. Stanley, The upper bound conjecture and CohenMacaulay rings, Stud. Appl. Math. 54 (1975), 135-142.
[81 —. Cohen-Macaulay complexes, in "Higher Combinatorics" (M. Aigner, ed.), NATO Advanced Study Institute Ser:es. Reidel, Dordrecht / Boston, 1977, pp. 51-62.
[9] . "Combinatorics and Commutative Algebra, Eirkhauser. Boston / Basel / Stuttgart, 1983.
[10] \qquad . Generalized h-vectors, intersection cohomology of toric varieties, and related results, in "Commutative Algebra and Combinatorics" (M. Nagata and H. Matsumura, eds.), Advanced Studies in Pure Math., Vol. 11, North-Holland, Armsterdam, 1987, pp. 187-213.
[:2] \qquad On the Hilbert function of a graded Cohen-Macaulay domain, coumal of Pure and Appl. Algebra 73 (1991), 307-314.

