Combinatorial applications of canonical modules of Cohen-Macaulay rings

Takayuki Hibi

Department of Mathematics Faculty of Science Hokkaido University Kita-ku, Sapporo 060, Japan

Abstract. We study combinatorial applications of algebraic technique on canonical modules of Cohen-Macaulay rings and obtain some linear inequalities for Ehrhart polynomials of convex polytopes and for face numbers of matroid complexes.

Introduction.

Combinatorial applications of Cohen-Macaulay rings, which originated in Stanley [7] (see also [9]), have great influence on both algebraic combinatorics and commutative algebra. On the other hand, since the manuscript [2] appeared, the concept of canonical modules has been an indispensable tool in the study of Cohen-Macaulay rings. In the present paper, after a brief discussion about canonical modules of Cohen-Macaulay rings (Section 1), we study combinatorial applications of canonical modules to Ehrhart polynomials of convex polytopes (Section 2) and to face numbers of matroid complexes (Section 3).

1. Canonical modules of Cohen-Macaulay rings

(1.1) Let k be a field and A a commutative k-algebra. We say that A is *semi-standard* if A has a direct sum decomposition $A = \bigoplus_{n\geq 0} A_n$ such that (i) $A_0 = k$, (ii) A is finitely generated as a module over the subalgebra $k[A_1]$ and (iii) dim $_kA_1 < \infty$. The *Hilbert function* of A is defined to be

 $H(A,n) := \dim_k A_n$ for n = 0, 1, ...

while the Hilbert series of A is given by

$$F(A,\lambda) := \sum_{n=0}^{\infty} H(A,n) \lambda^{n} .$$

It is known that

 $F(A,\lambda) = (h_0 + h_1 \lambda + \dots + h_s \lambda^s)/(1 - \lambda)^d$

for some integers h_0 , h_1 , ..., h_s with $h_s = 0$. Here d is the Krull-dimension of A. We say that the vector $h(A) := (h_0, h_1, ..., h_s)$ is the *h*-vector of A.

(1.2) Suppose that a semi-standard k-algebra A is Cohen-Macaulay. Then $h(A) \ge 0$, i.e., each $h_1 \ge 0$ ([7]). Let E_A denote the canonical module (e.g., [1, Chapter 3]) of A. Then there exists a graded ideal I of A with $I \cong E_A$ (up to shift in grading) if and only if A is "generically Gorenstein," i.e., the localization Aq is Gorenstein for every minimal prime ideal q of A.

(1.3) The fundamental technique in the present paper 15 the following result which first appeared in [11].

LEMMA. Let a Cohen-Macaulay semi-standard k-algebra $A = \bigoplus_{n\geq 0} A_n$ be generically Gorenstein, and let $I = \bigoplus_{n\geq a} (I \cap A_n)$ with $I \cap A_a = (0)$ denote a graded ideal of A with $I \cong K_A$. Suppose that there exists a non-zero divisor $\vartheta \in I \cap A_a$ on A. Then the h-vector $h(A) = (h_0, h_1, ..., h_s)$ of A satisfies the linear inequality

$$h_0 + h_1 + \ldots + h_i \le h_s + h_{s-1} + \ldots + h_{s-i}$$
 (*)

for every $0 \le 1 \le [s/2]$.

(1.4) We say that a Cohen-Macaulay semi-standard k-algebra $A = \bigoplus_{n\geq 0} A_n$ is *level* if the canonical module $K_A = \bigoplus_{n\geq a} (K_A)_n$ with $(K_A)_a \neq (0)$ of A is generated by $(K_A)_a$ as an A-module.

COROLLARY. Suppose that a Cohen-Macaulay semi-standard k-algebra $A = \bigoplus_{n\geq 0} A_n$ is both generically Gorenstein and level. Then the h-vector $h(A) = (h_0, h_1, ..., h_s)$ of A satisfies the linear inequality (*) for every $0 \le i \le s$.

Proof. A routine technique enables us to assume that k is an infinite field. Let $I = \bigoplus_{n \ge a} (I \cap A_n)$ with $I \cap A_a \neq (0)$ denote a graded ideal of A with $I \cong K_A$. Thanks to Lemma (1.3), what we must show is the existence of a non-zero divisor $\vartheta \in I \cap A_a$ on A. Let Π_A be the set of prime ideals of A which belong to the ideal (0). Since A is Cohen-Macaulay, we know that the Krull-dimension of A/q equals that of A for each $q \in \Pi_A$. We write U for the (set-theoretic) union of all prime ideals $q \in \Pi_A$. Recall that the set U coincides with the set of zero-divisors on A. If $I \cap A_a \subset U$, then $I \cap A_a \subset q$ for some $q \in \Pi_A$ since k is infinite. Now, A is level, thus I is generated by $I \cap A_a$ as an A-module. Hence, if $I \cap A_a \subset q$ then $I \subset q$, which contradicts [1, Proposition (3.3.18)]. Q. E. D.

2. Ehrhart polynomials of convex polytopes

(2.1) A polyhedral complex Γ in \mathbb{R}^N is a finite set of convex polytopes in \mathbb{R}^N such that (i) if $\mathbb{P} \in \Gamma$ and \mathcal{F} is a face of \mathbb{P} then $\mathcal{F} \in \Gamma$ and (ii) if \mathbb{P} , $\mathbb{Q} \in \Gamma$ then $\mathbb{P} \cap \mathbb{Q}$ is a face of \mathbb{P} and of \mathbb{Q} . We are concerned with a polyhedral complex Γ in \mathbb{R}^N which satisfies the following conditions: (i) every vertex α of $\mathbb{P} \in \Gamma$ has integer coordinates, i.e., $\alpha \in \mathbb{Z}^N$, and (ii) the underlying space $X := \bigcup \mathbb{P} \in \Gamma \mathbb{P}$ ($\subset \mathbb{R}^N$) of Γ is homeomorphic to the d-ball. Let ∂X denote the boundary of X, thus ∂X is homeomorphic to the (d-1)-sphere.

(2.2) Given an integer n > 0, write nX for { $n\alpha ; \alpha \in X$ } and define i(X,n) to be $\#(nX \cap \mathbb{Z}^N)$, the cardinality of $nX \cap \mathbb{Z}^N$. In other words, i(X,n) is equal to the number of rational points $(\alpha_1,\alpha_2,\ldots,\alpha_N) \in X$ with each $n\alpha_1 \in \mathbb{Z}$. It is known that (i) i(X,n) is a polynomial in n of degree d, called the *Ehrhart polynomial* of X, (ii) i(X,0) = 1 and (iii) $(-1)d_i(X,-n) = \#[n(X-\partial X) \cap \mathbb{Z}^N]$ for every $n \ge 1$.

(2.3) Define the sequence $|\delta_0|, |\delta_1|, |\delta_2|, \ldots$ of integers by the formula

$$(1 - \lambda)^{d+1} [1 + \sum_{i=0}^{\infty} i(X,n) \lambda^{n}] = \sum_{i=0}^{\infty} \delta_{i} \lambda^{i}.$$

Then (i) $\delta_0 = 1$ and $\delta_1 = #(X \cap \mathbb{Z}^N) - (d+1)$, (ii) $\delta_i = 0$ for each $i \geq d$, and (iii) $\delta_d = #[(X - \partial X) \cap \mathbb{Z}^N]$. We say that $\delta(X) = (\delta_0, \delta_1, \ldots, \delta_d)$ is the δ -vector of X. See, e.g., [3, Chapter IX] for geometric proofs of the above results due to Ehrhart.

(2.4) Fix a field k and let ξ_1, \ldots, ξ_N , t be indeterminates over k. If $\alpha = (\alpha_1, \ldots, \alpha_N) \in nX \cap \mathbb{Z}^N$, then we set $\xi^{\alpha}t^n = \xi_1^{\alpha 1} \ldots \xi_N^{\alpha N}t^n$. We write $[A_k(\Gamma)]_n$ for the vector space spanned by all monomials $\xi^{\alpha}t^n$ with $\alpha \in nX \cap \mathbb{Z}^N$. Thus, $\dim_k[A_k(\Gamma)]_n = \iota(X,n)$. Let $A_k(\Gamma)$ denote $\bigoplus_{n\geq 0} [A_k(\Gamma)]_n$ with $[A_k(\Gamma)]_0 = k$ and define multiplication $(\xi^{\alpha}t^n)(\xi^{\beta}t^m)$ of monomials $\xi^{\alpha}t^n$ and $\xi^{\beta}t^m$ in $A_k(\Gamma)$ as follows: $(\xi^{\alpha}t^n)(\xi^{\beta}t^m) = \xi^{\alpha+\beta}t^{n+m}$ if there exists $\mathcal{P} \in \Gamma$ with $\alpha \in n\mathcal{P}$ and $\beta \in m\mathcal{P}$; $(\xi^{\alpha}t^n)(\xi^{\beta}t^m) = 0$ otherwise. Then $A_k(\Gamma)$ is a Cohen-Macaulay semi-standard k-algebra with $h(A_k(\Gamma)) = \delta(X)$ (see [10]). Let $\Omega(A_k(\Gamma))$ be the graded ideal $\bigoplus_{n\geq 1} [\Omega(A_k(\Gamma))]_n$ of $A_k(\Gamma)$ generated by those monomials $\xi^{\alpha}t^n$ with $n \geq 1$ and $\alpha \in n(X-\partial X) \cap \mathbb{Z}^N$. Then $\Omega(A_k(\Gamma))$ is the canonical module of $A_k(\Gamma)$.

(2.5) We say that X is "star-shaped" with respect to a point $\alpha \in X - \partial X$ if $t\alpha + (1-t)\beta \in X - \partial X$ for every point $\beta \in X$ and for each real number 0 < t < 1.

THEOREM ([6]). With the same notation as above, suppose that the set $(X - \partial X) \cap \mathbb{Z}^N$ is non-empty and that the underlying space X is star-shaped with respect to some $v_1 \in (X - \partial X) \cap \mathbb{Z}^N$. Then the S-vector $\delta(X) = (\delta_0, \delta_1, \ldots, \delta_d)$ of X satisfies the linear inequalities as follows:

 $\delta_0 + \delta_1 + \ldots + \delta_i \leq \delta_d + \delta_{d-1} + \ldots + \delta_{d-i} , \ 0 \leq i \leq \lfloor d/2 \rfloor.$

Sketch of proof. Fix an arbitrary polyhedral complex $\Gamma'(0)$ in \mathbb{R}^N with the vertex set $\partial X \cap \mathbb{Z}^N$ whose underlying space is the boundary ∂X of X. Since X is star-shaped with respect to $v_1 \in (X - \partial X) \cap \mathbb{Z}^N$, we can define the cone $\Gamma'(1)$ over $\Gamma'(0)$ with apex v_1 . Hence the vertex set of $\Gamma'(1)$ is $(\partial X \cap \mathbb{Z}^N) \cup \{v_1\}$

-247-

and the underlying space of $\Gamma'(1)$ is X. Let $(X-\partial X)\cap \mathbb{Z}^N = \{v_1, v_2, \ldots, v_\ell\}$ and, for each $2 \leq j \leq \ell$, construct a polyhedral complex $\Gamma'(j)$ with the vertex set $(\partial X \cap \mathbb{Z}^N) \cup \{v_1, v_2, \ldots, v_j\}$ and with the underlying space X by the same way as in [5]. We write Γ' for $\Gamma'(\ell)$. Then the element $\theta = \xi^{v_1}t + \xi^{v_2}t + \ldots + \xi^{v_\ell}t$ of $[\Omega(A_k(\Gamma'))]_1$ is a non-zero divisor on $A_k(\Gamma')$. Thus, Lemma (1.3) enables us to obtain the required inequalities.

Q. E. D.

EXAMPLE. Let N = d = 3 and X = $\mathcal{P} \cup \mathcal{Q}$, where \mathcal{P} (resp. \mathcal{Q}) is the tetrahedron in \mathbb{R}^3 with the vertices (1,0,0), (0,1,0), (0,0,1), (-1,-1,-1) (resp. (1,0,0), (0,1,0), (0,0,1), (1,1,0)). Then $(X-\partial X)\cap \mathbb{Z}^3 = \{ (0,0,0) \}$ and $\delta(X) = (1,2,1,1)$. Even though X is star-shaped with respect to, e.g., (1/3,1/3,1/3), X is not star-shaped with respect to (0,0,0).

COROLLARY (Stanley [11]). Let $\mathcal{P} \subset \mathbb{R}^N$ be an integral convex polytope of dimension d and suppose that $(\mathcal{P}-\partial \mathcal{P})\cap \mathbb{Z}^N$ is non-empty. Then the δ -vector $\delta(\mathcal{P}) = (\delta_0, \delta_1, \ldots, \delta_d)$ of \mathcal{P} satisfies the following linear inequalities:

 $\delta_0 + \delta_1 + \ldots + \delta_i \leq \delta_d + \delta_{d-1} + \ldots + \delta_{d-i}, \quad 0 \leq i \leq \lfloor d/2 \rfloor.$

3. Face numbers of matroid complexes

(3.1) Let V be a finite set, called the vertex set, and Δ a simplicial complex on V. Thus Δ is a collection of subsets of V such that (i) { x } $\in \Delta$ for every $x \in V$ and (ii) $\sigma \in \Delta$, $\tau \subset \sigma$ imply $\tau \in \Delta$. Each element of Δ is called a *face* of Δ . Set d := max{ $\#(\sigma)$; $\sigma \in \Delta$ }. Here $\#(\sigma)$ is the cardinality of σ as a finite set. Then the dimension of Δ is defined to be dim Δ := d - 1. We say that Δ is *pure* if every maximal face has the same cardinality. We write $f_1 = f_1(\Delta)$, $0 \le i < d$, for the number of faces σ of Δ with $\#(\sigma) = i + 1$. Thus, $f_0 = \#(V)$.

We say that $f(\Delta) := (f_0, f_1, ..., f_{d-1})$ is the *f*-vector of Δ . Define the *h*-vector $h(\Delta) = (h_0, h_1, ..., h_d)$ of Δ by the formula

$$\begin{array}{c} d \\ \Sigma \\ i=0 \end{array} f_{1-1} (\lambda - 1)^{d-i} = \begin{array}{c} d \\ \Sigma \\ i=0 \end{array} h_i \lambda^{d-i}$$

with $f_{-1} = 1$.

(3.2) A simplicial complex Δ on the vertex set V is called a *matroid complex* if the following conditions are satisfied :

(1) If $\sigma, \tau \in \Delta$ and $\#(\sigma) < \#(\tau)$, then there exists $x \in \tau$ such that $x \notin \sigma$ and $\sigma \cup \{x\} \in \Delta$.

(11) dim $(\Delta - x) = \dim \Delta$ for every $x \in V$. Here $\Delta - x$ is the subcomplex $\{\sigma \in \Delta ; x \notin \sigma\}$ of Δ on $V - \{x\}$.

We remark that the above condition (ii) is required only to avoid the inessential case; if dim ($\Delta - x$) < dim Δ then Δ is a cone over $\Delta - x$ with apex x, thus we should study $\Delta - x$ rather than Δ .

For example, let V be a finite set of non-zero vectors of a vector space over a field and suppose that the subspace spanned by V is equal to the subspace spanned by V - { x } for every $x \in V$. Then the set Δ of linearly independent subsets of V is a matroid complex.

(3.3) Now, what can be said about the h-vector of an arbitrary matroid complex ?

THEOREM ([4]). Suppose that $h(\Delta) = (h_0, h_1, ..., h_d)$ is the h-vector of a matroid complex Δ of dimension d - 1. Then we have the linear inequality

 $h_0 + h_1 + \ldots + h_i \le h_d + h_{d-1} + \ldots + h_{d-i}$

for every $0 \le 1 \le \lfloor d/2 \rfloor$.

Sketch of Proof. Let $V = \{x_1, x_2, ..., x_t\}$ be the vertex set of Δ and $k[\Delta] = k[x_1, x_2, ..., x_t]/I_{\Delta}$ the Stanley-Reisner ring ([9]) of Δ over a field k with the standard grading, i.e., each deg $x_i = 1$. Then the Krull-dimension of $k[\Delta]$ is d, and the Hilbert series of $k[\Delta]$ is $(h_0+h_1\lambda+\ldots+h_d\lambda^d)/(1-\lambda)^d$. It is known [8] that $k[\Delta]$ is a level ring with $h_d = 0$. Moreover, $k[\Delta]$ is generically Gorenstein. Hence, thanks to Corollary (1.4), we obtain the inequalities as desired. Q. E. D.

CONJECTURE. (i) $h_i \le h_{d-1}$ for every $0 \le i \le \lfloor d/2 \rfloor$; (ii) $h_0 \le h_1 \le \ldots \le h \lfloor d/2 \rfloor$.

The above Conjecture is true if $h(\Delta) = (h_0, h_1, ..., h_d)$ is a *pure* O-sequence (defined in, e.g., [8]).

References

[1] W. Bruns and J. Herzog, "Cohen-Macaulay rings," Cambridge University Press, Cambridge / New York / Sydney, 1993.

[2] J. Herzog and E. Kunz, "Der Kanonische Modul eines Cohen-Macaulay-Rings," Lect. Notes in Math., No. 238, Springer, 1971.

[3] T. Hibi, "Algebraic Combinatorics on Convex Polytopes," Carslaw, Glebe, N. S. W., Australia, 1992.

[4] _____, Face number inequalities for matroid complexes and Cohen-Macaulay types of Stanley-Reisner rings of distributive lattices, *Pacific J. of Math.* 154 (1992), 253-264.

[5] _____, A lower bound theorem for Ehrhart polynomials of convex polytopes, *Advances in Math.*, to appear.

[6] ____, Star-shaped complexes and Ehrhart polynomials, Proc. Amer. Math. Soc., to appear.

[7] R. Stanley, The upper bound conjecture and Cohen-Macaulay rings, *Stud. Appl. Math.* **54** (1975), 135-142.

[8] _____, Cohen-Macaulay complexes, in "Higher Combinatorics" (M. Aigner, ed.), NATO Advanced Study Institute Series, Reidel, Dordrecht / Boston, 1977, pp. 51-62.

[9] _____, "Combinatorics and Commutative Algebra," Birkhauser, Boston / Basel / Stuttgart, 1983.

[10] _____, Generalized h-vectors, intersection cohomology of toric varieties, and related results, in "Commutative Algebra and Combinatorics" (M. Nagata and H. Matsumura, eds.), Advanced Studies in Pure Math., Vol. 11, North-Holland, Amsterdam, 1987, pp. 187-213.

[11] _____, On the Hilbert function of a graded Cohen-Macaulay domain, *Journal of Pure and Appl. Algebra* **73** (1991), 307-314.