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Abstract. We study combinatorial applications of algebraic

technique on canonical modules of Cohen-Macaulay rings and

obrain ^ome linear inequalities for Ehrhart polynomials of

convey poiytopes and for face numbers of matroid complexes.

Introduction.

Comcin. n'oridi applications of Cohen-Macaulay rings, v/hich
or-. giriAr^c '. n Sraniey [7] (see also [9]), have great influence on
ec t:-. -i'. !^br~-x\c combinatoncs and commutative algebra. On the

otp. ^r FiAr-. a. since the manuscript [2] appeared, the concept of
:-anonic. a; r.-. oaules has been an indispensable tool in the study

^: Cohen'Macaulay rings. In the present paper, after a brief
. --i:-.>c^5';. ion .;»bout canonical modules of Cohen-Macaulay rings
. Section I), we study combinatonal applications of canonical

r-nociu'. ^s *o Ehr-harr poiynomials of convex polytopes (Section 2)
.^r. d to r3ce numbers or" matroid complexes (Section 3).

<.
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1. Canonical modules of Cohen-Macaulay rings

(1. 1) Let k be a field and A a commutative k-alge-br^. We'
say that A is semi-standard if A has A direc: sun-:

decomposition A = © ̂ >oAn such that d) AQ = 1-'. , '^i1 A !F.
finitely generated as a module over the subalgebi-A k[A^1 ci'-.c
(111) dim^Ai < °° . The HUbert function of A is def'. nec to oe

H(A, n) := dim^An for n - 0, 1

while the Hilbert series of A is given by

00

F(A, X) := Z H(A, n) ^ .
n=0

It is kno^A^n that

F(A, X) = (hQ+hiX+ . . . +hsAS)/(l - X)d

for some integers ho , hj_ , ... , hg with hs » 0 . Her?' d i;.
the Krull-dimension of A . We say that the vector h'A) :=

(hQ, h^,..., hs) is the b-vector o[ A .

(1. 2) Suppose that a semi-standard k-algebra A is, Cohen-
Macaulay. Then h(A) ^ 0 , i.e., each h, > 0 ([7];. Let F:^
denote the canonical module (e. g., [1, Chapter 31) or' A . Then
there exists a graded ideal I of A with I = V. ̂  (-jp to sh:ft in
grading) if and only if A is "genencally Gorensteir., " i.c'.. the
localization Aq is Gorenstein for every minimal prime ideci; q
of A .

(1. 3) The fundamental . technique in the present paper is the
following result which first appeared in [11].
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LEMMA. Let a Cohen-Macaulay semi-standard k-algebra A =

® n^O An be genencally Gorenstein, and let I = © n>a (inA^)
with lUAa 3: ( 0) denote a graded ideal of of A with I = KA .
Suppose that there exists a non-zero divisor Q £ IHA^ on A .
Then the h-vector h(A) = (hQ, hi,..., hs) of A satisfies the

linear inequality

ho + hi +.. -+hi$ hs+ hg-i + . . . + hs-i

for every 0 < i < [s/2] .

(^)

(1. 4) We say that a Cohen-Macaulay semi-standard k-algebra
A = n ^0 A n IS

© n>a ^A^n wlth
as an A-module.

level

(KA)a
if the canonical module KA =

( 0 ) of A is generated by (KA)^

COROLLARY. Suppose that a Cohen-Macaulay semi-standard
k-algebra A = © n>0 An ls both genencally Gorenstein and
level. Then the h-vector h(A) = (ho, hi,..., hs) of A satisfies
the linear inequality (*) for every 0 $ i^ s.

Proof. A routine technique enables us to assume that k is an
innnite field. Let I - © n^a (I^An) with InA^ < ( 0 ) denote
a ^r. -aded ideal of A with I = KA . Thanks to Lemma (1. 3),
what we must show is the existence of a non-zero divisor Q £

IHA^ on A . Let Ti/\ be the set of prime ideals of A which
belong to the ideal ( 0 ). Since A is Cohen-Macaulay, we
know that the Krull-dimension of A/q equals that of A for

each q   T\. /\ . We write <U for the (set-theoretic) union of all
prime ideals q e TL^ . Recall that the set <U coincides with
the set of zero-divisors on A . If IHAa C <U , then lUAa C q

for some q e 71-A since k is infinite. Now, A is level, thus I
is generated by inA^ as an A-module. Hence, if I^iA^ C q
then I C-Q , which contradicts [1, Proposition (3. 3. 18)]. Q. E. D.
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2. Ehrhart polynomials of convex polytopes

(2. 1) A poly'hedral complex Y in [R^ is a finite set of convex
polytopes in [RN such that d) if P e F and 7 is a face of P
then 7 £ r and (11) if P , Qe F then P n Q is a face of P

and of Q. . We are concerned v./'ith a polyhedral complex F in
[R^ which satisfies the following conditions: d) every vertex oc
of TPeF has integer coordinates, i.e., o< £ 1^ , and di) the
underlying space X :- U p^F p ( C [RN ) of F is
homeomorphic to the d-ball. Let 3X denote the boundary of
X , thus 3X is homeomorphic to the (d-l)-sphere.

(2. 2) Given an integer n > 0 , write nX for { na ; (x£X } and
define i(X, n) to be #(nXn2N) , the cardinality of nXn2N. In
other v/ords, i(X, n) is equal tc the number of rational points
(a^, oc2, . . . , o<i\j) £ X with each no<i e Z . It is known that d)
i(X, n) is a polynomial in n of degree d , called the Ebrhart
Fo!ynom}'a] of X , (11) i(X, 0) = 1 and dii) (-l)di(X, -n) =
#[n(X-3X)n2N] for every n > 1 .

(2. 3) Define the sequence SQ , ?1 , 6^' , . .
formula

of integers by the

( 1 - X )d+l [1+2 i(X. n) >, ^i
n=l

^ U]

i=0

61 Xl .

Then d) SQ = 1 and 61 = #(Xn?N) - (^+1) . (ii) 61 = 0 for each
; .. d , and (in) 6d - #[(X-3X)nZ?N] . V/e say that 6(X) = (60, 61,
. . . , 6d) is the ^-vvc-tw-oi X . See, e. g., [3, Chapter IX] for
geometric proofs of the above results due to Ehrhart.
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(2. 4) Fix a field k and let ^i , ..., ^N>t be indeterminates
over k . If o< = (o<i, ... , 0^^) £ nXHZN , then we set ^atn =
^.1 al ... £, psjaNtn . We write [AkCDln for the vector space
spanned by all monomials E, OLtn with oc £ nXU2N . Thus,
dimk[Ak(Dln = lO^. n) . Let Ak(D denote © ^0 [Ak(DJn
with [Ak(D1o = k and define multlphcation (^atn)(^Pt^) of
monomiais £;atn and ^Ptrn in Ak(D as follows:
(^ocfn)(^pt^) = ^oc+^fn+m if there exists P e F with oc G nP
and 3   mP ; (^atn)(^Pt"^) = 0 otherwise. Then A^CD -is a
Cohen-Macaulay semi-standard k-algebra with h(A^(D) = S(X)
(see [10]). Let Q(Ak(D) be the graded ideal © n>i [Q(Ak(D)ln
or A^(D generated by those monomials ^octn with n > 1
and oc. G n(X-dX)nZN. Then Q(Ak(D) is the canonical module
of A^(D .

(2. 5) We say that X is "star-shaped" with respect to a point
a e x- ax if toe + (i-t)p e x - ax for every point p G X
and for each real number 0< t< 1 .

THEOREM ([6]). With the same notation as above, suppose that

the set (X-c)X)n2N is non-empty and that the underlying
space X is star-shaped with respect to some v^ £ (X-c)X)nZN.
Then :he S-vector 6(X) = (6o, 6l, . . . , 5d) of X satisfies the
'. ir. ear ir. ecuaht'.es as follows:

OQ +6i + ... +6i < 8d+ Sd-1 + . . . + 5d-i , 0^ i < [d/2].

SkkTc^ of proof. Fix an arbitrary polyhedral complex r'(0) in
!R^' with the vertex set ^XH^N v/hose underlying space is the
boundary 3X of X . Since X is star-shaped with respect to
v E (X-OX)HZN , we can define the cone F'd) over F'(0)

with apex v^ . Hence the vertex set of r'(l) is OXn2N)U{vi}
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and the underlying space of F'd) is X . Let (X-3X)n2N =
{v^, V2, . . . , v^} and, for each 2s js { , construct a polyhedral
complex r'(j) v/ith the vertex set OXnZ^)U{v[, v2, . . . . v,}
and with the underlying space X by the same way as in [5].
We write F for F'(^ . Then the element e = ^vlf + ^V2f + . . .
+ £,vh of [Q(Ak(r'))]l is a non-zero divisor on Ak(F') . Thus,
Lemn-ia (1. 3) enables us to obtain the required inequalities.

Q. E. D.

EXAMPLE. Let N = d= 3 and X= IP U Q, where P (resp.
Q ) is the tetrahedron in IR3 with the vertices (1, 0, 0), (0, 1, 0),
(0, 0, 1), (-!, -!, -1) (resp. (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) ). Then
(x-c)X)nz3 = { (o, o, o) } and 6(X) = (1, 2. 1. 1) . Even though X
is star-shaped v^ith respect to, e.g., (1/3, 1/3, 1/3), X is not
star-shaped -with respect to (0, 0, 0) .

COROLLARY (Stanley [11]). Let P C 1RN be an integral
convex polytope of dimension d and suppose that (P-c)P)n^N
is non-empty. Then the 6-vector 6CP) = (SQ. S^, . . . , 6^) of P
satisfies the following linear inequalities:

SQ +6i+... + 6i $ 6,j + 6^-1 + .. . + 6d-i , 0< i < [d/2].

3. Face numbers of matroid complexes

(3. 1) Let V be a finite set, called the vertex set , and A a
simplicial complex on V . Thus A is a collection of subsets of

V such that (i) {x } EA for every x £ V and (11) CT G A , T C
a imply T £ A . Each element of A is called a /set ? of A . Set

d := max{ #(o') ; oG A } . Here #(a) is the cardinality of o-
as a finite set. Then the dimension of A is defined to be dim A

:= d- 1 . We say that A is purf if every maximal face has
the same cardinality. We write f^ = f, (A) , 0 <i< d , for the

number of faces o of A with #(cr) = i +1 . Thus, fQ = -^(V) .
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We say that f(A) := (fo, fl,..., fd-l) is the f-\rector oi A . Define
the h-\-ector h(A) = (ho, hi,..., hd) of A by the formula

d d
Z f, -i ( X- 1 )d-i = Z hi Xd-i

:=o 1=0

with f-^ = 1 .

(3. 2) A simplicial complex A on the vertex set V is called a
matroid comp]^\'\t the following conditions are satisfied :

d) If o- , T GA and #(cr) < #(T) , then there exists x G T

such thai x ^ a and o- U (x}GA .
di) dim (A - x) = dim A for every x e V . Here A - x is

the subcomplex {a£A;x^o-} of A onV-(x}.

We remark that the above condition (ii) is required only to

avoid the inessential case ; if dim (A - x ) < dim A then A is

a cone over A - x with apex x , thus we should study A - x
rather than A .

For example, let V be a finite set of non-zero vectors of a
vecior space over a field and suppose that the subspace
spanned by V is equal to the subspace spanned by V - { x)
:or ^very x   V . Then the set A of linearly independent

subsets or V is .3 matroid complex.

(3. 3) Now, what can be said about the h-vector of an arbitrary

matroid comoiex 7

THEOREM ([^D. Suppose that h(A) = (ho, hi,..., hd) is the
h-vector of .a rr. atroid complex A of dimension d - 1 . Then
we have the linear inequality

h0 ^ h^ +... ^hi< hd+ hd-1 + .. . + hd-i

for everv 0 < i .: fd/2] .
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Sketch of Proof. Let V = {xi, x2,..., x^} be the vertex set of A
and k[A] = k[xj_, X2,..., Xt]/lA the Staniey-Reisner ring ([9]) of A
over a field k with the standard grading, i.e., each deg x^ = 1 .
Then the Krull-diinension of k[A] is d , and the Hilbert series

of k[A] is (hQ+hiX+ . . . +hd>-d)/(l - X)d . It is known [8] that
k[A] is a level ring v^ith h<j = 0 . Moreover, k[A] is generically
Gorenstein. Hence, thanks to Corollary (1. 4), we obtain the

inequalities as desired. Q. E. D.

CONJECTURE, d) hj $ hd-i for every 0 $ i ^ [d/2] ;
di) hQ^ hi $ ... $ h[d/2] -

The above Conjecture is true if h(A) = (ho, hi,..., h<j) is a pure
Q-sequence (defined in, e. g., fS]).
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