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Abstract

We compute a set of generators of the ring of invariants for a set of 4 subspaces
in a projective space. More precisely, let K[Gr ] be the ring of regular functions on
the product of four Grassmannians. We present a set of generators for K[Gr4]SL(v),
where V is the underlining vector space. We also study the syzygies among the gener-
ators. In the case when the sum of the affine dimensions of the four subspaces is not

equal to 2dim(l/), no syzygy exists and generators are algebraically independent. If
the sum is 2 dim(V), there is one and only one syzygy, the precise form of which is given.

On calcule un systeme de generateurs de 1'anneau des invariants d'un ensemble de
4 sous-espaces dans un espace projectif. Plus precisement, soit K[Gr ] I'anneau des
fonctions regulieres definies sur Ie produit de quatre varietes Grassmanniennes. On
presente un ensemble de generateurs pour K[Gr4}SL(v\ ou V est 1'espace vectoriel
sousjacent. On etude egalement les syzygies entre les generateurs. Si la somme des
dimensions affinesdes quatre sous-espaces n'est pas egale a2dim(l/), il n'existe aucune
syzygie et les generateurs sont algebriquement independents. Si cette somme est egale
a 2dim(V/), il existe une et une seule syzygie dont on precise la forme.

1. Introduction

The geometry of the configurations of linear subspaces of projective space is one of the
most basic topics in projective geoinetry. One is interested in describing sucli configurafcioiis
moclulo collineations, i. e., modulo the action of the general linear group. For three or fewer

subspaces, there are only finitely many possible configurations in a given dimension, which
can be easily described. But for four subspaces, there are continuous families of configura-
tions. Their classification is a so-called "tame" problem, in the sense of the theory of quivers

[2], [8], while the classification of five or more subspaces is a "wild" problem and is extremely
difficult. The configurations of four subspaces, which are "indecomposable in the sense of
the theory of quivers have been clcissified by Nazarova [9] and by Gelfand and Ponomarev

[3].
In this paper, we study configurations of four subspaces from the viewpoint of invariant

theory. A. {k - l)-dimensional linear subspace of projective (n - l)-space can be identi-
fied with a ^--dimensional linear subspace of an n-dimensional vector space, and thus may

be thought of as a point in Gk, n, the Grassmann variety of /c-planes in n-space. We can
realize Gk, n as the variety of non-zero decomposable vectors in the exterior power A (l/),
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where V is au n-dimensional vector space over a field K of characteristic zero, module
scalar multiples. The variety of all decomposable tensors together with zero is an affine
variety, which we denote by CGk,n- We call the algebra K[CGk, n\ of restrictions to CGk,n
of polynomial functions on /\k{V) the coordinate ring of Gk,n. The natural action of
GL{V) on ^k[V) preserves CGk, n, and therefore K[CGk, n\ carries the structure of GL(V)-
module. The invariant-theoretic approach to the study of configurations of four subspaces
asks for the 5'L(V)-invariants in K[Gr4} d£f K[CGk,, n x CG^n x CG^n x CG^n} =
K[CGk,, n} 0 K[CGk,, n} ® K[CGka, n\ ® K[CGk,, n}. We will give a complete answer to
this question: for all choices of A;i, A;2, fc3 and ^4, we will describe generators and rela-

tions for the 5'L(y)-invariants in K[Gr4}. The case of four medials, when n is even and
A;i =A;2 = A;3= ̂ 4 = n/2, which in some sense is the most interesting case, was considered
by Turnbull [10] and described completely in [7]. Here we allow fc, to be arbitrary. We find
that when fci +^2 + ̂ 3+^4 = 2n, there is a relative rich set of invariants, analogous to those

of the case of four medials. We call these invariants of type II. When fci 4-^2 + ̂ 3+^4 7^ 2n,

there are few invariants. Most of these arise when some subset of {fci, ^, ^, ^} sum to

n. We call these invariants of type I. However, there are other cases when invarlants exist;
these other invariants are more mysterious than those of type I or II, appearing only when
S = 2n - ki - k-i - ks - k^ is a factor of fc, or n - fc, for some i. Finally, we show that the

5'L(V)-invariants in I\[Gr4} is a polynomial algebra generated by these generators.

2. The umbral symbolic method for Grassmannians

We follow the notation in [4]. Let V be an n-dimensional vector space over a field A
of characteristic 0. Identify GL{V) with GLn(K) via a given basis ei, 62, - . . , £" of V. The
standard action of GLn(K) on V is denoted as^-v for (7   GLn(K), v 6 l^. Let A<:(1/)
be tlie vector space consisting of all skew-symmetric tensors of step k. The group action of
GLn[l\} oil f\k{V} is linearly extended \^y g . [v^vz--- hvk) = g-v^ ^g. V1^ .. . ^g . Vk.
It acts on I\[^{V)}, the algebra of polynomial functions on A/c(l/), by g . f(s) = f{g~l . s),
for / 6 K[^k[V)}, s e /\k(V). Denote by 5,,,,...,,, 1 ^ii <;2 < ... <^ ^", the
coordinate functions on /\k(V). We also set 5;^^, ^..., ^ = (-1)<T5;, ;,..., ^ and s, ^... ^ = 0
if ip = ?, for some p ^ q. Then /<[Afc(Vr )] is the ring of polynomials on 5,,.,... ;,. For

the purpose of the present paper, consider the algebra of polynomial functions K[W} on
W = A^'1(V/) x /\k2{V) x Afc3 (^) x Afc4 (V). The action of GLn(K) on /<[l^] is given by

g-f(s^s-^s^S4)=f(g~l-s^g-1 . s^, g-1 -s^, g~l -34), 5, 6 A(-(V). Applying the symbolic
method [4] for I\[W}, let L = L+ = LiUL-2ULsUL4 be a set of linearly ordered positive
letters, where each L, is an infinite set belonging to /\k'(V). Let P = P- = {1, 2, ... , n}
be a set of n negative places. We shall simply write the letterplace algebra Super[L\P} (g) A'
as Super[L\P\. The group GLn(K) acts on Super[L\P} by ̂ . (a|!") = E,.E;j(a|j), where
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, -1 e., = EiXij i, a 6 L.

^

We now quote two important results regarding the letterplace algebra Super[L\P}. Let
Mi and M<i be two multisets on L and P, respectively, of the same size. Let Superb M2^[L\P}
be the linear subspace of Super[L\P} spanned by monomials of the letterplace pairs (ajz),
a   L and i £ P, having the letter content (or degree) Mi and place content M^. We have

Theorem 1 [ref. [4]J Standard bitableaux (D\E) of the letter content Mi and the place con-
tent M-t form a linear basis of Super(-Ml'M^[L\P}.

Theorem 2 [ref. [IjJ Standard symmetrized bitableaux (D\[E^) of the letter content M\
and the place content M^ form a linear basis of Supert-Ml'M2)[L\P}. Furthermore, if D is a
diagram of shape X, then the linear subspace

S\, D =r {(^)|[£J) : ^ " standard on P)^,

is a GLn(K)-irreducible module (called Schur module), as long as it is not a zero subspace.

In the present context, a symmetrized bitableau (D|[Ej) is given by

(D\[E])=^(D\aE),
a

where cr ranges over all column stabilizers of the tableau E. For example,

=2 ( D
12

13
+2| D

13

12

Tlic iimbral linear operator U from Super[L\P} to l\[W\ is clefinecl by
(i) If a G L, l)elo[iging to /\ '{V), set

U((a(k'^U2---Jk, ))=s }\]1---]k. 1

which is the corresponding coordinate function on A '(I/); sefc U [{a^\u}} = 0 if^» 7^ ^-,,
where u is a word of length p on L.

(ii) For distinct letters a<6< ... < cin L, set

U ((a(p)|u)(6(p'>|u/). .. (c(p")|u//)) = U ((a(p)|u)) U ((^(p')|u/)) .. . ^ ((c(p")|u/)) .

where u, u , .... u are words of lengths p, p',..., ?" on L.

Proposition 3 The umbral symbolic operator U is a well-defined GLn{I\)-equivariant sur-
jective map.
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A Jc-dimensional subspace V of V can be identified with (up to a scalar) a decomposable
skew-symmetric tensor 6 = UiAuzA -.. Aufc   A<:(V), where ui, - .. , Ufc is a basis of V. The
set of all decomposable tensors in A/:(V), together with {0}, is called a Grassmannian and
denoted as Gk, n (or, to be rigorous, is called the cone of a Grassmannian and denoted as
CGk, n)- The Grassmannian (necessary and sufficient) condition for a skew symmetric tenser
s G. /\k(V) to be in Gk,n, when translated in terms of the symbolic method, is given by: for
two distinct letters a, 6 belonging to /\ (V), the evaluation of the function

^((aW6|zi... z,+i)(6(/:-l)b-i.. -^-i)) (1)

vanishes at s, for all elements z'i, . . ., ik+i, ji, ' . . , Jk-i in P-
Let / be the ideal of Super[L\P} generated by all elements of the form in (1), as (a, &)

ranges over all pairs of distinct letters belonging to L; (the number A: in (1) is changed to k,
accordingly), i =1, 2, 3, 4. Then U induces a G'Ln(/\)-equlvalent surjective map

U : Super[L\P\II -. K[GrA\,

where K[Gr4} is the coordinate ring on four Grassmannians Gr4 = G^, n x G(..,, n x G'A:3, n x
G^,n-

Given a quadruple m = (mi, m2, m3, m4) of nonnegative integers, denote by Km[Gr4}
the corresponding homogeneous component of l\[Gr4}. To focus on Km[Gr/i] symbolically,
choose letters ai, ---, am,   Li, bi, ---, ^,   ̂ 2, Ci, -. . , ^,   ̂ -3, <^i, -. . , ^m,   ^4. Let M"1
be the C/Ln(/\')-submodule of Super[L\P}l I spanned by the bitableaux {D\E} + /, where
llie coiitcnt of D is

{a, ---a^{h, ---b^{c, ---^)k3(d, ---d^.

To study the coordinate ring of two Grassmannians, let m = (mi, ms, 0, 0). Then /\'I"[G'r'1]
becomes /<(ml-"'2)[G'fc,, n x G'^,n] and M(m"m2) is spanned by the bitableaux (D|E)+ / where
the content of D is (ai . .. a,n^(b^ . . . b^)k2. Assume /;i ^ k^ and impose the linear order
(I, > ... > a,,,, > b^> ... > b,,^ for the letters. Form a Young diagram D by first
juxtaposing horizontally the rn, x fc, rectangular diagram ("^"2'. . . . . u^, ) with a m2 x ^'2
rectangular diagram (6t'2, ^'2, . . . , ^2J, then, out of the lower right comer of the thinner
rectangular diagram, cut a diagram such that the remaining part of the m^ x k^ rectangular
diagram has at most m, rows and at most n - A;) columns. Turn it around by 180° and place
it below the fatter rectangular diagram. The following is an example of such a diagram with

-256-



ki = 5, /;2 = 4:
aiaiaiaiai6i6i6i6i

a2a2a2a2a2^2^2^2

a3a303Ct303&3

G4a4Q4a4a4^4

0505050505

&4^4^4

6363^3
b2 .

Let p. = (^i, /X2, ---, /Xmi) with ^i >. fJ.2 >.... >. A(mi ^ 0; set /x, =0 ifi > mi. Then the

shape of D \s X = {ki+f^i, --- , ki+ /^m,, ̂ 2 - ^m,, . . . , ^2 - ^i), where ki + fJ, i < n. Call the
collection of all such shapes as A. For a fixed pair (mi, ma), the diagram D only depends on
X. So we write D as D\. To be explicit,

D, =(a^rl, ---, ^l^T, ^rm 2, ---, ^2-41)

Proposition 4 The restriction of the umbral operator on the direct sum of Schur modules

®A6A5A,D. -^ /<(ml-m2)[G',,, n X G'^. »]

gives an isomorphism between the two GLn[f\}-modules. In particular, the set

U\^^{U((D\\[E])} : E is standard on P of shape X}

is a linear basis of I\(m^'m2)[Gk,, n x G^,n}.

3. Invariants of four subspaces

Denote by K[Gr4]SLn{K} the set of elements A' in I\[Gr4} such that g-X = X for every
g   SLn{K}. We call I\[GiA\SLnW the ring of invariants of 4 subspaces.

It is known that /v[G'r'l]SL"(A) is the sum of all one dimensional invariant subspaces of
the G'Ln(/\')-module /\'[G'r ]. Starting from the decompositions

K{ml-m2][G^, nXGk,,n} ^ @X^SX,D^ fcl ^A;2,

/^m3'm^[G, 3,,, X C7,,,,. ] ^ ®.V6A-5v, ^,, ^^^4

we have

^

A'm[G'r4]- ^ K(m^}[G^, nXGh,, n}®K{m3'm'}[Gk,, nXGk,, n}
^ ®A6A,A'eA '5'A, D^ ®-S'A'.D^- (2)
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It is also known that the tensor product S\, D^, <8 .S'A',0^, has a 1-dimensional invariant
subspace, and at most one such subspace, if and only if one can fit the diagrams D\ and D\,,

which is the 180° rotation of D\', into a rectangular diagram D of width n. ID this case, the

1-dimensional invariant subspace in S\, D^ ® .S'A'. D^, is spanned by the single element {D\E),
where each row of £ Is 12---n. Its image U{(D\E)) is an invariant in K[Gr4}SLn(K). The
pair of diagrams [D\, D*y) is called a complementary pair. Since (2) is an isomorphism,
we have

Proposition 5 All invariants in K[Gr4}SLn<-K) are given by linear combinations of the im-
ages ZY((D|[£^)), where each row of E is 12- . . n and D comes from a complementary pair

(^, ^-).

We say a diagram D \s a. juxtaposition, or sum, of diagrams D' and D" if D' consists of
some rows of D and D" has the rest. Write D = D'+ D". A complementary pair (DA, D*^,)

is said to be a juxtaposition, or sum, of complementary pairs (D^, D*,) and [D^, D^) if
D\ = D^ + D,/ and D\, = D'^, + D^,,, such that D^ contains a certain row of D\ if and
only if D', contains the corresponding row of D"y. It will suffice to describe complementary
pairs which are not juxtapositions. They correspond to generators of the ring of invariants

A'[G<r4]5Ln(A^. Such a complementary pair {D\, D\i) and the corresponding rectangular
diagram D is called primitive.

We will describe 3 types of primitive complementary pairs, and hence 3 types of primitive

diagrams. Without loss of generality, we may assume k\ + k^ +A:3+A;4 <, In (by taking duals

if necessary) and hi > k^ ^ ky ̂  A;^.

Type I. Suppose some pair, say (k^ks), or some triple, say (A;), ^^s), or the qi iaclruple

(^. i, ̂ , /t-3, ̂ -i), siim to n. Tlien the pairs

(akl, c^3), (a(:-6^, cfc3 ), (afc-^2, ^.4c<:3)

define priinitive complemeiitary pairs.

Type II. Suppose A;) + k^ + ks + k^ = 2n. Then a pair of diagrams of the form

aklb5 d^-1

bkl-3 , dlcks

where 0 ^ s <^ m\T\{n - ,1:1, ̂ 2} =n- k^O <, t <: mln{n - ^3^4} = k^, s-t=n- k^ - A;4,
form primitive complementary pairs.

Type III. Suppose A:] + ky + ^'3 + A;4 < 2n. Write

8 =2n -{ki + k-2+ ky + ,.-4).
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Let p be the largest nonnegative integer such that pS < ^4 and q be the largest nonnegative
integer such that qS <n - ki. Consider the following possibilities:

(1) 1 ^ 9^P and (q+ 1)S = n-k^,
(2) 1 < 9<p and (g+ 1)<^= n- k^
(3) 0<p<gand (p+1)S = k^,
(4) 0^p<gand (p+l)<^=A;3.

Remark. Alternatives (1) and (2) exclude alternatives (3) and (4), and vice versa. Also
only one of (1) or (2) can hold unless ki = ky; and similarly for (3) and (4).

Corresponding to these 4 possibilities are the following 4 different primitive complemen-
tary pairs of diagrams:

(1) The numerical condition implies that (2q + l)n = (q+l)(ki + k-^ + ky+ k4) - ki,

which suggests that the pair of diagrams have (2q + \) rows, the diagram D\ has content
(a, ... a, )fcl(6i... by+i)k2 and the diagram D^ has coDtent (ci... c,+i)^(^ . .. d,^. The
complementary pair is given by

f ak, lbf

a;'1^
^,'
b^-s

, ^-(q-l)S
>1
ki-qS

\ ul

\
l2

t?+l
fk^-qS^ks
'. q+\ oi?+l

^-(q-\)5^k_3

dkrsck^
^3.k

Ij'Ci

(2) We have (2q + l)n = ((/+ l)(^i + ^ + ky + ^4) - A;2. So we use letters a,, ..., a,, +i,
h\, ..., ^, ci,..., c^+i, d^, ..., c/, +i to inake a complementary pair having (2q + 1) rows:

ak,lb^-s

^k^n-k. -qS

<-;v,
bk'-s

,^-{q-\)S
'1

ds. }
l2

"5..
lg+i

^-qS^s
t7+l <-.?+1

^-(<?-1)<^-3
"7 "1

^. 1 -7^

. -<?^3
l2' C2

^.3
ll"cl'

(3) We get 2(p + l)n = (p+ l)(^-i + ^ + A-s + ^4) + ^. So we use letters a,,..., ap+i,
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bi, ..., 6p4. i, Ci, ..., Cp+i, (fi, ..., (fp+2 to make a complementary pair having (2p + 2) rows:

/ ^ki^n-ki-Sa^-

a^bn^-P8
, k\ . A"-<:l-fc4

ap+l°p+l
^n-kj-S
yp+l~

n-ks-pS
/2

,n-A:3 -k4
\ "1 1

1-p^

\
l2

-,&
Ap+l

IP+2

p+1 '-p+1

<-5^3
l2" C2~

/fc< ^
1^ Cf

(4) The condition implies 2(p+ l)n = (p+ l)(fci +A;2+A;3+^4)+A;3. Hence we use letters

ai,..., ap+i, f»i,..., 6p+i, Ci,..., Cp+2, c(i,..., ^p+i to make a complementary pair having (2p+2)
rows:

( ak^b\-k}-&

k^n-ki-pS

^ \
t2

,s
'p+1
^3

, fcl . hn~kl~k3
ap+l°P+l' ~ CP+2
in-k^-S ^-pS^ki
/p+l up+l (-p+l

n-k^ -p5

y,n-^'4 -^'3

4-<5^-3
b' C2~

^
[l'cl'

If k\ + k-i < n, then in addition to the above four possibilities is a collection of 4 siinilar

alternatives with first row (af'6^ d^~k}~k2) and last row (^ d^~k3~5c^). If// is the largest
integer such that p'S < k^, q' is the largest integer such that q'S < n - ky, tiie correspoiicliiig
numerical conditions for these 4 alternatives are

(!') 1 ^<7/ <p/and (<?/+ l)S =n - kj,

(2/) ^ ^q' ^p' and (q' + [)§ =n - k^

(3/) 0 ^p'«7/and (p'+\)6 = ^-,
(4/) 0 ^;/ <<7/and {p' + \)S = k^.

Following is the main proposition.

Proposition 6 The three types of complementary pairs listed above are the only primitive
complementary pairs.

As a consequence , we have
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Theorem 7 A se< o/ algebraic generators of the ring of invariants K[Gr4}SL"^K^ of four
subspaces is given by U((D\E)), where D is formed by a complementary pair (D\, D^, ) of
one of the types (I) - (III), and E is the rectangular Young diagram having the same number

of rows as D and having 12- . . n for each of its rows.

For a given set of four Grassmannians, the number of generators is quite few. In fact,
the number of type I invariants is at most 6; this number is reached when n is even and
^i =^2 =^3 =^4 = ^- Type II invariants exist only when fci +^2 +^3 +^4 = 2n, with the

number of such invariants being l+min{n-ki^k-2, n-k3, k4} = 1+min{n-A:i, A;4} ^ 1+^.

Type III invariants occur when k-i + k^+ks+k^ < 2n and S is a. factor of some of the integers
in the list {A;i, A;2, fcs, fc4, n - fci, n - fcs;" - A;3, n - ^4}. The number of different type III

invariants is ^ min(4, i), where i is the number of integers in the list that has S as a, factor.
Remark. We can have the situation where 5 is a factor of every integer in the list, whereas

no type III invariants exists. For example, ifn =6, A;i = 4, k-i= ks= k4 = 2, then S = 2,

p=0, 9= O, so none of the conditions (1)-(4) exists. Since ^1+^2 = "i no diagrams
(1/)-(4/) exists either.

The following theorem gives the structure of the invariant ring K[Gr4}SL(v).

Theorem 8 Tlie ring of invariants of four subspaces is a polynomial ring generated by the

generators described in the previous theorem. To be more precise, the generators are alge-

braically independent as long as the quadruple (ki. k^^ks^k^) is not of the form (/c, ^, /, /)
where k + I = n; otherwise, the invariant U((D\E)) where D = (akct, bkd1) and E =
(12-- - n, 12-- . n) can be expressed in terms of the rest of invariants, which are algebraicaily

independent.
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