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Summary

A natural way to define g-Bell numbers is with the recurrence

Bn+l(9)=E|^|5t^
t=0

where [^] is the ̂ -binomial coefScient. One would then want g-analogues of the generating function
and the combiaatorial interpretation of Bell numbers. The former follows from a notion of q-
composition of functions introduced by Gessel that gives a chain rule for the g-derivative. We give
the latter and some ramifications of both, which include a g-exponential formula, new g-Stirling
numbers of the second kind, g-exponential polynomials, g-Bell polynomials and a g-Faa di Bruno
formula.

Une maniere naturelle de definir les g-nombres de Bell est par moyen de la recurrence

5n+l(<?)=^|;|^(?)
fc=0

ou [^] indique Ie g-coefficient binomial. Ceci mene a deux problemes: trouver egalement des q-
analogues de la fonction generatrice et de 1'interpretation combinatoire des nombres de Bell. Le
premier peut etre resolu a, partir d'une notion de g-composition de fonctions introduite par Gessel,
pour laquelle il existe une regle de g-difTerentiation. On donne une solution au deuxieme probleme
ainsi que d'autres resultats relies a ces questions, parmi lesquels: une formule ̂ -exponentielle, de
nouveaux g-analogues des nombres de Stirling de la 2e espece, polynomes g-exponentiels, g-analogues
des polynomes de Bell et un g-analogue de la formule de Faa di Bruno.
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I g-coniposition of functions and the g-exponential forniula

Let us first introduce some standard aotation. We define [k] = }^3- = 1 +g+ ... + qk~l and
n!, = [1][2] . . -[n], where 0!, = 1. Next we define the q- (or Gaussian) binomial coefficient

[;]= n!»

[k\~^(n-k)\,

It is not difficult to see that [n] - [k] =qk[n-k], and from this it follows that

n+1
k -[. "-h^

We further define the g-exponential function

^^z'

^^

and the g-derivative of f(x),
D. fW = ^-^)
JVJ[I>^ x(l-q)

Noting that the g-derivative of a constant is zero and that D, ̂ 7- = ^_^, otherwise, we see that
e, (z) is its own g-derivative. Therefore, we could prove a ^-exponential formula if we had a chain
rule for g-derivatives. For this, as was realized by Gessel ([Ge]), we need a different notion of
functional composition. We have slightly modified Gessel's construction:

Let f(x} be a function with /(O) = 0, and write it in the form

^-^/. ^:
n=l

Define the Oth symbolic power of / by f^(x) = 1. and for positive integer k define the kth symbolic
power of / inductively by

D, fW(x)=[k]f[k-l}(x)f'{x) (1. 1)
where f'(x) will mean throughout this abstract the g-derivative of /. (1. 1) gives f[k}(x} up to an
additive constant, which is determined by /[i:l(0) =0 (or k ~^ 1. An alternative definition can be
given with a g-integral ([GR])

/(()d, (():=/(0)+z(l-<?)^(?"/(rg")
'0 n=0

(1. 2)

(Note: for convergence of some of the quantities that we consider, it will occasionally be necessary,
as here, to take |g| < 1. As a rule, we will proceed formally. ) Since this operator inverts the
g-derivative operator, we may take, for <: ̂  1,

/(tl(x)=. T(l-gt)^<?"/ft-ll(r, ")/'(^n) (1. 3)
n=0
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Note that when Jk = 1 we have D, /[l](.c) = /'(.c), which implies that /[ll(a-) = f(x) since they
have the same g-derivative and are both zero when T = 0. Also note that D,.r = [A;].r<:-l and
Dg x^ = [k]x^k~^, so by induction we have x^ = xk since x^ = x. More generally we have

(^)W = ^l_^k
:g">

Using (1. 1) and induction we obtain another expression which we could take as a definition of
f^k\x), namely

fW(x)=k\, ^xn ^ fbi ft, ... fb^

n=t ti+---+i>k
», >!

,
" N[''1 + ^] ... [&1 + .. .+ 6t](6l - 1)!, ... (bk- 1)!,

(n-l)!, /tji,, . -. /i,
= k'"1 § "^ ".§.=» [6i][6i +62] . . . [&! +. . + ̂ -iKfri - !)'» . . .(^ - !)!<

(1. 4)

(1. 5)
n=Jt ""} <>i+-+l.k=

b;>l

If g(x)= ̂ ^o 5" ̂ ?:'' then the 9-composition of g with / is defined by

^ fl"]

stf}-^9^
Since x^ = xn, at least we have g[x] = g(x). Also note that

00 /-[n-1]

B^^=E^-(^-w:f'=gl[f}fl
n=l v"- i'-1

(1. 6)

(1. 7)

which is a g-analogue of the chain rule.

Take g(x) and f(x) as above and g = e, [/]; then g' = e'^[f} f = gf and equating coefficients
we get the g-exponential formula

n

ffn+1 = ^ ^ 5'k/"-*+!. ffO = 1
k=0

(1. 8)

Gessel applies (1. 8) to some problems in the enumeration of permutations. We give in the next
section a generic combinatorial interpretation of(1.8).

II A combinatorial interpretation of the ^-exponential formula

We will require a few well-known facts (see [An]) about partitions of numbers. A partition of
a positive integer n is an unordered sum of positive integers equal to n. Each summand is called a
part. For example, the partitions of4 are 4, 3+ 1, 2+2, 2+ 1+ 1, 1+ 1 + 1 + 1, with respectively
1, 2, 2, 3, 4 parts. Then we have the

Leninia. (1) [^] is the generating function for partitions into at most k parts aot exceeding n - k.
(2) qk ["jt ] is the generating function for partitions into exactly k parts not exceeding n - k.

With this in hand, we proceed to the combinatorics of (1. 8), after introducing some more
notation. Let (k} denote the set {l, 2,..., fc} and let A(m, n;k} be the set of partitions of the
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number k into at most m parts each no larger than n. Let On denote the set of weighted objects
ou (n), and let /n be the generating function for weighted objects on (n), i. e.

, Wt 17/" = E ̂ w
o 0»

Define the weight of an assemblage of disjoint objects on (n + 1) inductively as follows:
Find the object containing n+1. This object contains n-k+l elements for some k, 0 <; k <n,

which areai < 02 < ... < Qn-t+i = "+1, say. Relabel the element a, as i for each i, 1 ^ t ^ n-A+1
(we call this the order-preserving relabeling and abbreviate by OP), and take the weight u»i of
the relabeled object.

There remain k elements, say b\ < b^ < ... < bt, m the other objects, and we relabel 6, as
i for each i, 1 <:i ̂ k. Put w; = S,i:=i(&t - *); we call w-^ the relabeling weight. Observe
that S, =i(fri - «') is a partition of the number w; into at most k parts not exceeding n - k, since

bi-\^b-2-2<^... <^bn-k<n- k, and that all such partitions arise by appropriate choice of
the b, 's.

After this OP relabeling, we now have an assemblage of objects on (k) with some weight wy
(which could be found by repeating the algorithm until we come down to one object). Then we
define the weight of the original assemblage to be w = u;i+u/2+ WB, which we call the generic
definition of the weight, and we put

3n= E 9U
aCAOn

go = l.

where AOn is the set of assemblages of objects on (n). We claim that pn+i = ^k=o [S] 3k /n-t+i-
For, we have seen that each assemblage of objects on (n+ 1) comprises an object containing n-k+l
elements including n + 1, an assemblage of objects on (k), and a partition into at most k parts not
exceeding n - k which arises from OP relabeling the assemblage of k objects, where 0< J(; < n.
Then

gn^= ^ g""0
ae/to.+i

SE| £ Z Z <
i:=0 \<7 0. _k+i K^AOi, A(k, n-k;l'l

-^.")^-)^\
n

=Z^-t+'^[^|.
t=0

Ut (7+Ult K+l

Ill g-BeIl numbers and g-Stirling nuinbers of the second kind

With the ̂ -exponential formula in our possession, we can give a g-analogue of the theory of Bell
numbers. Let D(n, k} denote the set of partitions of (n) into k blocks, and let Il2(n) = ^4 H(n, k}.
If we give a set weight 0 and define the weight of an assemblage of disjoint sets (i. e. a set partition)
via the generic definition, we have Bo(q) = 1 and

Bn(q)= S ?u
iren^n)

(3. 1)
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Bn+l(9)=E|^|^(9)
k=0

e, [e, (x)-l]=^B^q)^-
n=0 ".<

If we define g-Stirling numbers of the second kind by

{:}. s. s,
» » n(n, k)

».= SnO

then clearly we have

B'M-t^

(3. 2)

(3. 3)

(3. 4)

(3. 5)

and a complete g-analogue of the basic theory of Bell numbers. However, these are not the same
g-Bell numbers that are given by Milne ([Ml]), nor are these g-Stirling numbers of the second
kind the same as the ones that have appeared in the literature (see, e. g., [M1], [M2]). Two related
sets of g-Stirling numbers of the second kind have been studied previously. One which is not too
different from {^} may be defined by

S, (n, k) = S, (n -l, k-l)+ [k]S,(n - \, k), 5, (n, 0) = 6no (3. 6)

(The first disagreement is that 5, (4, 2) = 3+ 3g+ q2, while {^} = 3 + 2g+ 2g2.) The other may

be defined by ?g(n, k) = q(-l> Sy(n, k). On the subject of notation for Stirling numbers, see [Kn].

{^} inherits several of the properties of S{n, k). We have

{"^. -m (3. 7)

The proof of this is much the same as before. In a partition of (n + 1} into Jk + 1 blocks, the block
containing n + 1 has n - / other elements in it for some I, k <:l <:n (1'^k since there remain /
elements in k blocks). After OP relabeling this block has weight 0. The remaining / elements are
OP relabeled, with a relabeling weight that is a partition into at most / parts not exceeding n- I.
After this relabeling, the remaining elements are a partition of {/) into k blocks. Taking weights
and summing over all possibilities, (3. 7) follows.

(3. 7) implies the infinite generating function

(e, (x)^-Vi
<. !"

w -vM ^
~^J^^ (3. 8)

To see this, first note that if <. = 0 both sides are 1. If A > 0, both sides are 0 when a; = 0, and

D^X)^[k]=W^)-lf-^e, (.)-l)'
_  ) -1)^-1'.

(^-1)!,
. e, (x)
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If we set

rtw-iW
then it suffices to show that D, ̂ +1(2;) = rjt(r) e, (r). Now

^ ( n\ xn-^!n+l\ ^
rww=J., l^^A=s;^^^

.n+1

+1)!,

so using (3.7)

-=S{::;^=5EH{:}^
^^(l\ -x^-^=f-(l\ ^Y-^-
=fe^^(n-7^^~^^^^(;r-7^
=rk(x)e, (x)

We may also consider the polynomial 4>n(x;q) = ^=o {^}, .ci> a g-analogue of the exponen-
tial polynomial ([RKO]). We get nice g-analogues of some of the properties of the exponential
polynomials in

and

e, [r(e, (()-l)]=^^(r;g)^-
n=0 <1

<^n+i(3-;g)=x^ ^t(z;g)

IV A g-analogue of Faa di Bruno's fornaula

Since Gessel's ̂ -composition gives us a g-analogue of the chain rule, one can hope for a q-
analogue of the iterated chain rule, that is, Faa. di Bruno's formula ([Ch], [Ri], [Co]). For this we
will require a product rule for ̂ -derivatives. In the case of two functions we have

D, f(x)g(x)= f(x)g(x} - f(qx)g{qx}
x[\-q)

f(x)g{x) - f(x)g{qx) + f(x)g(qx) - f(qx)g(qx)
x(l-q)

=f(x)g'[x)+f'(x)g(qx)

The formula we require is a generalization of (4. 1) to n functions:

n /t-l \ / n
D, /l(. r)/2(. T)... /n(z)=^|n/, (.T)]/t(l)| H /, (<?!)

t=l \J=1 / \J=fc+l

(4. 1)

(4. 2)

Proof: Induction on n. (4. 1) is the case n = 2, and we pass from n to n+ 1 by taking f{x) = f\(x)
and<7(.r)=/2(a:)---/n+i(. c)in(4. 2).
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We also note that

, _, _f(qtx)-f(qb+lx)D, /(g^)=

=9

x(l-q)
_. t/(^)-/(9t+^)

g^(l - q)
=qlf'(qbx)

(4. 3)

For orientation, let us look at D^ f[g(x)}. There are five terms:

f'[g(x)} g"\x) + f"[g(x)} g\x) g"{qx) + q f"[gW} 9'(x) g"(qx)
+ /"[ff(^)] 9"W 9'(q^) + f'"[9W} 9'(x) g'(qx) gl(q2 x)

An abbreviated notation for this expression, in analogy with the notation in [Ri], could be

,1 530 + ,2 510^21 +9/2 ffl0ff21 + ,2 ff20ffl2 + ,3 ffl0flrllffl2

These terms correspond to the five partitions of (3), in the order {1, 2, 3}; {1}, {2, 3}; {2}, {1, 3};
{1, 2}, {3}; {1}, {2}, {3}. Note that the weight of {2}, {1, 3} is 1 while the weights of the other four
partitions of (3) are all 0.

Let a- be a partition of (n) into the blocks 5i, Bzi . . -i-Bt. As with the partitions of (3) above,

we put the blocks in increasing order of the maximal elements. Suppose there are b, elements in
the block 5,, for each t, and recall that we have designated the set of partitions of (n) by Tl^W.
Then we have

Theorem (^-anedogue of Faa di Bruno's forniula, first form)

<?wtT,
°;/1»W1=^^';,,.^1

T ^7(") <> x 9'

'qwtrfw[gW}g^\x)g^\qb^)x
A) I x^)(^+t'x)...^Vl +63+-+6k-1.)

(4. 4)

Proof: Induction on n. We have verified the case n = 3 already, and the lower-dimensional
cases are trivial. Observe that the exponent of q in the factor g<-l'^(ql't+'"+b'-lx) counts the number
of elements contained in 5i U- . -U B|-I, t. e. in the blocks with a smaller maxima! element than
that of 5,. Assuming that (4.4) holds for n, we show it holds for n + 1. Using (4.2) in (4.4), we
have

D^+l/[ff(. F)]

= E 9'u<T/(i:+l)[^)]|II^)(9tl+-+t-l+1^)]
T6na(n) \'=1

/(*)[, (. )] ,u;tT+E;=>lt- (H ̂ )(gEL-, 'S) I x

x^+l)(^':.ls)( n ^v+E?;,lt^)]
^=.+1

(4. 5)

+ s:

where we also used (4. 3).
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We may obtain all the partitions of (n+1) from the partitions of (n) by relabeling the elements
1, 2,.. ., n as 2, 3,.. ., n+l in that order, and then either adding the element 1 as a singleton block,
or adding it to one of the relabeled blocks. Doing the former increases the number of blocks by
one, increases the number of elements in the blocks with a smaller maximal element than that of
Bi by one for each of the original blocks, and does not change the weight. Therefore this class of
partitions of (n + 1) corresponds to the first summaad in (4. 5).

In the latter case, suppose we have adjoined 1 to the relabeled block B,. For the B, with j > i,
the number of elements in the blocks of smaller index has increased by one, but this number has
not changed for the Bj with j < i, and of course the size of B, has increased by one. The effect on
the weight is the following. The blocks B, with j > i are crossed out one by one. Each element has
a label one larger than previously both before and after relabeling, so there is no net effect on the
relabeling weight. When B, is crossed out, however, the remaining elements have to be relabeled
down one more than before. After this, everything has the same labels it would have had before
the element 1 was adjoined, so there is no further effect on the weight. Thus the weight^ncreases
by the number of elements in the blocks with index less than i, that is, by &i +- . .+6, -i. Therefore
these partitions correspond to the second summand in (4. 5).

Faa di Bruno's formula is not usually stated in the form of a sum over set partitions, although
it is most easily proved when so stated. One can then ask whether our g-analogue can be given
without reference to set partitions. The following lemma will allow us to give such a statement.

Lemma Let TT be a partition of {n) into the blocks Bi, Bt,. .., Bk, listed in increasing order
of their maximal elements, with |B. | = 6,, K, i < k. If Er (B,,..., B>) denotes the sum over all
such T, then

E .
ir6(B>,..., B>,)

,
Wt T

6i +62 + ... +6t -
fcfc-1

11 f6l+<>2+. -. +^-1-11 ['
fct -1-1

6i + 62 - 1

&2- 1

Proof: To determine the weight of TF, we begin by crossing out Bi, and OP relabeling the
elements in the other blocks with {1, 2,. .., 61 + 62 + . . + <>fc-i} Before relabeling, the largest
element in these blocks does not exceed <», +62+- .. +<><:- 1, so the contribution to the relabeling
weight from any one element is no larger than bfc - 1. For each TT, then the relabeling weight is a
partition into at most 61 +6;+---+frt-i parts not exceeding fci - 1, and we get all such partitions
from summing over all TT. By the lemma of section III, we therefore have

Y. <
Tgffl,, .., B»)

W( T _
6i +6; +... +('»- 1

6t-l £ <.
» (B>,.. ,Bk-i)

and the lemma follows upon iteration since the weight of a single block is 0.
Observe that we may rewrite the expression in the lemma as

("-!)!,
[6i][fci +62]^ -. [61 + -.. + 6t-i](6i - 1)!, (62 - 1)!, ... (bk- 1)!,

and that this expression has arisen already in (1.5). From this point of view, it therefore gives a
natural g-analogue of the Bell polynomial ([Ri], [Co]). That is, we may put

B^, i,, (/l, /2,... )= S
(n - l)!, /t, /t3 ... Ai,

1. 1+
[fri ][6i+62]. -. [6i+... +6t-i](6i-l)!,. --(frk -l)!,

(4. 6)

'.. £>
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and rewrite (1. 5) as

/W(^=^!^^-B^, t,, (/i, /2,...)
ni,n=t

(4. 7)

Using the shorthand notation introduced earlier, namely gij := g^\qj x), we may now state our
g-Faa di Bruno formula in the following form:

Theorem (g-Einalogue of Faa di Bruno's forinula, second form)

D^ f[g(x)] = ^ /(t)[ff(. c)] Bn, jfc,, (fft,, o, ̂ , t,, fft3, 6i+t,, . . .)
k
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