The combinatorics of polytopes and the simplex algorithm Gil Kalai
 Institute of Mathematics
 Hebrew University of Jerusalem
 91904 Jerusalem, Israel

Let P be a d-polyhedron with n facets, i.e. P is the set of solutions of n linear inequalities with d variables. The vertices (extreme points) and edges (1-dimensional faces) of P form a graph denoted by $G(P)$. This graph is of great interest in the combinatorial theory of polytopes and in the theory of linear programming. The simplex algorithm finds the maximum value of a linear (objective) function on P by moving from vertex to adjacent vertex in the graph of P.

An example to always have in mind is: P is the d-dimensional cube defined by the $2 d$ inequalities $0 \leq x_{i} \leq 1$. P has $2 d$ facets and 2^{d} vertices all $0-1$ vectors. Two vertices are adjacent in the graph of P if they differs in one coordinate.

We will discuss the following open problems (all of them are wide open, but for 1-3 there are some partial results):

1. What is the maximal diameter of the graph of a d-dimensional polyhedra with n facets?
2. Is there a pivot rule for the simplex algorithm which is good in the worst case?
3. How good expanders are graphs of polytopes?
4. How hard is it to find a random vertex of a polyhedron?
5. How hard is it to approximate the number of vertices of a d-polyhedra with n facets?

Some relevant references:
[1] B. Grünbaum, "Convex Polytopes," Ch. 16, Wiley Interscience, London, 1967.
[2] V. Klee and P. Kleinschmidt, "The d-steps conjecture and its relatives", Math. of Oper. Res. 12 (1987) 718-755.
[3] G. Kalai and D. Kleitman, "Quasi-polynomial bounds for the diameter of graphs of polyhedra", Bull. Amer. Math. Soc. 26 (1992) 315-316.
[4] G. Kalai, "A subexponential randomized simplex algorithm", Proceedings of the 24-th Ann. ACM Symp. on the Theory of Computing, pp. 475-482, ACM Press, Victoria, 1992.
[5] J. Matousek, M. Sharir and E. Welzl, "A subexponential bound for linear programming", pp. 1-8., Proc. S-th Annual Symp. on Computational Geometry, 1992.
[6] J. Matousek, "Lower bounds for a subexponential optimization algorithm", Freie Universität, Berlin.

