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ABSTRACT. The Plancherel growth process is a Markov chain on the Young lattice, deter-
mined by transition probabilities p(A, A) = d(A.) / |A| d(\). Here A covers the Young diagram
\ and d{\) is the number of Young tableaux of shape A. The process originates in the charac-
ter theory of the infinite symmetric group ©oo. There are two basic results on the asymptotic
behavior of Plancherel process: 1) the Law of Large Young Diagrams claims that the shape of
a typical large random diagram is uniformly close to the graph of an explicitely known func-
tion, and 2) an analog of Central Limit Theorem describes the Gaussian limiting process for
the deviations of random diagrains from the mean shape. Remarkably, the Plancherel process
has deep connections far outside representation theory and combinatorics of Young tableaux.
It is related to partial fractions, Markov's Moment Problem, asymptotics of interlacing roots
of orthogonal polynomials, and Wigner's Semicircle Law for eigenvalues of large random m&-
trices. Some of nontrivial combin&tori&l techniques, e.g. the Hook Walk algorithm, can be
extended by continuity to functions which are limits of normalized Young diagrams [4].

All characters of ©oo can be interpreted as special Markov chains on the Young lattice.
They are in a bijective correspondence with Polya frequency sequences. Every central spher-
ical function on ©oo has a unique presentation as an integral of characters. Selberg integrals
arise in that way in the study of harmonic analysis of pseudo-regular representations of the
infinite symmetric group and infinite dimensional unitary group.

Le processus de croissance de Plancherel est une chaine de Markov sur 1c treillis de Young,
determinee par les probabilites de transition p(A, A) = d(A) / |A| d(A). Ici A recouvre Ie
diagramme de Young A et d(\) est Ie nombre de tableaux de Young de forme A. L'origine du
processus se trouve dans la theorie des caracteres du groupe symetrique infini ©oo. On a deux
resultats de base concernant 1c comportement asymptotique du processus de Plancherel: 1)
la Loi des Grands Diagrammes de Young afBrme que la forme d'un grand diagramme typique
aleatoire est uniformement proche au graphique d'une fonction qu'on connait de maniere
explicite, et 2) un analogue du Theoreme de Limite Centrale decrit Ie processus limite de
Gauss pour les deviations des diagrammes aleatoires par rapport a la forme moyenne. II
est remarquable que Ie processus de Plancherel ait des liens profonds bien hors de la theorie
des representations et de la combinatoire des tableaux de Young. II est relie aux fractions
partielles, au Probleme du Moment de Markov, a 1'asymptotique de 1'entrelacement des racines
de polynomes orthogonaux, et a la Loi du Demicercle de Wigner pour les valeurs propres des
grandes matrices aleatoires. Certaines techniques combinatoires non triviales, par exemple
1'algorithme "Hook Walk"ou Randonnee Crochet, peuvent etre etendues par continuite a des
fonctions qui sont des limites de diagrammes de Young normalises [4].

Tous les caracteres de ©oo peuvent etre per^us comme des chaines de Markov speciales sur
Ie treillis de Young. Ils se trouvent en correspondance biunivoque avec les suites de frequences
de Polya. Chaque fonction spherique centrale sur ©oo a une presentation unique en integrale
de caracteres. Les integrates de Selberg apparaissent de cette maniere dans 1'etude de 1'analyse
harmonique des representations pseudo-regulieres du groupe symetrique infini et du groupe
unitaire de dimension infinie.
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1. Introduction. The subject of the present talk is random growth of Young diagrams.
We consider probability distributions on the space of infinite Young tableaux T, with the
following property: the probability to obtain a Young diagram by adding boxes according
to particulE ir Young tableau depends only on the final shape of that tableau. Measures

satisfying this condition are called central.
Central measures, ergodic with respect to the tail paj-tition on the space T, are in

one-to-one correspondence with the characters of the countable s^Tnmetric group ©oo.
The classification of ergodic centred measures for the Young lattice is equivalent to that
of Polya frequency sequences. More direct approach [11] to the classification problem is
based on the study of asymptotics of shape of reindom Young tableaux. The main tool is
the formula (6. 8) for the number of standard Young tableaux of skew shape A \ A, for a
fixed Young diagram X and an arbitrarily large A.

The most distinguished example of a central measure is the Plancherel Growth Process,
corresponding to the character of the regiilar representation of 600- 

We review in Section

7 specific versions of Law of Large Niunbers and Central Limit Theorem for Plancherel
measure. In particular, we describe the approximate shape of a Young diagram with n
boxes which ina-ximlzes the dimension of the associated irreducible representation of the
symmetric group Gn-

The space A of ergodic central measures can be considered as a boundeir^' of the Young
lattice. Every central measure has a unique presentation by an integral of ergodic central
measures with respect to a mixing probability distribution on the boiindar^' A (similar
to Poisson Integral representation of positive harmonic fimctions in the unit disc, or to
the integral representation of exchangeable random sequences in de Finetti theorem). In
Section 8 we introduce a distingiushed family of non-ergodic centred Markov chains on the
graph V, generalizing Ewens partition structures of population genetics [7] . The probability
(8. 5) of a Young diagram A for these measures equals a product, over all boxes in A, of
simple expressions involving hook lengths and contents. Their integral representations
coincide with the specific types of celebrated Selberg integrals.

Let us emphasize two points. First, we not only derive the Selberg integral

(1. 1)

'... / n i<, -', i"ii'?-*,...
. ^,...,. ^0 Ki<J<k J=l

dtk-i =

t^'
'l+--. +tt=l

F(kA +{k- l)k0) ^
r(A+{k-j)e)r(je+i)

r(^+i)

but also provide a nice discrete approximation (8. 7) to the left hand side. Second, the
infiiiite dimensional versions of Selberg integrals also arise in decompositions of some cen-
tral Markov chains in the family. The- study of probabilistic properties of mixing measures
is a challenging open problem. Only one special case is well understood by now: that of
Poisson-Dirichlet distributions representing Ewens partition structures.

2. Bratteli diagrams and branchings. Let T denote a graded oriented graph with the
set of vertices T = [Jn=o ̂ " partitioned into levels Tn-i and assuine that

(a) the end of every edge belongs to the level next to that of its source vertex
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(b) there is a single vertex 0 6 F with no incoming edges
(c) for every vertex there is at least one outcoming edge
(d) all the levels Fn are finite.
A graph satisfying (a) - (d) is called Bratteli diagram. We will often associate a positive

number .x(A, A), called edge multiplicity, to every edge (A, A) of a Bratteli diagram. A pair
(F, x-) consisting of a Bratteli diagram and a multiplicity fimction x will be referred to as
a branching.

The tenniuology and the original host of examples comes froin representation theory
of locally finite groups and approximately finite dimensional (AF-) algebras. Let G be a
countable locally finite group, i.e. a union of an increasing sequence of finite subgroups
Go C GI C ... C Gn C .... We denote by Fn = Gn the finite set of equivalence classes
of irreducible representations of C?n. For any two irreducibles A   Fn, A 6 Fn+i the
coefficient . x-(A, A) of A in the restriction Res^n+lA coincides with the coeflScient of A in
the induced representation Ind^^+lA. By definition, a pair (A, A) for which ^c(A, A) ^- 0,
determines an edge of a branching, with multiplicity ^-(A, A), on the vertex set F = [J Fn.

In this talk we will focus on three examples of branchings.
Example A (Young lattice Y). By definition, the vertices of V are Young diagrams.

Two diagrams A, A determine an edge, A /* A, ifFA covers A in the inclusion order. The
edge multiplicities are trivial: x-(A, A) = Iforall A /" A. Young lattice shows up as
the Bratteli diagram for the increasing sequence Go C ©i C ... C©n C ... of finite
symmetric groups. Another way to introduce the Yoiing branching is Pieri formula for
Schur symmetric polynomials: s^) . s\ = EA :A^-A6A. We shall also consider truncated

versions y(A-) of Young lattice, where only diagrams with k rows or less are. taken into
account.

Example B (Kingman's branching AC). The graph is as in Example A, and the multi-
plicities are defined .as -K-(A, A) = pj-(A), where j is the length of the row of A containing
the box A \ A, ajid pj (A) is the number of rows of length j in A. The branching fC == (V, x)
was studied in [7]. It describes Pieri type formula for monomial symmetric functions m\:

(2. 1) S(i)-m), = ^ x-(A, A)-mA.
A:A/-A

Kingman's branching also has truncated versions JC(k).
Example C (The family of Jack's branchings J(e^\ Again, we take Young lattice as

the underlying graph. The multiplicities are defined by the product

(a(&) + (l(b) + 2W . (a(6) + 1 + Kb)0)
.

'"/ - Y (a(6) + (/(&) + 1)^) . (a(6) + 1 + (/(&) + 1)0) .

Here a(6) is the arm length and /(&) is the leg length of a box 6 e A, and ^ ^ Ois a
parameter. The product runs over the boxes in the column of A strictly above the new box
A \ A We denote the Young lattice with edge multipUcities (2. 2) by J(6\ and we call it
Jack iranc/iin^ Multiplicities (2. 2) arise in Pieri type formula for zonal (Jack) symmetric
polynomials PA(. r; ̂ ) (cf. [9]):

^
(2. 3) s^. P^x-, 0)= ^ ^(A, A). PA(3:;^).

A:A^A
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Note that Jack polynomials J\(x;a) considered in [10] have a different normallzation:
J^x; a) = PA(a-; 1/a) . r[ftg^(aa(6) + ^(6) + 1). The family of Jack branchings provides a
deformation of Example B (0 = 0) to the ordinary Young branching of Example A (^ = 1).
In fact, Px(x; 0) = m^x) and Px{x; 1) = sx(x).

3. Combinatorial dimensions. Let F be a branching. For any two vertices A, ^ 6 F
we denote by d{\, 11) the number of chains from \ i,o p.. If the edge multiplicities are
nontrivial, x-(A, A) ^- 1, we assign the weight Wu = H^i x(A, -i, A, ) to a chain u =
(AO = A, AI,... , An = ^), and define dimension function d(\, ^) as a sum of weights
d(A, fJ.) = ^ Wu of all saturated chains in the interval [A, /x].

Example A. For Young lattice V the coinbinatorial dimension is equal to that of the
associated irreducible of the syimnetric group ©n. The hook formula holds:

(3. 1) d(A)=
n!

n^w
Ae^n.

where /i(6) = a(6) + /(&) +1 is the hook length of the box &   A.
Example B. For the Kingman's branching K. the dimension d(Ai, ̂ 2,... ) is equal

to that of the representation of Gn induced by the trivial representation of the "\'oung
subgroup ©Ai x ©A, x ... C ©An, namely

(3. 2) aw=
n!

AiiAz!...'
>eVn.

Example C. For the Jack branching J^ there is a hook formula

(3. 3) deW =
n!

H^(a(&) + 1+7(W

4. Central Markov chains. Given a branching (F, ?c), denote by T the compact, totally
disconnected space of infinite paths t == (Ai,... , An,... ) in F, starting with the initial
vertex 0. In all examples of Section 2 the elements of T are infinite Young tableaux.

A Borel distribution M on T is determined by the measures M{C^} of cylinder sets
Cu= {t ̂ . T : AI = 1/1,... , An = i^n), where u = (^1, ^2,... , ^n = A) is a finite path with
the last vertex a?(u) = \.

(4. 1) Definition. A probability measiire M on T is central with respect to the branching
(F, >c) if M(Cu) / Wu = M(C^) / u;v for any two finite paths u, v with the same end vertices
u>(u) = ti^(v).

(4. 2) Definition. A function (,(? : F-+ Ris called harmonic if it satisfies the conditions

(4. 3) <^(A)= ^ ^(A, A). SP(A); <^(A)^0; A F, <^(0)=1.
A:A^A

By definition (4. 1), the quotient M(Cu)/Wu = <i(?(^)i for a central measiire M, depends
but on the last vertex A of a path u. Clearly, the function y is harmonic. hi the opposite
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direction, every hanaonic function of a branching (F, x) uniquely determines a central
distribution with cylinder probabilities

(4. 4) M(C'^)=w«. ^(a;(u)).

Every central measure is actually a Markov chain with transition probabilities

(4. 5)

All central measures M share the same conditional probabilities

(4. 6)

-(^)=^^.

g(A, A) == Prob {A^ = A | A,+, = A) = ( )^'A),
called cotransition probabilities.

(4. 7) Definition. Assume there is a probability distribution Mn on the n-th level set
Tn of a branching (F, x), for all n ^ 0. The system {Mn}^o is called coherent, if

(4. 8) MnW== ^ g(A, A)M^i(A)
\:\/'\

for every n ^ 0 and A G Fn.
Level distributions Mn(A) = Prob {( = (AI,... , An,... ) e T : An = A} ofa central

measure M are coherent. Vice versa, for every coherent system {Mn} of probability
distributions, the function (^(A) == Mn(A)/d(A) is harmonic with respect to (F, x) and
determines via (4. 4) a central Markov chain.

5. The boundary of a branching. Given a branching (F, x), assume that there is a
compact topological space A, a map i : F -» A, and a function $ : Fx A -^ R satisfying
the following conditions:

(i) for every a; 6 A the function </?^(A) = $(A, a;) is harmonic
(ii) the functions $A(<^) = $(A;tL»); A   F, are continuous and span a dense linear

subspace in the space of continuous functions on A

(in) for every a; G A consider the probability distributions M^)(A) = d(A) $(A;a;),
A   Fn. Then the measures i(M^ ) weakly converge, asn -^ oo, to the degenerated
measure 6^ at the point (^ G A.

(5. 1) Definition. We say that A is the boundary of a branching (F, >c), and that
$ = $(A;u;) is its Poisson kernel.

(5. 2) Theorem. Let (F, x) be a branching with the boundary A and the Poisson kernel
$ = $(A;a»). TAen ^^) every harmonic function y can be uniquely represented by the
Poisson integral

(5. 3) <^(A)= / $(A;a;)/. (<^),
rA
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where p. is a probability measure on A, and &) the measure p. in (5. 8) is the weak limit
of probability distributions i(Mn), where Mn(A) = d(A) (^)(A) /or A 6 Tn.

One can identify the boundary A with the set E of ergodic central measures. Two paths
s, t QT are tail equivalent, if they coincide eventually. We caU a central measure M on T
ergodic, if M(C') = 0 or M(C') = 1 for every measiirable set C C T saturated with respect
to the tail equivalence. The set A/f of all central measures for a given branching (F, x)
is compact and convex. A central measure is an extreine point of M ifF it is ergodic. It
follows from Choquet theorem that every central measure can be represented as an integral
of ergodic ones. Moreover, M is always a sinaplex, i.e. integred representations above are
unique. We will only consider examples where the subset £. of ergodic central mezisures is
closed in M.. Hence, M. can be identified with the simplex of all probability distributions
on the boundary A.

Problem. Find the boundary of a given branching.

We shall give the solution for Examples A, B and for truncated case of Example C.
Essentially, two general inethods are available.

1) Assume that t = (Ai,... , An,... ) 6 T is such a path that the limits

(5. 4) _u. dm^>=^
n-»oo a(An

w

exist for all A   Tm, m ^ 0. It is easy to see that {Mm} is a coherent system of probability
distributions. A variant of BirkhofF Ergodic Theorem implies

(5. 5) Theorem [11]. Every ergodic central measure M ^ £ can be obtained, using (5. 4),
for appropriate path (   T.

By this result the Problem reduces to a combinatorial problem on the as^Tnptotics of
dimensions in (5. 4).

2) If a branching is given by a Pieri type formula, say (2. 2), we call it multiplicative.
Every harmonic function </? : F^ R for such branching can be extended to a linear
functional <f> on the corresponding algebra R.

(5. 6) Theorem [6]. Assume that a branching (F, x) " multiplicative. Then
a. ) the set £ of extreme points is closed in A<
b) a harmonic function y corresponds to an ergodic central measure iff its extension y

is an algebra homomorphisTn.

For a multiplicative branching, determined via (2. 1) by an algebra R, a linear basis
{m\} and an element S(^), the Problem reduces to the followiag one: find all zilgebra
homomorphisms y : R-^ R, such that y{m\') ^ 0 for all A, and v{s(i)) = 1. The solution
for truncated versions of examples A - C is simple. In fact, consider the simplex

(5. 7) Afc = {a  ,k
'+ ai>... >afc>0, a, +... +QJ, = i}.

(5. 8) Corollary. For k-truncated branchings of examples A - C the boundary is A =
Ajb. The imbedding i :y -> ^. k is given by the formula t'(A) = (Ai/n,... , \k/n). The
Poisson kernel is determined by basic symmetric polynomials m\. For instance, $(A;o) =
P\{a; 6} in Example C.
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6. The boundary of the Young lattice and related branchings. We claim that the
triple (A, z, $) in the examples below satisfies all the conditions of the Definition (5. 1).

Example A ([11]). The boimdary A is the space of pairs (a;/?) of sequences of non-
negative real numbers a =(ai,..., Q^,... ), /3 = (/?i, ..., ^,... ) such that

(6. 1)
00

CKl ^... ^a, ^... ^0; /3i ̂ ... ^/9n^... ^0; ^a,-+^/?. ^l.
«=l «=1

The topology is that of coordinatewise couvergence.
In order to describe the imbedding t" : .V -+ A, denote by (/i, ..., /d;^i, ..., ^) the

Frobenius parameters of a Young diagram A = (Ai, A2,... )   Fn (i. e. d is the diagonal
length of A, fk = \k-k+ 1/2, and gk = X',, -k+ 1/2, where A'^ is the length of the Jl-th
column of A). By definition,

'm=(f-L^. -:9-^-}^,
n n n n

where both sequences are tailed by zeros. The Poisson kernel $(A; a,
where 7= 1- ̂ a, - ^/S,, is determined by extended Schur functions s\.

The extended power sum symmetric fimctions pn are defined as follows:

= 5A(a;/3;7),

(6. 2)
pl(Q-;^;7)=^o. +^/S, +7,

1=1 1=1
00 00

p^a;^;7)=^^+(-l)"+l^^n if n^2.
1=1 1=1

Other symmetnc functions are polynomials in power sum functions pi, pz,.... For instance,
5A(a;/?;7) = Sp?(:ipp(a:;/?;7)/^. Here ̂ ^ is the value of a character of the symmetric
group ©", indexed by A, on a conjugacy class indexed by p = (1P1, 2P2,... ).

(6.3) Theorem [11]. Ze(( = (Ai,... , An,... ) &e an myi ni^e Young tableau. The follow-
ing conditions are equivalent:

(6. 4)

(6. 5)

_Um_z(A»)=(a;^)6A

^mo^f)=5A(a;/?;l-sa'-E^ x^y-
/^'6^J?orollar^* Let Mw denote the ergodic central measure associated to a point uj 6

A(^). Then\imi(\n)=uj for a. a. Young tableaux t = (\i,... , \^^ . ^ ^ T.
We shall write simply r(A) for the value of an extended symmetric function r 6 ^ at

the point (/i, /2,... ;^i, p2,... ) = n- z(A), A   ^n. The main tool in the proof of Theorem
(6. 3) is
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(6. 7) Lemnia. For every Young diagram X   Vm there is a symmeiric polynomial Q\
of degree deg Q\ < m, such that

(6. 8)
^(A)+QA(A)<A, A)

~d(A) ~ |A|(|A|-l)... (|A|-m+l)'

Example B ([2], [7]). The boiindary A is the simplex of nonincreasing sequences
a = (ai,..., an,... ) of nonnegative numbers, with a restricted siim: 7=1- Ea, ^ 0. The
imbedding i : .V -> A is given by the formula i"(A) = (Ai/n, \2/n,... ). The Poisson kernel
$(A; a) = m\(a; 0; 7) is detennined by extended monomial symmetric functions.

Example C. The description of the boimdary for the Jack briinching reduces to the
following problem: find all homomorphisms of the symmetric function algebra to R, non-
negative at all Jack polynomials P\(x; 0) for a fixed 0. According to the Conjecture of
Section 7. 3 in [3], forall ^ > 0 the boundary is the same as for the Young lattice. See (5. 8)
for the solution in truncated case.

7. Plancherel Growth Process. The most central of all central measures on the Young
lattice is the Plancherel measure M, corresponding to the point a = 0 ==0of the boundary'
A(y). The transition probabilities for this Markov chain are p(A, A) = d(A) / |A| cf(A),
and its level distribution Mn(A) = c?2(A)/n! is the ordinary Plzincherel measure of the
symmetric group @n. In what follows, it will be convenient to consider a Young diagram A
as a continuous piecewise linear function v = A(u) with the derivative ±1. In combinatorial
terms, A(u) is the length of the diagonal of A with the fixed content u.

(7. 1) Theorem [13]. Let An   Vn denote any Young diagram of the maximal dimension
d(A). Then the limit

(7. 2)

exists uniformly in u, where

(7. 3) Q(u) = { f{u
lull

Urn -7=An(u\/n) = f2(u)
i-»oo ^/n

^(uaj-csin^+^4-u2), if |u| ̂  2
if|u|>2.

(7. 4) Theorem [13]. The uniform limit (7. S) exists for a. a., with respect to Planckerel
measure, Young tableaux t = (AI ,... , An,... ) G T.

A weaker version of this Law of Large Young Diagrams appeared in [8], [12]. The
following result caji be compared to the Central Limit Theorem.

(7. 5) Theorem [l]. Consider the random function G'n(i) = \(x^/n) - ^/nfl{x), where
a diagram \ E Vn has Plancherel probability <f2(A)/n!. Then Gn(x) weakly converges
to a Gaussian random process G(x) = Sn>l ̂ " un(x')/Vn + 1> where ̂ n arc independent
standard normal random variables, and Un(2cos0) = sin(n +1)0 / sinO is the Tchebychef
polynomial of the second kind.

An equivalent version is this. Defijie random variables y?fc(A) = X^. in-*)n<:^2/^(^)
on the set Yn endowed with the Plaiicherel measure. Then the functionals <r>fc(A) are
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^

asymptotically independent and have Gaussian Urmting distributions. More precisely,

m i f^k ..2

(7. 6) ]lm Mn{\^yn :VkW<Xk, 2^k^m}=Y\-^== I exp(-^)^
rl->o° fj^ V'^TTA; J-ook=2

for every sequence a-2i . . . i-^m   K.-

8. Multiplicative central measures. Let c(b) = j. - i denote the content of a box.
(8. 1) Lenima [5]. For every complex number z the formula

(8. 2) P<->(A, A)=k(^^. rf(A) ,
|A|TM2- |A|d(A)'

A^A

determines transition probabilities of a central M.arkov chain. Moreover, for natural k and
real A > 0 transition probabilities

(8. 3) PW(A, A)= (A;+c(A\A)). (A+A:-l+c(A\A)) ri(A)
\\\+kA+k(k - 1) |A|d(A)

determine a central Markov chain for the truncated branching V^k).
More generally, transition probabilities

, _ (^ + c, (A \ A)) . (A + (fc - l)e + c<, (A \ A)) rii/, (A')
'''^ ~ \\\+kA+k(k-l)0 ' |A|di/, (Y)'

where de(X') is given by (3. 3), determine a central Markov chain for the truncated Jack
branching J( ){k). Its level distributions are multiplicative:

(8. 5) MnW =
n!

^5("
(^+c, (6)). (A+(fc-l)^+C(, (fe))

{k{k - 1)0 + kA)n ̂  (a(6) + (/(6) + 1)^) . (a(6) + 1 + 1^0) .
Here ce(b) = (j - 1) - {i - 1)0 is an analog of the content of a box 6 = {i, j) £ -R2, and
(a;)n = z(a; + l)... (a; +n - 1) is the Pochhajnmer symbol.

(8. 6) Theorem. Let {A(n)}^Li be such a sequence of Young diagrams that the limits
llmn \} ' / n = a, exist for all i = 1, 2,... , A;. Then

(8.7) jim"t-I^(^))=^(feA+t(';-lwrt(!+l) n la. -^rr^-.
n^'^ ^"v> /~n?=ir(A4-o--i)^)r(^+i)^^lut-UJI ^ult=l

Selberg's integral (1. 1) follows immediately from the fact that Mn is a probability dis-
tribution. Theorem (5. 2) and Corollary (5. 8) imply then that

(8. 8)
'At

_^, PA(I,..., I;^)
~"F(n + kA+(k - l)k0) ̂ 1

p>{f^} n \ti-t, \2e]^tf-ldt,... dt^=
Ki<j<k j=l

PA(I, ..., 1; 0} pr n^- +A + a -1)^) ro-^ + i)
r^+i)
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For 0=0 the distribution (8. 5) reduces to a truncated version of Ewens sampling formula

(8. 9)
n! k\ (A),,... (A)^

ln{A) = -T~i- " " i_. ,. i - .Ai!A2'... ro'. nirz!... (^A)n

where rj = pj (A) is the number of rows of length j in A. Ewens formula

(8. 10)
n! t1^

Mnw -/w.
is its limit as A;-» 0x3, A = t/k -» 0. In this case the mixing measure is the Poisson -
Dirichlet distribution on an infiiiite dimensional simplex. There are deep results on the
properties of this distribution (cf. [14]). Much less is known on the mixing distributions of
central Markov chains determined by (8. 2) or its ^-analog (see [5]).
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