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Our main objective is to study the Bn Stanley symmetric functions, Gu. This has been independently
investigated by Fomin and Kirillov[4] and by Stembridge[15] It is the analogue of the Stanley symmetric
functions for the symmetric group. This symmetric function also appeared in [1] in the search for an analogue
of the Schubert polynomials in other classical groups. First, we will define the Bn Stanley symmetric funclions
using the nilCoxeter algebra. From here, it can be shown that it is symmetric and can be wrltten as an
integer combination ofSchur P-functions. Using the Kraskiewicz insertion first described in [9], we can
show that they are actually nonnegative integer combinations of the Schur P-functions. (Theorem 1. 5) We
will described the Kraskiewicz insertion and the B-Coxeter-Knuth relations. These are all analogues of the
Edelman-Greene insertion. Next, looking into other properties of the Kraskiewicz insertion, we are able to
give some nice descriptions for Gui.

L'objet principal de cet article est d'etudier les fonctions symetriques de Stanley pour Bn, notees Gu,.
Celles-ci furent etudiees independamment par Fomin et Kirillov[4] et par Stembridge[l5]. Ces fonctions
symetriques ont paru egalement dans [1] ou 1'on recherche un analogue des polynomes de Schubert dans
Ie cas d'autres groupes classiques. On commence en definissant les fonctions symetriques de Stanley pour
Bn en employant 1'algebre nilCoxeter. Par la suite on peut demontrer qu'elles sont en effet sym^triques
et qu'elles peuvent etre exprimees en combinaisons lineaires de fonctions P-Schur a. coefficients entiers. En
utilisant 1'algorithme d'insertion de Kraskiewicz [9], on peut montrer que les coefficients sont en fait non
negatifs (Theoreme 1.5). On decrit t'algonthme d'insertion de Kraskiewicz et les relations B-Coxeter-Knuth.
Ceux-ci sont tous des analogues de 1'algorithme d'insertion d'Edelman et Greene. Ensuite en considerant
d'autres proprietes de 1'algorithme d'insertion de Kraskiewicz, on parvient a certaines jolies descriptions des
fonctions Gw

1 The Hyperoctahedral Group and the nilCoxeter algebra
We will spend some time on giving definitions and notations here. First, some basic facts about the hy-
peroctahedral group, Bn. The main reference used is [8]. Bn is the Weyl group corresponding to the root
system, Bn. We represent an element of 5n as a signed permutation and write it down in 1-line notation.
The simple reflections are denoted by s,, i= 0, 1, . n.

so = 12 ...n
s, = 12-"!- 1 i+ 1 i'i+2 ..n for 1 <i<n

Every element w ^ Bn can be expressed as a product of s, 's since the simple reflections generate the group.
Any such expression of shortest length is called a reduced word a.nd its length denoted by l(w). The collection
of reduced words of w is denoted by R(w}. When we write a reduced word, we will often only write the
subscripts of the simple reflections. So, s^s^sisos^s^ss is written simply as 3210323. It is a reduced word
for the "signed permutation 4321. When we multiply s. 's, we do it from the right. Under this convention, a
simple reflection s, acts on 1-line notation by switching the numbers in positions i and i+1 if?" 7^ 0 and
changing the sign of the first number if ; = 0.

Following the presentation in [4], we define the nilCoxeter algebra for Bn-
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Definition 1. 1 Let Bn be the non-commuiative algebra generated by UQ. U], . . , Un_i under the relations:

u? = 0 « > 0
UiUj = UjUi \i - J\ > I

u, u,+iu, = u,+iU,Ut+i i > 0
UoUlUQUj = UlUQUlUQ

The nilCoxeter algebra has a vector space basis of signed permutations of Bn. This is because the last 3
relations listed above are the Coxeter relations for Bn which are satisfied by the simple reflections s,

Definition 1. 2 Define in the polynomial algebra j5n[a:i, 2:2, 2-3, . . .]

B(Xi) = (1 + Z,-Un-l)(l + a;. Un-2) ... (!+ 2:. Ul)(l + .E. Uo)(l + .T. UI )... (!+ X, Un^){\ + r. Un_ ,)

Consider the expansion of the following formal power series in terms of the basis of signed permutalions.

B(xi)B(x^)---= ^ G^{x)
w B»

w

The G^(x) = Gu, (xi, x-t, . . .) are called the Bn Stanley symmetric functions.

It can be shown from this definition that the Gu, 's are symmetric functions^, Proposition 4.2]. Moreover, if
we replace a-i by -a:2i we get

Gui(-Xt, Xt, Xz, 2:4, . . . ) = (-?w(a"3, ̂ "4. . . .)

This shows that they can be expressed in terms ofSchur P-functions with inleger coefTicients. (See [10], [12]
and [16] for a definition ofSchur P-functions and other properties).

To show that these coefficients are nonnegative integers, we use an alternative descriplion of Gu involving
compatible sequences.

DeHnition 1. 3 Let a = aia; . . -am   R(w). We call a sequence of nonnegattve integers i = (ii. i;. . . ., »m)
an a-compatible sequence if

L ll ^12 < ... ^ I'm

S. ij = tj+i =... == ijb occurs only when aj, a^+i, . . . , ajt 15 a unimodal sequence

Denote the sei of a-compatible sequence as K(a).

Let lo(w) denote the number of bars in the 1-line notation of u'. Note that the number of O's in any
reduced word of w is equal to lo(w). A simple observation gives:

Theorem 1. 4 ([4, Equation (6. 3)])

G^(x)= ^ ^ 2'(l)-'°(u'^,.. r.,... z^
aeR(w)i^K(a)

where l(i) is the number of distinct integers in i.

This is an analogue of [14, Equation (1)].

Theoreni 1.5 For all w   Bn,

G. (x)= ^ 2'W-'°(U)^(^)(^)
RCSDT(w)

s^^Jl^dt ch/^v^l\^ /W^
-() 1T^=Kn ̂ ^";^ ^ ^A^»^l^W^^ ^-
D C^ ̂ (^^^. , " ~316-'
$) R\ ^ ^ A*.i^^/J^ ̂ J^l/\[^ ^ A^&X^-^A^ ̂  <<>;^./-> .. . ̂ 0^'

We will postpone the proof till Section 3.



2 Kraskiewicz Insertion

In this section, we will present Kraskiewicz insertion. The presentation is different from that in [9]. Firstly,
we have used so as the special reflection instead of Sn. So, the numbers that are used in a reduced word
for Bn will range from 0 to n- 1. Secondly, our unimodal sequence will be a sequence of numbers that are
initially strictly decreasing, then strictly increasing; that is

a = ai >Q2 > ... >at < "t+l < . . . < a,

The decreasing part of a is defined to include the minimum, that isai >az > ... > at and the increasing
part is at+i < 04+2 < ... < a;. We denote them by a[ and a] respectively.

For example, 21056 is a uaimodal sequence with decreasing part 210 and increasing part 56. 2489 is
unimodal with decreasing part 2 and increasing part 489. Note that a unimodal sequence always has a
decreasing part.

A shifted Young diagram of shape \ = (Ai, A;,..., A;), A, > A, +i for 1 ^i < / is an arrangement of boxes
such that the first row has length \i, the second row has length A; and so on. However, each succeeding row
is indented 1 box to the right. A shifted Young tableau P is a shifted Young diagram with the boxes filled in
with numbers and we denote the »th row by P.. Its reading word Tp is defined to be P(P(-I . . . PiP\ where
P, is treated as a sequence of numbers. For the rest of this text, we will sometimes treat a row of a tableau
as a sequence of numbers. For example,

^

is a shifted Young tableau of shape (5, 3) and reading word 4235412.

Definition 2. 1 Let P be a shifted Young tableau with I rows such that

1. -Kp = P| P(-1 . . . P^P\ " <I reduced word of w

S. Pi is a unimodal subsequence of maximum length in P;P|_I . . . P, +iPi

Then, P is called a standard decomposition tableau of w. and we denote ihe set of such tableaux &ySDT(u').

The previous example is a standard decomposition tableau of the permutation 351624.
Let w G. Bn and a = aia; . . -am   R{w). The Kraskiewicz insertion algorithm will give a map

a^---a^K-{P, Q)

where P is called the insertion (a&/eau and Q is called the recording tableau. We will have to first construct
a sequence of pairs of tableaux

(0, 0) = (?("), Q<°)), (P<1', QO),..., (P<m), Q(m)) = (P, Q)

sh(P(i)) = sh(Q(i)) for i = 0, !,.. -, m. Each tableau P(') is obtained by inserting a, into P^~l).

Insertion Algorithm:
Input: a, and (P(-1), Q(-1)). Output: (P<", QC)).
Step 1: Let a = a, and R = 1st row of P('-l>.
Step 2: Insert a into R as follows:

. Case 0: R= Q. If this empty row is the ffcth row, we write a indented k - 1 boxes away from the left
margin. This new tableau is P(t). To get Q(t), we add ; to Q('-1) so that pO and Q^ have the same
shape. Stop.
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. Case 1: Ra is unimodal. Append a to R and let p(i) be this new tableau. To get Qtl), we add i to
Q('-1) so that ?(. ) and Q(i) have the same shape. Stop.

. Case 2: Ra is not unimodal. Some numbers in the increasing part of R are greater than a. Let 6 be
the smallest number m R~\ bigger than or equal to a.

- Case 2. 0: a = 0 and R contains 101 as a subsequence. \Ve leave R unchanged and go to Step 2
with a = 0 and R equal to the next row.

- Case 2. 1. 1: b -^ a. We put a in 6's position and let c = fc.

- Case 2. 1.2: 6 = a. We leave the increasing part R] unchanged and let c= a+ 1

We insert c into the deceasing part R[. Let d be the biggest number in R[ which is smaller than or
equal to c. This number always exists because the minimum of a unimodal sequence is in its decreasing
part.

- Case 2. 1.3: <f ̂  c. We put c in d's place and let a' = d.
- Case 2. 1.4: d = c. We leave R[ unchanged and let a'= c- 1.

Step 3: Repeat step 2 with a = a' and R equal to the next row.

In the Kraskiewicz insertion, there is an analogue of Knuth relations[13, Sectioii 3. 6] on the reduced words
of R(w) which we call the B-Coxeier-Knuih relations.

Definition 2. 2 (B-Coxeter-Knuth relations) Let a, 6   R{w). We say they arc B-Coieler-Knulh rr-
laied if they are in the same equivalence class generated by the following[a <b <c < d)

0101
ab(b+l)b
ba(b+l)b
a(a + l)6a

(a+l)a6(a+l)
abdc
acdb
adcb
bade

and their reverses. We denote this as a ~ fc.

1010
a(b+l)b(b+ 1)
6(6+l)a6
a(a+ l)a6 a+ \ < b
(a+ l)fca(a+ 1) a+ 1 < fc
adbc
acbd
dacb
bdac

The reverse of a word, a = a^a-t . --am is defined to be ar =amOm-i.. .a;ai. These relations are a refinement
of the Coxeter relations for Bn. This set of relations also appeared in [6]. There, they were obtained by
considering promotion sequences.

The properties of the Kraskiewicz insertion parallel that of the Edelmaii-Greene insertion. We will state
them below.

Theorem 2. 3 ([9, Theorem 5. 2]) The Kraskiewicz insertion is a bi}ection between R(u'} and pairs of
tableaux (P, Q) where P   SDT(w) and Q is a standard shifted Young tableau.

Theorem 2.4 Let a, b   J2(ui). They have.the same insertion lableavz iff a-» b.

Theorem 2. 5 ([9, Lemma 4. 8]) Let a K* (P, Q) and Ai be the length of the first row of P. Then the
length of the longest unimodal subsequence in a is \\.
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3 Proof of Theorem 1.5

In order to proof Theorem 1. 5, we need to know how a sequence of consecutive terms in a behaves under
the Kraskiewicz insertion.

Theorem 3. 1 Let a = aiaz . . -am 6 /2(w) anf; a -^ (P, Q) under Kraskiewtcz insertion. If the subsequence
ajOj+i . . .ai of a is unimodal, then in Q the boxes wiih the entries J, J"+1, . - ., / form. a nm hook. Moreover,
the way the entries appear in the nm h-ooks is as follows:

1. the entries j, j+1, -. . , k form a vertical strip where k is the entry in the leftmost and lowest box of the
rim hook

S. these entries are increasing down the vertical stnp

3. the entries k-\-\, ---, l- I, I form a horizontal strip

4. these entries are increasing from left to right

Theorem 3.2 Let a -^ (P, Q). Let the boxes with entries j, j+ 1, - . -, / form a nm hook in Q satisfying the
conditions listed in the previous iheorem. Then the corresponding subsequence ajOj+i ... ai ts a ummodal
sequence.

These two theorems can be proved by a tedious process of checking all the possible cases of the insertion.

Proof of Theorem 1. 5: We will show that

2lo(w)G^x) = ^ Qsh(R)(x}
flgSDTfu.)

since Q\ = 2'^)?^- Fbc u £ 5n and let m = /(w). To achieve this, we generalize the idea of a-compatible
sequence to include sequences with barred and unbarred numbers. Let / = (/i, /2, .. ., /m) be a sequence
where fj   {1, 1, 2, 2, . . .}. This is called a generalized sequence. We give the barred and unbarred numbers
the linear order

1<1<2<2<.--.

We say that / is a-compatible if

1. ,1 </2$---^/m

2. fj = fj +\ = ... = fk= I occurs only when a, > Qj+i > ... > Ok

3. fj = fj +i = --. =/t = / occurs only when a; < a^+i < ... < a<:

Let K'(a) be the set of all a-compatible generalized sequences. In what follows, t will always be a sequence
ofunbarred numbers and / will denote a generalized sequence. Also, we will use \fj\ to mean

and

It is not difficult to show that

\f, \=l if/, =/or/, =/.

|/|=(|/ll, l/2|, ---, l/m|)

210^G^(x) = ^ E x\^x\h\---x\f^
ae/t(w)/gK'(a)

Now, we will exhibit a bijection <E> from {(a, /) : a   fi(w), /   ^'(a)} to {(P, T) : P G SDT(w), T a
Q-semistandard Young tableau such that sh(T) = sh(P)}.
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Step 1: Apply Kraskiewicz insertion to a. Let a -K» (P, Q). This P is the standard decomposition tableau
we want.

Step 2: Take a Young diagram of the same shape as Q. We fill each box with |/j | when the corresponding
box in Q has the entry j. Then the new tableau is weakly increasing along the columns and rows because

j<k \f, \^\fk\

Step 3: For each constant subsequence, fjfj+r-'fk such that |/, | = |/y+it = ... = IAI= / with
l/»-il < \fj\ and IAI < 1/t+il, we know that a^Oj+i ... at is unimodal. Let QA be the smallest number in
it. Furthermore, from Theorem 3. 1 the entries j, j+t, ---k form a rim hook in Q. Let g be the entry of the
box in the lowest row and leftmost column among all the boxes in these rim hooks.

1. If/h is unbarred, we add a bar to all the new entries from f, to I, -\.

2. If /h is barred, we add a bar to all the new entries from /j to /,.

This will give us a Young tableau with barred and unbarred numbers. This will be our T. Clearly, sh(T) =
sh(<3) = sh{P). It can be verified that T is a Q-semistandard Young tableau.

Now for the inverse map. Given (P, T), we first construct Q.
Step 1: Take a Young diagram of the same shape as T. We fill all the boxes with distinct numbers

1, 2, .. -m as follows:

1. The entries in the Young diagram preserve the order of the entries in T.

2. For all the boxes in T with the same barred number, these form a vertical strip and we fill the
corresponding boxes in an increasing order from top to bottom.

3. For all the boxes in T with the same unbarred number, these form a horizontal strip and we fill the
corresponding boxes in an increasing order from left to right.

This will be our Q. It is clearly a standard shifted Young tableau with the same shape as P.
Step 2: a is obtained from (P, Q) by the inverse Kraskiewicz insertion. This is the reduced word that we

want.

Step 3: To get /, remove all the bars in T and let t = tit; . . . »m be the content of this new tableau laid
out in weakly increasing order. Fbc a number /. We know that in T all the boxes witli the entry / or / form a
rim hook in T. The corresponding boxes in Q are filled with consecutive numbers ;, j+ 1, - . . . k. Also. they
satisfy the hypothesis in Theorem 3. 2. Hence, ajOj+i ... at is a unimodal sequence with smallest number
a/,. Now, let (/, J) be the coordinates of the lowest and leftmost boxes in the rim hook which has entry / or
/.

1. If (I, J) has the entry /, then we add bars to ij , i^+i ,..., 1/1.

2. If (J, J) has the entry /, we add bars to ij, ij+i, . . ., ih-i-

This generalized sequence will be our /. By construction, it is a-compalible and (a, /) = <I'~1(P, T). IIence,
if we look at the associated monomials for generalized sequence and the Q-semistandard Young tableau, we
see that they have to be equal. This gives

Therefore

2'o(u')G. (x) = E E .cl/. l-rl^l
aeft(w)f^K'(a)

E _E . 'T
P£SDT(u)6h(T)=5h(P)

^ Qah(P)(x)
P SDT(w)

G^(x)= ^ 2'W-t"^P^^(x)
fleSDT(w)

cl/-l
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Note that l(R) > lo(w) since every row of R can have at most one 0. This shows that Gw is a nonnegative
integer linear combination of Schur P-functions. °
Example: SDT(321) contains two standard decomposition tableaux,

Therefore,
G^(x}=Pw(x}+2P^)(x)

^

4 Properties

In this section, we will describe some properties of Kraskiewicz insertion and how they relate to G^.

1. Using Theorem 2.5, we are able to prove a result conjectured by Stembridge([15]).

Theorem 4. 1 Let w = uiw; . . .u>n-i" a"^ r = u/iiy? . . . i"r>-i"- Then there is a bijeciion between
SDT(ui) and SDT(v) given by removing the iop row of any P   SDT(w). Therefore,

G^X}= ^ 2'(/?)-'°<l')P(2n-l, sh(fl))^)
fleSDT(u)

where (2n - 1, A) = (2n - l, Ai, A;, . . . ).

In particular, G^^x) = -P(2n-i, 2n-3. , 3, i)(-c) where WB = 12... n is the signed permutation of longest
length in Bn-

2. Focusing on the insertion tableau of the Kraskiewicz insertion, we managed to show:

Theorem 4.2 Let P be a standard decomposilion tableau and let P ̂ . be the tableau thai is obtained
when we delete ihe increasing parts of each row of P. Then, P V. is a shifted tableau which is sincily
decreasing in each row and in eacA iop-left to boilom-nghi diagonal.

3. Using the above, we are able to get an analogous result on the length of the longest decreasing subse-
quence in a.

Theorem 4. 3 Let a -K» (P, Q). Then the longest slncily decreasing subsequence in a has length equal
(o the length of the decreasing part of the first row.

Theorem 4.4 Let w = nw-iWy . . -Wn and v = w;W3 . . . Wnn be 8 elements ofBn. Also, let SDTn(u) =
{P G SDT(w) : |Pi| = n}. Then, there exists an injection $/rom SDTn(w) »n(oSDT(v). Furthermore,
i/Va G /Z(v), (Ae /eng(/t of the longest unimodal subsequence in a is strictly less than n, then $ 15 a
bijeciion.

Using this, we are able to prove a result of Billey and HaimanJ,hat claims that every Schur P-function
can be expressed as a Bn Stanley symmetric function. Here, k means omitting k.

Corollary 4.5 ([1, Proposition 3. 14])
Lei w = AiA2---A;123---A; .. . A, _i .. ... Ai .. . where X = (AI. AS, . . ., A, ) ts a shifted shape. Then,

G^(x}= Px(x)
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4. We are also to give a combinatorial proof of the following:

Theorem 4. 6 ([4, Corollary 8. 1], [15]) Let w   Sn, then

G^(x) = F^(x/x)

where Fw(x) is ihe Sn Stanley symmetric function of w described in [5] and the nght-handsidc is the
superficaiion of ihai function.

This shows a connection between the Edelman-Greene insertion and the Kraskiewicz insertion. Another

connection is given by:

Theorem 4. 7 Let a   5n. Suppose

and let

a-K. (P, Q)

aE-S(R, S)
denote the Edelman-Greene insertion of a. Then S is shifted jeu de taquin equivalent to Q.

For more information on the Edelman-Greene insertion, please refer to [3]. The shifted jeu de taquin
operation is a shifted analogue ofjeu de taquin. A description can be found in [16], [12] and [6].

5. Another interesting result is that the Edelman-Greene insertion manifests itself as a special case of the
Kraskiewicz insertion. Let U be the unique standard decomposition tableau of h . .. 21. It has shape
(n, n - 1, - - -, 2, 1) and the ith row is (7, =n-i n- t- 1 ... I 0.

Theorem 4. 8 Let a   Sn. Then the Kraskiewicz insertion of a into U is the same as the Edelman-
Greene insertion of a in the following sense:

If we ignore U, then

(a) the recording tableau of the Kraskiewicz insertion is the same as the recording tableau of the
Edelman-Greene insertion, and

(b) ihe insertion tableau of the Kraskiewicz inseriton is just the insertion tableau of the Edclman-
Greene insertion with i- 1 subtracted from each box in the ilh row.

Using this observation, we manage to prove a conjecture of Stembridge[15]. Let SDT5(u') denote the
set of Edelman-Greene insertion tableaux for the reduced words of w(see [3]) and let u'.<; =n- 21 be
the permutation of longest length in Sn.

Theorem 4. 9 Let w   5'n. Denote w as the element of Bn obtained from w by putting a bar over all
w,. There exists a bijeciion ^> from SDTs{u'sw) to SDT(ui). Furthermore,

G. (x) = ^ ^. +.h(P)(a:)
PeSDTs(wsu')

where 8n = (n, n- 1, .. -, 2, 1).

6. Most of the previous results come from properties of the insertion tableau of the Kraskiewicz insertion.
The next few come from properties of the recording tableau.

K
Theorem 4. 10 Let aia; .. -am -^ (/', Q) then

K

a2---an, -^ (^, A(Q))
K

a^... asai -^ (5, ev(Q))

(1)

(2)
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Using the language in [7], A(Q) is the standard shifted Young tableau that is obtained by subtracting
1 from every box in Q(l -» oo). A description of evacuation operation ev(Q) can be found in [7,
Definition 8. 1].

7. In [6], Haimaa described the short promotion sequence which gives a bijection from the set of standard
shifted Young tableau of shape (2n - l, 2n - 3, -- ., 3, 1) to /Z(ws), the set of reduced words of the
longest element in Bn. Using (1), we are able to show:

Theorem 4. 11 Let a e R(WB} and a K- (P, Q}. Define ̂ (a) = Q. Then ̂  t's the inverse of p.

8. We also attempted to answer the question as to when SDT(ui) contains only one element. This
corresponds to finding conditions as to when Gw(x} = 2'(->')~la(w)P\(x) where A is the shape of the
single standard decomposition tableau of w. We were able to get the following:

Theorem 4. 12

Ifw^Sn,

(a) SDT(tu) contains only 1 element ifj w ts obtained by taking 2 consecutive segments in 12 . . -n and
switching them.

(b) SDT(u)) contains only 1 element iff w is 3^ IS-avoiding

If w 6 Bn is such that w, = » or -i, then SDT(w) contains 1 element.

There are a number of open problems in this area that we would like to explore.

1. Is there a theory of shifted balanced tableaux?

2. Is there an analogue of the jeu de taquin here7

3. What are the conditions for 2'o(u'Gu, = Qxi^-

4. Extend this theory to Dn-

We will end this abstract by remarking that the last problem is being worked on and there are some
preliminary results.
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