B_{n} Stanley Symmetric Functions

Extended Abstract

T. K. Lam

March 22, 1994

Our main objective is to study the B_{n} Stanley symmetric functions, G_{w}. This has been independently investigated by Fomin and Kirillov[4] and by Stembridge[15]. It is the analogue of the Stanley symmetric functions for the symmetric group. This symmetric function also appeared in [1] in the search for an analogue of the Schubert polynomials in other classical groups. First, we will define the B_{n} Stanley symmetric functions using the nilCoxeter algebra. From here, it can be shown that it is symmetric and can be written as an integer combination of Schur P-functions. Using the Kraskiewicz insertion first described in [9], we can show that they are actually nonnegative integer combinations of the Schur P-functions.(Theorem 1.5) We will described the Kraskiewicz insertion and the B-Coxeter-Knuth relations. These are all analogues of the Edelman-Greene insertion. Next, looking into other properties of the Kraskiewicz insertion, we are able to give some nice descriptions for $G_{\boldsymbol{w}}$.

L'objet principal de cet article est d'étudier les fonctions symétriques de Stanley pour B_{n}, notées G_{w}. Celles-ci furent étudiées indépendamment par Fomin et Kirillov[4] et par Stembridge[15]. Ces fonctions symétriques ont paru également dans [1] ou l'on recherche un analogue des polynômes de Schubert dans le cas d'autres groupes classiques. On commence en définissant les fonctions symétriques de Stanley pour B_{n} en employant l'algèbre nilCoxeter. Par la suite on peut démontrer qu'elles sont en effet symétriques et qu'elles peuvent être exprimées en combinaisons linéaires de fonctions P-Schur à coefficients entiers. En utilisant l'algorithme d'insertion de Kraskiewicz [9], on peut montrer que les coefficients sont en fait non négatifs (Théorème 1.5). On décrit l'algorithme d'insertion de Ǩraśkiewicz et les relations B-Coxeter-Knuth. Ceux-ci sont tous des analogues de l'algorithme d'insertion d'Edelman et Greene. Ensuite, en considérant d'autres propriétés de l'algorithme d'insertion de Kraskiewicz, on parvient à certaines jolies descriptions des fonctions G_{w}.

1 The Hyperoctahedral Group and the nilCoxeter algebra

We will spend some time on giving definitions and notations here. First, some basic facts about the hyperoctahedral group, B_{n}. The main reference used is [8]. B_{n} is the Weyl group corresponding to the root system, B_{n}. We represent an element of B_{n} as a signed permutation and write it down in 1-line notation. The simple reflections are denoted by $s_{i}, i=0,1, \cdots n$.

$$
\begin{aligned}
& s_{0}=12 \cdots n \\
& s_{i}=12 \cdots i-1 i+1 i i+2 \cdots n \text { for } 1 \leq i<n
\end{aligned}
$$

Every element $w \in B_{n}$ can be expressed as a product of s_{i} 's since the simple reflections generate the group. Any such expression of shortest length is called a reduced word and its length denoted by $l(w)$. The collection of reduced words of w is denoted by $R(w)$. When we write a reduced word, we will often only write the subscripts of the simple reflections. So, $s_{3} s_{2} s_{1} s_{0} s_{3} s_{2} s_{3}$ is written simply as 3210323 . It is a reduced word for the signed permutation $\overline{4} 321$. When we multiply s_{i} 's, we do it from the right. Under this convention, a simple reflection s_{i} acts on 1 -line notation by switching the numbers in positions i and $i+1$ if $i \neq 0$ and changing the sign of the first number if $i=0$.

Following the presentation in [4], we define the nilCoxeter algebra for B_{n}.

Definition 1.1 Let \mathcal{B}_{n} be the non-commutative algebra generated by $u_{0}, u_{1}, \cdots, u_{n-1}$ under the relations:

$$
\begin{array}{rlr}
u_{i}^{2} & =0 & i \geq 0 \\
u_{i} u_{j} & =u_{j} u_{i} & |i-j|>1 \\
u_{i} u_{i+1} u_{i} & =u_{i+1} u_{i} u_{i+1} & i>0 \\
u_{0} u_{1} u_{0} u_{1} & =u_{1} u_{0} u_{1} u_{0} &
\end{array}
$$

The nilCoxeter algebra has a vector space basis of signed permutations of $B_{\boldsymbol{n}}$. This is because the last 3 relations listed above are the Coxeter relations for B_{n} which are satisfied by the simple reflections s_{1}.

Definition 1.2 Define in the polynomial algebra $\mathcal{B}_{n}\left[x_{1}, x_{2}, x_{3}, \cdots\right]$

$$
B\left(x_{i}\right)=\left(1+x_{i} u_{n-1}\right)\left(1+x_{i} u_{n-2}\right) \cdots\left(1+x_{i} u_{1}\right)\left(1+x_{i} u_{0}\right)\left(1+x_{i} u_{1}\right) \cdots\left(1+x_{i} u_{n-2}\right)\left(1+x_{i} u_{n-1}\right)
$$

Consider the expansion of the following formal power series in terms of the basis of signed permutations.

$$
B\left(x_{1}\right) B\left(x_{2}\right) \cdots=\sum_{w \in B_{n}} G_{w}(x) w
$$

The $G_{w}(x)=G_{w}\left(x_{1}, x_{2}, \cdots\right)$ are called the B_{n} Stanley symmetric functions.
It can be shown from this definition that the G_{w} 's are symmetric functions [4, Proposition 4.2]. Moreover, if we replace x_{1} by $-x_{2}$, we get

$$
G_{w}\left(-x_{2}, x_{2}, x_{3}, x_{4}, \cdots\right)=G_{w}\left(x_{3}, x_{4}, \cdots\right)
$$

This shows that they can be expressed in terms of Schur P-functions with integer coefficients. (See [10]. [12] and [16] for a definition of Schur P-functions and other properties).

To show that these coefficients are nonnegative integers, we use an alternative description of G_{u} involving compatible sequences.

Definition 1.3 Let $a=a_{1} a_{2} \cdots a_{m} \in R(w)$. We call a sequence of nonnegative integers $i=\left(i_{1}, i_{2}, \cdots, i_{m}\right)$ an a-compatible sequence if

1. $i_{1} \leq i_{2} \leq \cdots \leq i_{m}$
2. $i_{j}=i_{j+1}=\cdots=i_{k}$ occurs only when $a_{j}, a_{j+1}, \cdots, a_{k}$ is a untmodal sequence

Denote the set of a-compatible sequence as $K(\boldsymbol{a})$.
Let $l_{0}(w)$ denote the number of bars in the 1 -line notation of w. Note that the number of 0 s in any reduced word of w is equal to $l_{0}(w)$. A simple observation gives:

Theorem 1.4 ([4, Equation (6.3)])

$$
G_{w}(x)=\sum_{a \in R(w)} \sum_{i \in K(a)} 2^{l(i)-l_{0}(w)} x_{i,} x_{i,} \cdots x_{i m}
$$

where $l(i)$ is the number of distinct integers in i.
This is an analogue of [14, Equation (1)].
Theorem 1.5 For all $w \in B_{n}$,

$$
\begin{aligned}
G_{w}(x)= & \sum_{R \in \operatorname{SDT}(w)} 2^{l(R)-l_{0}(w)} P_{\operatorname{sh}(R)}(x) \\
\text { ection 3. } & \text { shandwand doconydisílion Radom }
\end{aligned}
$$

1) $\pi_{R}=R_{n} R_{n \cdot 1} \ldots R_{1}$ in a readied wad for w.
2) R_{i} is Nhimodal

2 Kraśkiewicz Insertion

In this section, we will present Kraskiewicz insertion. The presentation is different from that in [9]. Firstly, we have used s_{0} as the special reflection instead of s_{n}. So, the numbers that are used in a reduced word for B_{n} will range from 0 to $n-1$. Secondly, our unimodal sequence will be a sequence of numbers that are initially strictly decreasing, then strictly increasing; that is

$$
a=a_{1}>a_{2}>\cdots>a_{k}<a_{k+1}<\cdots<a_{l}
$$

The decreasing part of a is defined to include the minimum, that is $a_{1}>a_{2}>\cdots>a_{k}$ and the increasing part is $a_{k+1}<a_{k+2}<\cdots<a_{l}$. We denote them by $a \downarrow$ and $a \dagger$ respectively.

For example, 21056 is a unimodal sequence with decreasing part 210 and increasing part 56. 2489 is unimodal with decreasing part 2 and increasing part 489 . Note that a unimodal sequence always has a decreasing part.

A shifted Young diagram of shape $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right), \lambda_{i}>\lambda_{i+1}$ for $1 \leq i<l$ is an arrangement of boxes such that the first row has length λ_{1}, the second row has length λ_{2} and so on. However, each succeeding row is indented 1 box to the right. A shifted Young tableau P is a shifted Young diagram with the boxes filled in with numbers and we denote the ith row by P_{i}. Its reading word π_{P} is defined to be $P_{l} P_{l-1} \cdots P_{2} P_{1}$ where P_{i} is treated as a sequence of numbers. For the rest of this text, we will sometimes treat a row of a tableau as a sequence of numbers. For example,

is a shifted Young tableau of shape $(5,3)$ and reading word 4235412.
Definition 2.1 Let P be a shifted Young tableau with l rows such that

1. $\pi_{P}=P_{l} P_{l-1} \cdots P_{2} P_{1}$ is a reduced word of w
2. P_{i} is a unimodal subsequence of maximum length in $P_{l} P_{l-1} \cdots P_{i+1} P_{i}$

Then, P is called a standard decomposition tableau of w. and we denote the set of such tableaux by SDT (w).
The previous example is a standard decomposition tableau of the permutation 351624.
Let $w \in B_{n}$ and $a=a_{1} a_{2} \cdots a_{m} \in R(w)$. The Kraśkiewicz insertion algorithm will give a map

$$
a_{1} a_{2} \cdots a_{m} \xrightarrow{K}(P, Q)
$$

where P is called the insertion tableau and Q is called the recording tableau. We will have to first construct a sequence of pairs of tableaux

$$
(\emptyset, \emptyset)=\left(P^{(0)}, Q^{(0)}\right),\left(P^{(1)}, Q^{(1)}\right), \cdots,\left(P^{(m)}, Q^{(m)}\right)=(P, Q)
$$

$\operatorname{sh}\left(P^{(i)}\right)=\operatorname{sh}\left(Q^{(i)}\right)$ for $i=0,1, \cdots, m$. Each tableau $P^{(i)}$ is obtained by inserting a_{i} into $P^{(i-1)}$.

Insertion Algorithm:

Input: a_{i} and $\left(P^{(i-1)}, Q^{(i-1)}\right)$. Output: $\left(P^{(i)}, Q^{(i)}\right)$.
Step 1: Let $a=a_{i}$ and $R=1$ st row of $P^{(i-1)}$.
Step 2: Insert a into R as follows:

- Case $0: R=\emptyset$. If this empty row is the k th row, we write a indented $k-1$ boxes away from the left margin. This new tableau is $P^{(i)}$. To get $Q^{(i)}$, we add i to $Q^{(i-1)}$ so that $P^{(i)}$ and $Q^{(i)}$ have the same shape. Stop.
- Case 1: Ra is unimodal. Append a to R and let $P^{(i)}$ be this new tableau. To get $Q^{(1)}$, we add i to $Q^{(i-1)}$ so that $P^{(i)}$ and $Q^{(i)}$ have the same shape. Stop.
- Case 2: $R a$ is not unimodal. Some numbers in the increasing part of R are greater than a. Let b be the smallest number in $R \uparrow$ bigger than or equal to a.
- Case 2.0: $a=0$ and R contains 101 as a subsequence. We leave R unchanged and go to Step 2 with $a=0$ and R equal to the next row.
- Case 2.1.1: $b \neq a$. We put a in b 's position and let $c=b$.
- Case 2.1.2: $b=a$. We leave the increasing part $R \upharpoonleft$ unchanged and let $c=a+1$.

We insert c into the deceasing part $R \downarrow$. Let d be the biggest number in $R \downharpoonright$ which is smaller than or equal to c. This number always exists because the minimum of a unimodal sequence is in its decreasing part.

- Case 2.1.3: $d \neq c$. We put c in d^{\prime} s place and let $a^{\prime}=d$.
- Case 2.1.4: $d=c$. We leave $R \downarrow$ unchanged and let $a^{\prime}=c-1$.

Step 3: Repeat step 2 with $a=a^{\prime}$ and R equal to the next row.
In the Kraskiewicz insertion, there is an analogue of Knuth relations[13, Section 3.6] on the reduced words of $R(w)$ which we call the B-Coxeter-Knuth relations.

Definition 2.2 (B-Coxeter-Knuth relations) Let $\boldsymbol{a}, \boldsymbol{b} \in R(w)$. We say they are B-Coxeter-Kinuth related if they are in the same equivalence class generated by the following($a<b<c<d$):

$$
\begin{array}{rlrl}
0101 & \sim 1010 & & \\
a b(b+1) b & \sim a(b+1) b(b+1) & \\
b a(b+1) b & \sim b(b+1) a b & \\
a(a+1) b a & \sim a(a+1) a b & a+1<b \\
(a+1) a b(a+1) & \sim(a+1) b a(a+1) a+1<b \\
a b d c & \sim a d b c & \\
a c d b & \sim a c b d & \\
a d c b & \sim d a c b & & \\
b a d c & \sim b d a c
\end{array}
$$

and their reverses. We denote this as $\boldsymbol{a} \sim \boldsymbol{b}$.
The reverse of a word, $\boldsymbol{a}=a_{1} a_{2} \cdots a_{m}$ is defined to be $\boldsymbol{a}^{\mathrm{r}}=a_{m} a_{m-1} \cdots a_{2} a_{1}$. These relations are a refinement of the Coxeter relations for B_{n}. This set of relations also appeared in [6]. There they were obtained by considering promotion sequences.

The properties of the Kraskiewicz insertion parallel that of the Edelman-Greene insertion. We will state them below.

Theorem 2.3 ([9, Theorem 5.2]) The Kraśkiewicz insertion is a bigection between $R(u)$ and pairs of tableaux (P, Q) where $P \in \operatorname{SDT}(w)$ and Q is a standard shifted Young tableau.

Theorem 2.4 Let $a, b \in R(w)$. They have.the same insertion tableaux iff $a \sim b$.
Theorem 2.5 ([9, Lemma 4.8]) Let $a \xrightarrow{K}(P, Q)$ and λ_{1} be the length of the first rou of P. Then the length of the longest unimodal subsequence in a is λ_{1}.

3 Proof of Theorem 1.5

In order to proof Theorem 1.5, we need to know how a sequence of consecutive terms in a behaves under the Kraśkiewicz insertion.

Theorem 3.1 Let $a=a_{1} a_{2} \cdots a_{m} \in R(w)$ and $a \stackrel{K}{\rightarrow}(P, Q)$ under Kraśkiewicz insertion. If the subsequence $a_{j} a_{j+1} \cdots a_{l}$ of a is unimodal, then in Q the boxes with the entries $j, j+1, \cdots, l$ form a rim hook. Moreover, the way the entries appear in the rim hooks is as follows:

1. the entries $j, j+1, \cdots, k$ form a vertical strip where k is the entry in the leftmost and lowest box of the rim hook
2. these entries are increasing down the vertical strip
3. the entries $k+1, \cdots, l-1, l$ form a horizontal strip
4. these entries are increasing from left to right

Theorem 3.2 Let $a \stackrel{K}{\rightarrow}(P, Q)$. Let the boxes with entries $j, j+1, \cdots, l$ form a rim hook in Q satisfying the conditions listed in the previous theorem. Then the corresponding subsequence $a_{j} a_{j+1} \cdots a_{l}$ is a unimodal sequence.

These two theorems can be proved by a tedious process of checking all the possible cases of the insertion.
Proof of Theorem 1.5: We will show that

$$
2^{I_{0}(w)} G_{w}(x)=\sum_{R \in \operatorname{SDT}(w)} Q_{\mathrm{sh}(R)}(x)
$$

since $Q_{\lambda}=2^{l(\lambda)} P_{\lambda}$. Fix $w \in B_{n}$ and let $m=l(w)$. To achieve this, we generalize the idea of a-compatible sequence to include sequences with barred and unbarred numbers. Let $f=\left(f_{1}, f_{2}, \cdots, f_{m}\right)$ be a sequence where $f_{j} \in\{\overline{1}, 1, \overline{2}, 2, \cdots\}$. This is called a generalized sequence. We give the barred and unbarred numbers the linear order

$$
\overline{1}<1<\overline{2}<2<\cdots .
$$

We say that \boldsymbol{f} is \boldsymbol{a}-compatible if

1. $f_{1} \leq f_{2} \leq \cdots \leq f_{m}$
2. $f_{j}=f_{j+1}=\cdots=f_{k}=\bar{l}$ occurs only when $a_{j}>a_{j+1}>\cdots>a_{k}$
3. $f_{j}=f_{j+1}=\cdots=f_{k}=l$ occurs only when $a_{j}<a_{j+1}<\cdots<a_{k}$

Let $K^{\prime}(\boldsymbol{a})$ be the set of all \boldsymbol{a}-compatible generalized sequences. In what follows, \boldsymbol{i} will always be a sequence of unbarred numbers and f will denote a generalized sequence. Also, we will use $\left|f_{j}\right|$ to mean

$$
\left|f_{j}\right|=l \text { if } f_{j}=\bar{l} \text { or } f_{j}=l
$$

and

$$
|f|=\left(\left|f_{1}\right|,\left|f_{2}\right|, \cdots,\left|f_{m}\right|\right)
$$

It is not difficult to show that

$$
2^{l_{0}(w)} G_{w}(\boldsymbol{x})=\sum_{\boldsymbol{a} \in R(w)} \sum_{f \in K^{\prime}(\boldsymbol{a})} x_{\left|f_{1}\right|} x_{\left|f_{2}\right|} \cdots x_{\left|f_{m}\right|}
$$

Now, we will exhibit a bijection Φ from $\left\{(\boldsymbol{a}, \boldsymbol{f}): \boldsymbol{a} \in R(w), f \in K^{\prime}(\boldsymbol{a})\right\}$ to $\{(P, T): P \in \operatorname{SDT}(w), T$ a Q-semistandard Young tableau such that $\operatorname{sh}(T)=\operatorname{sh}(P)\}$.

Step 1: Apply Kraskiewicz insertion to a. Let $\boldsymbol{a} \xrightarrow{K}(P, Q)$. This P is the standard decomposition tableau we want.

Step 2: Take a Young diagram of the same shape as Q. We fill each box with $\left|f_{j}\right|$ when the corresponding box in Q has the entry j. Then the new tableau is weakly increasing along the columns and rows because

$$
j<k \Rightarrow\left|f_{j}\right| \leq\left|f_{k}\right|
$$

Step 3: For each constant subsequence, $f_{j} f_{j+1} \cdots f_{k}$ such that $\left|f_{j}\right|=\left|f_{j+1}\right|=\cdots=\left|f_{k}\right|=1$ with $\left|f_{j-1}\right|<\left|f_{j}\right|$ and $\left|f_{k}\right|<\left|f_{k+1}\right|$, we know that $a_{j} a_{j+1} \cdots a_{k}$ is unimodal. Let a_{h} be the smallest number in it. Furthermore, from Theorem 3.1 the entries $j, j+1, \cdots k$ form a rim hook in Q. Let g be the entry of the box in the lowest row and leftmost column among all the boxes in these rim hooks.

1. If f_{h} is unbarred, we add a bar to all the new entries from f_{j} to f_{g-1}.
2. If f_{h} is barred, we add a bar to all the new entries from f_{j} to f_{g}.

This will give us a Young tableau with barred and unbarred numbers. This will be our T. Clearly, $\operatorname{sh}(T)=$ $\operatorname{sh}(Q)=\operatorname{sh}(P)$. It can be verified that T is a Q-semistandard Young tableau.

Now for the inverse map. Given (P, T), we first construct Q.
Step 1: Take a Young diagram of the same shape as T. We fill all the boxes with distinct numbers $1,2, \cdots m$ as follows:

1. The entries in the Young diagram preserve the order of the entries in T.
2. For all the boxes in T with the same barred number, these form a vertical strip and we fill the corresponding boxes in an increasing order from top to bottom.
3. For all the boxes in T with the same unbarred number, these form a horizontal strip and we fill the corresponding boxes in an increasing order from left to right.

This will be our Q. It is clearly a standard shifted Young tableau with the same shape as P.
Step 2: \boldsymbol{a} is obtained from (P, Q) by the inverse Kraśkiewicz insertion. This is the reduced word that we want.

Step 3: To get f, remove all the bars in T and let $i=i_{1} i_{2} \cdots i_{m}$ be the content of this new tableau laid out in weakly increasing order. Fix a number l. We know that in T all the boxes with the entry l or l form a rim hook in T. The corresponding boxes in Q are filled with consecutive numbers $j, j+1, \cdots, k$. Also, they satisfy the hypothesis in Theorem 3.2. Hence, $a_{j} a_{j+1} \cdots a_{k}$ is a unimodal sequence with smallest number a_{h}. Now, let (I, J) be the coordinates of the lowest and leftmost boxes in the rim hook which has entry l or l.

1. If (I, J) has the entry \bar{l}, then we add bars to $i_{j}, i_{j+1}, \cdots, i_{h}$.
2. If (I, J) has the entry l, we add bars to $i_{j}, i_{j+1}, \cdots, i_{h-1}$.

This generalized sequence will be our f. By construction, it is a-compatible and $(a, f)=\Phi^{-1}(P, T)$. Hence, if we look at the associated monomials for generalized sequence and the Q-semistandard Young tableau, we see that they have to be equal. This gives

$$
\begin{aligned}
2^{l_{0}(w)} G_{w}(x) & =\sum_{a \in R(w)} \sum_{f \in K^{\prime}(a)} x_{\left|f_{1}\right| x_{\left|f_{2}\right|} \cdots x_{\left|f_{m}\right|}} \\
& =\sum_{P \in \operatorname{SDT}(w) \operatorname{sh}(T)=\operatorname{sh}(P)} x^{T} \\
& =\sum_{P \in \operatorname{SDT}(w)} Q_{\mathrm{sh}(P)}(x)
\end{aligned}
$$

Therefore

$$
G_{w}(x)=\sum_{R \in \operatorname{SDT}(w)} 2^{l(R)-l_{0}(w)} P_{\mathrm{sh}(R)}(x)
$$

Note that $l(R)>l_{0}(w)$ since every row of R can have at most one 0 . This shows that G_{w} is a nonnegative integer linear combination of Schur P-functions.
Example: SDT($\overline{3} 21)$ contains two standard decomposition tableaux,

Therefore,

$$
G_{\overline{3} 21}(x)=P_{(4)}(x)+2 P_{(3,1)}(x)
$$

4 Properties

In this section, we will describe some properties of Kraskiewicz insertion and how they relate to G_{w}.

1. Using Theorem 2.5, we are able to prove a result conjectured by Stembridge([15]).

Theorem 4.1 Let $w=w_{1} w_{2} \cdots w_{n-1} \bar{n}$ and $v=w_{1} w_{2} \cdots w_{n-1} n$. Then there is a bijection between $\mathrm{SDT}(w)$ and $\operatorname{SDT}(v)$ given by removing the top row of any $P \in \operatorname{SDT}(w)$. Therefore,

$$
G_{w}(x)=\sum_{R \in \operatorname{SDT}(v)} 2^{l(R)-1_{0}(v)} P_{(2 n-1, \operatorname{sh}(R))}(x)
$$

where $(2 n-1, \lambda)=\left(2 n-1, \lambda_{1}, \lambda_{2}, \cdots\right)$.
In particular, $G_{w_{B}}(x)=P_{(2 n-1,2 n-3, \cdots, 3,1)}(x)$ where $w_{B}=\overline{1} \overline{2} \cdots \bar{n}$ is the signed permutation of longest length in B_{n}.
2. Focusing on the insertion tableau of the Kraskiewicz insertion, we managed to show:

Theorem 4.2 Let P be a standard decomposition tableau and let $P \Downarrow$ be the tableau that is obtained when we delete the increasing parts of each row of P. Then, $P \Downarrow$ is a shifted tableau which is strictly decreasing in each row and in each top-left to bottom-right diagonal.
3. Using the above, we are able to get an analogous result on the length of the longest decreasing subsequence in \boldsymbol{a}.

Theorem 4.3 Let $\boldsymbol{a} \xrightarrow{K}(P, Q)$. Then the longest strictly decreasing subsequence in \boldsymbol{a} has length equal to the length of the decreasing part of the first row.

Theorem 4.4 Let $w=\bar{n} w_{2} w_{3} \cdots w_{n}$ and $v=w_{2} w_{3} \cdots w_{n} n$ be 2 elements of B_{n}. Also, let $\operatorname{SDT}_{n}(w)=$ $\left\{P \in \operatorname{SDT}(w):\left|P_{1}\right|=n\right\}$. Then, there exists an injection Φ from $\operatorname{SDT}_{n}(w)$ into $\operatorname{SDT}(v)$. Furthermore, if $\forall a \in R(v)$, the length of the longest unimodal subsequence in a is strictly less than n, then Φ is a bijection.

Using this, we are able to prove a result of Billey and Haiman that claims that every Schur P-function can be expressed as a B_{n} Stanley symmetric function. Here, \widehat{k} means omitting k.

Corollary 4.5 ([1, Proposition 3.14])
Let $w=\bar{\lambda}_{1} \bar{\lambda}_{2} \cdots \bar{\lambda}_{1} 123 \cdots \hat{\lambda}_{1} \cdots \hat{\lambda}_{1-1} \cdots \cdots \hat{\lambda}_{1} \cdots$ where $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)$ is a shifted shape. Then,

$$
G_{w}(x)=P_{\lambda}(x)
$$

4. We are also to give a combinatorial proof of the following:

Theorem 4.6 ([4, Corollary 8.1],[15]) Let $w \in S_{n}$, then

$$
G_{w}(x)=F_{w}(x / x)
$$

where $F_{w}(x)$ is the S_{n} Stanley symmetric function of w described in [5] and the roght-handside is the superfication of that function.

This shows a connection between the Edelman-Greene insertion and the Kraskiewicz insertion. Another connection is given by:

Theorem 4.7 Let $a \in S_{n}$. Suppose

$$
\boldsymbol{a} \xrightarrow{K}(P, Q)
$$

and let

$$
\boldsymbol{a} \xrightarrow{E G}(R, S)
$$

denote the Edelman-Greene insertion of a. Then S is shifted jeu de taqusn equivalent to Q.
For more information on the Edelman-Greene insertion, please refer to [3]. The shifted jeu de taquin operation is a shifted analogue of jeu de taquin. A description can be found in [16]. [12] and [6]
5. Another interesting result is that the Edelman-Greene insertion manifests itself as a special case of the Kraśkiewicz insertion. Let U be the unique standard decomposition tableau of $\bar{n} \cdots \overline{2} \overline{1}$. It has shape ($n, n-1, \cdots, 2,1$) and the i th row is $U_{i}=n-i n-i-1 \cdots 10$.

Theorem 4.8 Let $a \in S_{n}$. Then the Kraśkiewicz insertion of a into U is the same as the EdelmanGreene insertion of a in the following sense:

If we ignore U, then
(a) the recording tableau of the Kraśkiewicz insertion is the same as the recording tableau of the Edelman-Greene insertion, and
(b) the insertion tableau of the Kraśkiewicz insertion is just the insertion tableau of the EdelmanGreene insertion with $i-1$ subtracted from each box in the ith row.

Using this observation, we manage to prove a conjecture of Stembridge[15]. Let SDT $S_{S}\left(u^{\cdot}\right)$ denote the set of Edelman-Greene insertion tableaux for the reduced words of $w\left(\right.$ see [3]) and let $u_{s}=n \cdots 21$ be the permutation of longest length in S_{n}.

Theorem 4.9 Let $w \in S_{n}$. Denote \bar{w} as the element of B_{n} obtained from w by pulting a bar over all w_{i}. There exists a bijection Φ from $\operatorname{SDT}_{S}\left(w_{S} w\right)$ to $\operatorname{SDT}(\bar{w})$. Furthermore,

$$
G_{\bar{w}}(x)=\sum_{\tilde{P} \in \operatorname{SDT}_{s}\left(w_{s} w\right)} P_{\delta_{n}+s h(\dot{P})}(x)
$$

where $\delta_{n}=(n, n-1, \cdots, 2,1)$.
6. Most of the previous results come from properties of the insertion tableau of the Kraskiewicz insertion. The next few come from properties of the recording tableau.

Theorem 4.10 Let $a_{1} a_{2} \cdots a_{m} \xrightarrow{K}(P, Q)$ then

$$
\begin{array}{rll}
a_{2} \cdots a_{m} & \xrightarrow{K} \quad(R, \Delta(Q)) \\
a_{m} \cdots a_{2} a_{1} & \xrightarrow{K} & (S, \operatorname{ev}(Q)) \tag{2}
\end{array}
$$

Using the language in [7], $\Delta(Q)$ is the standard shifted Young tableau that is obtained by subtracting 1 from every box in $Q(1 \rightarrow \infty)$. A description of evacuation operation $\mathrm{ev}(Q)$ can be found in [7, Definition 8.1].
7. In [6], Haiman described the short promotion sequence which gives a bijection from the set of standard shifted Young tableau of shape $(2 n-1,2 n-3, \cdots, 3,1)$ to $R\left(w_{B}\right)$, the set of reduced words of the longest element in B_{n}. Using (1), we are able to show:

Theorem 4.11 Let $a \in R\left(w_{B}\right)$ and $a \xrightarrow{K}(P, Q)$. Define $\Psi(a)=Q$. Then Ψ is the inverse of \dot{p}.
8. We also attempted to answer the question as to when $\operatorname{SDT}(w)$ contains only one element. This corresponds to finding conditions as to when $G_{w}(x)=2^{l(\lambda)-l_{0}(w)} P_{\lambda}(x)$ where λ is the shape of the single standard decomposition tableau of w. We were able to get the following:

Theorem 4.12

If $w \in S_{n}$,
(a) $\operatorname{SDT}(w)$ contains only 1 element iff w is obtained by taking 2 consecutive segments in $12 \cdots n$ and switching them.
(b) $\operatorname{SDT}(\bar{w})$ contains only 1 element iff w is 3412-avoiding

If $w \in B_{n}$ is such that $w_{i}=i$ or $-i$, then $\operatorname{SDT}(w)$ contains 1 element.

There are a number of open problems in this area that we would like to explore.

1. Is there a theory of shifted balanced tableaux?
2. Is there an analogue of the jeu de taquin here?
3. What are the conditions for $2^{I_{0}(\omega)} G_{\omega}=Q_{\lambda / \mu}$?
4. Extend this theory to D_{n}.

We will end this abstract by remarking that the last problem is being worked on and there are some preliminary results.

References

[1] S. Billey, M. Haiman, "Schubert Polynomials for the Classical Groups", in preparation.
[2] S. Billey, W. Jockusch and R. P. Stanley, "Some Combinatorial Properties of Schubert Polynomials", Journal of Algebraic Combinatorics, 2, 345-374, 1993.
[3] P. Edelman and C. Greene, "Balanced Tableau", Advances in Math., 63, (1987), 42-99.
[4] S. Fomin and A. Kirillov, "Combinatorial B_{n}-analogues of Schubert polynomials", manuscript.
[5] S. Fomin and R. P. Stanley, "Schubert polynomials and the nilCoxeter algebra", Advances in Math., to appear, see also Report No. 18 (1991/92), Instıtut Mittag-Leffler, 1992.
[6] M. Haiman, "Dual Equivalence with applications, including a conjecture of Procter", Discrete Mathematics, 99, (1992), 79-113.
[7] M. Haimañ, "On Mixed Insertion, Symmetry, and Shifted Young Tableaux", Journal of Combinatorial Theory, Series A, 50, 196-225, 1989.
[8] J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, 1992.
[9] W. Kraśkiewicz, "Reduced decompositions in hyperoctahedral groups", C. R. Acad. Scı. Parzs. Serzc I, 309, (1989), 903-907.
[10] I. MacDonald, Hall Polynomials and Symmetric functions, Oxford University Press. Oxford. 1979
[11] I. MacDonald, Notes on Schubert Polynomials, Laboratoire de Combinatoire et d'Informatique Mathématique(LACIM), Université du Québec à Montréal, Montréal, 1991.
[12] B. E. Sagan, "Shifted Tableaux, Schur Q-functions aṇd a conjecture of R. Stanley", Journal of Combinatorial Theory, Series A, 45, 62-103, 1987.
[13] B. E. Sagan, The Symmetric Group, Representations, Combinatorial Algorithms, and Symmetric Functions, Wadsworth, 1991.
[14] R. P. Stanley, "On the Number of Reduced decompositions of Elements of Coxeter Groups". Europ. J. Combinatorics, 5, 359-372, 1984.
[15] J. Stembridge, Private Communication.
[16] D. Worley, A Theory of Shifted Young Tableaux, MIT Thesis, 1984.

