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Abstract

Let k ^ 1 be an odd integer, t == L A \' anc^ <] t>e a. prime power. We construct

a bipartite, g-regular, edge-transitive graph CD(fc, g) of order V ^ 2g and girth

g ^ fc + 5. if e is the the number of edges of CD{k, q), then C = ft(v +*-t+i ). These
graphs provide the best known asyinptotic lower bound for the greatest nuinber of edges in
graphs of order V and girth at least g', gf ̂  5, ^ 7^ 11, 12. For g ^ 24, this represents a
slight improvement on bounds established by Margulis and Lubotzky, Phillips, Sarnak; for
5^g^ 23, g ^ 11, 12, it improves on or ties existing bounds.

Soil A" > 1 un entier impair, t == [ ^' J, et q une puissance d'un nombre premier. On
construit un graphe (^LI(K, q) qui est bi-parti, ̂ -regulier, transitif par rapport aux aretes,

d'ordre et de longueur minimale de cycles respectivement V ^ 2,q et g ^ k-{-5. S'l

6 est Ie nombre d'aretes de CD(k, q), alors £ = ^l(v k-t+l y Qes graphes fournissent
la meilleure borne inferieure asyinptotique qu on connaisse pour Ie nonibre inaxiinal d'aretes

dans un graphe dont 1'ordre est V et la longueur minimale d'un cycle est ̂ i5r ^ 5, ^ ^
11, 12. Pour g ^ 24, ce resultat constitue une legere amelioration des bornes etablies par
Margulis et Lubotzky, Phillips, Sarnak; pour 5 ^ ^ < 23, 5^11, 12, ce resultat est au
mains aussi bon que des bornes deja connues.

^ This research was partially supported by NSF grant DMS-9115473.
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1. Introduction

The missing definitions of graph-theoretical concepts which appear in this paper can
be found in [6]. All graphs we consider are simple, i. e. undirected, without loops and
multiple edges. Let V{G) and E(G) denote the set of vertices and the set of edges of G,
respectively. |V(G)| = v is called the order of G, and |£'(C?)| = e is called the size of G. If G
contains a cycle, then the girth of G, denoted by g = g(G), is the length of a shortest cycle
in G. Some examples of graphs with large girth which satisfy some additioned conditions
have been known to be hard to construct and have turned out to be useful in different

problems in extremal graph theory, in studies of graphs with a high degree of symmetry,
and in the design of communication networks. There are many references on each of these
topics. Here we mention just a few main books and survey papers which also contain

extensive bibliographies. For extremal graph theory, see [6, 26]; for graphs with a high
degree of symmetry, see [8, 12]; for communication networks, see [2, 9].

In this paper we present a new infinite series of regular bipartite graphs with cdgc-
transit! ve automorphism group and large girth. More precisely, for each odd integcr ^ ^ 1
and any prime power q, we construct a bipartite, (^-regular, edge-transitive graph CD(k, q)
of order at most 2qk~^-^^+l and girth at least k -+- 5.

Below we explain why these graphs are of interest.

1. Let J~ be a. family of graphs. By ex(v, J~) we denote the greatest number of edges ill
;i graph on v vertices which contains no subgraph isomorphic to a graph from ̂ ~. Let Cn dc-
iiofcc the cycle of length n ^ 3. It is known (see [6, 7, 10]) that all graphs of order v witli inorc
than 90^-ul+T edges necessarily contain a 2^-cycle. Therefore ex(v, {C"3, C4, . . . , 211-}) <
90^-ul+T. For a lower bound we know that ei(v, { 3,  4, . . ., Cn}) = n(ul+';^). The
latter result follows from a theorem proved implicitly by Erdos (see [26]) and the proof is
nonconstructive. As is mentioned in [26], it is unlikely that this lower bound is sharp, and
several constructions support this remark for arbitrary n. For the best lower bounds oil

ci(i;, {C'3, C4, ---, C2, +i}), l^s^ 10, see [1, 13-17, 20, 26, 31, 33, 34]. For 5 ^ 11 and an
infinite sequence of values of u, the best asymptotic lower bound ex(v, {C'3, C'4, - . . , C'2, +i})
Q(ul+37T3) is provided by the family of Ramanujan graphs (see below).

Graphs CD(k, q) show that for an infinite sequence of values of v,

e3;(y, {C'3, C'4, ---, C'2, +i})=n(^l+^^),

wlicrc e =0 if5 is odd, and e= 1 ifs is even. To our knowledge, this is the best known
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asymptotic lower bound for all s, s>. 2, s ^5. For s = 5 a. better bound ^(ul+1/5) is
given by the regular generalized hexagon.

2. Let {(?, }, z ^ l, be a family of graphs such that each G, is a r-regular graph of
increasing order u. and girth g,. Following Biggs [3] we say that {G, } is a family of graphs
with large girth if

9i ̂ 7logr-i(y«)

for some constant 7. It is well known (e. g. see [6]) that 7 < 2, but no family has been
found for which 7=2. For many years the only significant results in this direction were the
theorems of Erdos and Sachs and its improvements by Sauer, Walther, and others (see p.

107 in [6] for more details and references), who, using nonconstructive methods, proved the
existence of infinite families with 7=1. The first explicit examples of families with large

girth were given by Margulis [21] with 7 » 0.44 for some infinite families with arbitrary
large valency, and 7 % 0. 83 for an infinite family of graphs of valency 4. The constructions
were Cayley graphs of SL-i(Zp') with respect to special sets of generators. Imrich [11] was
able to improve the result for an arbitrary large valency, 7 » 0. 48, and to produce a family
of cubic graphs (valency 3) with 7 w 0. 96. In [5] a family of geometrically defined cubic
graphs, so called sextet graphs, was introduced by Biggs and Hoare. They conjectured that
fclicse graphs have large girth. Weiss [32] proved the conjecture by showing that for the
scxtct graphs (or their double cover) 7 ^ 4/3. Then, independently, Margulis [22, 23, 24]
and Lubotzky, Phillips and Sarnak [18, 19, 25] came up with similar examples of graphs
with 7 > 4/3 and arbitrary large valency (they turned out to be so-called Ramanujan
grnplis). In [4], Diggs and Boshier showed that 7 is exactly 4/3 for the graphs from [19].
Tlicsc arc Cayley graphs of the group PGL^Zq) with respect to a set ofp+ 1 generators,
wlierc p, 17 are distinct primes congruent to 1 mod 4 with the Legendre symbol (^-) = -1.

In [14], Lazebnik and Ustimenko constructed the family of graphs D{k, q) wliich give
explicit examples of graphs with arbitrary large valency and 7 ^ \ogy(q - 1). Tlicir
definition (see Section 2) and analysis are basically elementary. The construction was
motivated by results on embeddings of Chevalley group geometries in their corresponding
Lie algebras, and on the notion of blow-up of a graph ([13, 27-30]) . In [17], Lazcbnik,
Ustimenko and Woldar showed that 7 = log (<7-1) for infinitely many values of <y. Recently
tlicy discovered, with the aid of A. Schliep, that for k >^ Q graphs D(k, q) arc disconnected,
;m(i, in fact, the number of connected components of these graphs grows exponentially

with k. The main part of this paper is devoted to the analysis of these components. As
they are all isomorphic for fixed k and q, we denote any one of them by CD{k, q}. It will
immediately follow that 7 ^ 4/3logg(<7 - 1) for the family of graphs CD(k, q).
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2. The family D{k, q)

In this section we describe the graphs D(k, q) and mention some of their properties.
The reader is referred to 14 for additional information.

Let g be a prime power, ajid let P and L be two copies of the countably infinite
dimensional vector space V over GF(q). Elements of P will be cedled points and those of
L lines. In order to distinguish points from lines we introduce the use of parentheses and
brackets: If a; 6 V, then (a;) 6 P and [x]   L. It will also be advantageous to adopt the
notation for coordinates of points and lines introduced in [14]:

(?) = (Pl iPll) Pl2, P21, P22»P22i P23, . . . , P«ii Pit»Pi, »+l < ?.'+!,n . . . )>

[^] = [/1, , 11, ,12^21, ^22, ̂ 22> ̂ 23, ... ̂ u', ̂ ,, /i, «+l i ^i+l, n . . . ).

We now define an incidence structure (P, L, J) as follows. We say point (p) is incident

to line [/], and we write (p)I[l}, if the following relations on their coordinates hold:
/ii -Pii = hp\

, 12 - Pl2 = ^llPl

hi -P2i = /iPii

la-Pii=hpi-i, i (2. 1)

/,.--p.-i = /«,. -lpl
^«, i+l -Pt, i+l = ^"'Pl

,1+1, 1 -pt +1, 1 
= /lptl

(The Itist four relations arc defined for i ^ 2. ) These incidence relations for (P, L, 7)

liccomc adjacency relations for a related bipartitc graph. We speak now of the incidence

fjrapfi of (P, L, J), which has vcrtcx set PU L and edge set consisting of all pairs {(p), [/]}
for which (p)I[l\.

To facilitate notation in future results, it will be convenient for us to define po, -i =

P-1, 0 = /0, -1 = Pl, 0 = /o, i = 0, po,o = ,0, 0 = -li Po,0 
== ^0, 0 

= ^ PO, I = Pl, ,1, 0 = /1,

/' = , 11, p' = pl. l, and to rewrite (2. 1) in the form :

la -pa = /i pi-1,1

/, « -Pii = /i, >-lPl
/«, i+i-P«, »+i =/"Pi (2-2)

/i+l. i -PI+I, » 
= hp,i

for 2=0, 1, 2,...
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Notice that for i = 0, the four conditions (2. 2) are satisfied by every point and line, and,
for i = 1, the first two equations coincide and give /i i - pi j = lip\.

For each positive integer A; ̂  2 we obtain an incidence structure (Pk, Lk, Ik) as follows.
First, Pfc and Lk are obtained from P and L, respectively, by simply projecting each vector
onto its k initial coordinates. Incidence Ik is then defined by imposing the first k-1
incidence relations and ignoring all others. For fixed g, the incidence graph corresponding
to the structure (Pk, Lk, Ik) is denoted by D(k, q). It is convenient to define P(l, g) to
be equal to Z5(2, g). The properties of graphs D[k, q) with which we are concerned are
presented in the following

Proposition 2. 1 Let q be a prime power, and fc ̂  1. Then

(i) D(k, q) is a q-regular bipartite graph, of order 2q (2q2 for k = 1);

(ii) the automoTphism group Aut(D(k, q)) is transitive on points, lines, and edges;

(in) for odd k, g(D{k, q)) >^ k + 5;

(iv) for odd k and any prime power q = 1 (mod k^5-), g(D(k, q)) = k +5. .

Proofs of parts (i), (ii), (iii) can be found in [14]; that of part (iv) in [17].

3. The family CD{k, q)

"There is a crack in everyllmig.
That's how the light gets in."
- Leonard Colicn: Antlicm.

It tiirns out that for k ^ 6, graphs D(k, q) are disconnected! Let Nk, q be the number of
connected components of D{k, q).

Lemma 3. 1 Let k ^ 1, and let t = [kf2 \. Then Nk, y ^ 9<-1.

Proof. For k = 1 the statement is obvious, so we assume that k > 2. Let u =

(ui, uii,... , U((,... ) be a vertex of D(k, q); It does not matter whether 11 is a line or a
point. For every r, 2^r ^<, let

r

Or = Qr(u) = ^(u,. U'^_, ̂ _, - U,,, +l Ur_,, r_, _i ),
i=0
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and a = a(u) = (02, 03,..., a(). Let u be a vertex of D(k, q) adjacent to u. We claim that
a(u) == a(u). Clearly we may assume that u is a point and u is a line adjacent to u, say
u = (p) and u = [^]. In the following transformations we assume that /-i, _2 = /-i, -i =
/_i j = /_i o = 0; the terms whose indices are out of range are multiplied by zeros,
and therefore their appearence does not create a problem. Since (p) and [/] are adjacent,
conditions (2. 2) give:

ar(P) = ^(pi«P'r-,, r-«-P<, t+lPr-., r-. -l) =
i=0

^(/,. - /i(/, _i,, -pl/, -l,, -l))(^_.. ^_, -pl^-,, r-;-l) -
i=0

?i, «+1 -Pl/«i)(/r->, r-»-l - ^(/r-i-l. r-. -l - Pl/r-«-I ,r-«-2 )) =
i=0

(/, »/,-,, r-, -/,, i+l/r->, r-i-l) + /1 ^> ̂ (^, )+1/r-, -l ,r-, -l -/«-1 ,i/r-i, r-t ) +\~^/> 11
L-j
t=0 t=0

pl/l^(/, _l,, _l^_,,, _. -/,. ^_, _l,, _, _l) + pl ̂ (/,, (/. -,, r-, -l -,. -,., -. -1)) +
i=0 i=0

pl/1 ^ (/, _^, /r_, ^_, _i-/;^, -)-i/r_i_i, r_, _2)+Pl/l ^ (/ii/r-i-l, r-i-2-/i-l, i-l/r-i, r-t'-l)
1=0 1=0

^(/,, ^_,,, _, -/,,, +i^-,, r-, -i)+/i -0+pi/i . 0+pi -0+pi/i -0+pi2/i . 0=a, (/).
1=0

Since Qr(u) == Or(v) for every r, 2^r ^ (, we obtain that a(u) = a(u) for any pair of
adjacent vertices of D{k, q). This implies that for any connected component C of D(k, q)
and any vertices . r, y of C, a(x') = a(y). Thus we may define a(C) = a(u), where u is u
vcrtcx of the connected component C.
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Let us show that for every vector c' = (02, 03,... , G() £ (GF(g))t-l there exists a
component C of D(k, q) such that a(C') = ?. To do this, we just consider the following
point (p) in D{k, g) :

(p)=(0, 0, 0, 0, 0, p2 2, 0, 0, 0, p3 3,..., 0, 0, 0, p«,... ),

where p'^ = -c. for all i, 2 <, i ^. t. Obviously, a(p) = c', and taking C to be the
connected component of D(k, q) containing (p), we obtain a(C") = c>. Thus every ? e
(G'F(g))(-l is "realizable" by a component of D{k, q). Therefore Nk, g is at least as large
as|(G'F(g))(-l|=gt-1. .

Due to the trajisitivity of Au<(Z)(fc, $)) on the the set of points of jD(Jk, g), (Proposition
2. 1 (ii)), all connected components of D(k, q) are isomorphic graphs and we denote any of
them by CD(k, g}. We are ready to state the main result of this paper. Its proof is an
immediate application of Proposition 2. 1 and Lemma 3. 1.

Theorem 3. 2 Let k >, !, t = [-^2J, q be a prime power, Nk,q be the number of connected
components of D{k^q), and let CD{k, q) be a connected, component of D[k, q). Then

(i) CD(k, q)is a bipartite, connected, q-regular graph of order v = -^2- <, 2qk~t+l;

(ii) Aut(CD{k, q)) acts iransitively on points, lines, and edges of CD(k, q);

(rn) for odd k, the girth g(CD(k, q)) ̂  k+5, and, for q = 1 (mod ̂ -), g{CD(k, q)) = k+5.

(w) e = ^ = 2-l-T(^-., )Tvl+T, w/iere e is the size of CD{k,q). V

Corollary 3. 3 For s ^ 2, e2-(v, {Cs,  4, . . . , C'2, +i}) = ^(rl+3^TT), ^crc e =0 i/^ i
odd, and e = 1 ifs is even.

IS

Proof. Set 2s = k+3. Let v and e be the order and the size of the graph CD(k, q}. Tlicn
v ^ 2qk-i+l, ande=^(7^2-'-^TTul+-E-TTT. If 5 is odd, then k-t+l= ^, and,
\f s is even, k-t+l= 3sf7-.
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