A New Series of Dense Graphs of High Girth ${ }^{1}$

F. LAZEBNIK*
Department of Mathematical Sciences
University of Delaware, Newark, DE 19716, USA
V. A. USTIMENKO
Department of Mathematics and Mechanics
University of Kiev, Kiev 252127, Ukraine
and
A. J. WOLDAR
Department of Mathematical Sciences
Villanova University, Villanova, PA 19085, USA

Abstract

Let $k \geq 1$ be an odd integer, $t=\left\lfloor\frac{k+2}{4}\right\rfloor$, and q be a prime power. We construct a bipartite, q-regular, edge-transitive graph $C D(k, q)$ of order $v \leq 2 q^{k-t+1}$ and girth $g \geq k+5$. If e is the the number of edges of $C D(k, q)$, then $e=\bar{\Omega}\left(v^{1+\frac{1}{k-t+1}}\right)$. These graphs provide the best known asymptotic lower bound for the greatest number of edges in graphs of order v and girth at least $g, g \geq 5, g \neq 11,12$. For $g \geq 24$, this represents a slight improvement on bounds established by Margulis and Lubotzky, Phillips, Sarnak; for $5 \leq g \leq 23, g \neq 11,12$, it improves on or ties existing bounds.

Soit $k \geq 1$ un entier impair, $t=\left\lfloor\frac{k+2}{4}\right\rfloor$, et q une puissance d'un nombre premier. On construit un graphe $C D(k, q)$ qui est bi-parti, q-régulier, transitif par rapport aux arêtes, d'ordre et de longueur minimale de cycles respectivement $v \leq 2 q^{k-t+1}$ et $g \geq k+5$. Si e est le nombre d'arêtes de $C D(k, q)$, alors $e=\Omega\left(v^{1+\frac{1}{k-t+1}}\right)$. Ces graphes fournissent la meilleure borne inférieure asymptotique qu'on connaisse pour le nombre maximal d'arêtes dans un graphe dont l'ordre est v et la longueur minimale d'un cycle est $g, g \geq 5, g \neq$ 11,12 . Pour $g \geq 24$, ce résultat constitue une légère amélioration des bornes établies par Margulis et Lubotzky, Phillips, Sarnak; pour $5 \leq g \leq 23, g \neq 11,12$, ce résultat est au moins aussi bon que des bornes déjà connues.

[^0]
1. Introduction

The missing definitions of graph-theoretical concepts which appear in this paper can be found in [6]. All graphs we consider are simple, i.e. undirected, without loops and multiple edges. Let $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of G, respectively. $|V(G)|=v$ is called the order of G, and $|E(G)|=e$ is called the size of G. If G contains a cycle, then the girth of G, denoted by $g=g(G)$, is the length of a shortest cycle in G. Some examples of graphs with large girth which satisfy some additional conditions have been known to be hard to construct and have turned out to be useful in different problems in extremal graph theory, in studies of graphs with a high degree of symmetry, and in the design of communication networks. There are many references on each of these topics. Here we mention just a few main books and survey papers which also contain extensive bibliographies. For extremal graph theory, see [6, 26]; for graphs with a high degree of symmetry, see [8,12]; for communication networks, see $[2,9]$.

In this paper we present a new infinite series of regular bipartite graphs with edgetransitive automorphism group and large girth. More precisely, for each odd integer $k \geq 1$ and any prime power q, we construct a bipartite, q-regular, edge-transitive graph $C D(k, q)$ of order at most $2 q^{k-\left\lfloor\frac{k+2}{4}\right\rfloor+1}$ and girth at least $k+5$.

Bclow we explain why these graphs are of interest.

1. Let \mathcal{F} be a family of graphs. By $e x(v, \mathcal{F})$ we denote the greatest number of edges in a graph on v vertices which contains no subgraph isomorphic to a graph from \mathcal{F}. Let C_{n} denote the cycle of length $n \geq 3$. It is known (see $[6,7,10]$) that all graphs of order v with more than $90 k v^{1+\frac{1}{k}}$ edges necessarily contain a $2 k$-cycle. Therefore ex $\left(v,\left\{C_{3}, C_{4}, \cdots, C_{2 k}\right\}\right) \leq$ $90 k v^{1+\frac{1}{k}}$. For a lower bound we know that $e x\left(v,\left\{C_{3}, C_{4}, \cdots, C_{n}\right\}\right)=\Omega\left(v^{1+\frac{1}{n-1}}\right)$. The latter result follows from a theorem proved implicitly by Erdös (see [26]) and the proof is nonconstructive. As is mentioned in [26], it is unlikely that this lower bound is sharp, and several constructions support this remark for arbitrary n. For the best lower bounds on $c x\left(v,\left\{C_{3}, C_{4}, \cdots, C_{2 s+1}\right\}\right), 1 \leq s \leq 10$, see $[1,13-17,20,26,31,33,34]$. For $s \geq 11$ and an infinite sequence of values of v, the best asymptotic lower bound $e x\left(v,\left\{C_{3}, C_{4}, \cdots, C_{2 s+1}\right\}\right)=$ $\Omega\left(v^{1+\frac{2}{30^{+}+3}}\right)$ is provided by the family of Ramanujan graphs (see below).

Graphs $C D(k, q)$ show that for an infinite sequence of values of v,

$$
e x\left(v,\left\{C_{3}, C_{4}, \cdots, C_{2 s+1}\right\}\right)=\Omega\left(v^{\left.1+\frac{2}{3 e^{-3+c}}\right)}\right)
$$

where $\epsilon=0$ if s is odd, and $\epsilon=1$ if s is even. To our knowledge, this is the best known
asymptotic lower bound for all $s, s \geq 2, s \neq 5$. For $s=5$ a better bound $\Omega\left(v^{1+1 / 5}\right)$ is given by the regular generalized hexagon.
2. Let $\left\{G_{i}\right\}, i \geq 1$, be a family of graphs such that each G_{i} is a r-regular graph of increasing order v_{i} and girth g_{i}. Following Biggs [3] we say that $\left\{G_{i}\right\}$ is a family of graphs with large girth if

$$
g_{i} \geq \gamma \log _{r-1}\left(v_{i}\right)
$$

for some constant γ. It is well known (e.g. see [6]) that $\gamma \leq 2$, but no family has been found for which $\gamma=2$. For many years the only significant results in this direction were the theorems of Erdős and Sachs and its improvements by Sauer, Walther, and others (see p. 107 in [6] for more details and references), who, using nonconstructive methods, proved the existence of infinite families with $\gamma=1$. The first explicit examples of families with large girth were given by Margulis [21] with $\gamma \approx 0.44$ for some infinite families with arbitrary large valency, and $\gamma \approx 0.83$ for an infinite family of graphs of valency 4 . The constructions were Cayley graphs of $S L_{2}\left(Z_{p}\right)$ with respect to special sets of generators. Imrich [11] was able to improve the result for an arbitrary large valency, $\gamma \approx 0.48$, and to produce a family of cubic graphs (valency 3) with $\gamma \approx 0.96$. In [5] a family of geometrically defined cubic graphs, so called sextet graphs, was introduced by Biggs and Hoare. They conjectured that these graphs have large girth. Weiss [32] proved the conjecture by showing that for the sextet graphs (or their double cover) $\gamma \geq 4 / 3$. Then, independently, Margulis [22, 23, 24] and Lubotzky, Phillips and Sarnak [18, 19, 25] came up with similar examples of graphs with $\gamma \geq 4 / 3$ and arbitrary large valency (they turned out to be so-called Ramanujan graphs). In [4], Biggs and Boshier showed that γ is exactly $4 / 3$ for the graphs from [10]. These are Cayley graphs of the group $P G L_{2}\left(Z_{q}\right)$ with respect to a set of $p+1$ generators, where p, q are distinct primes congruent to $1 \bmod 4$ with the Legendre symbol $\left(\frac{p}{q}\right)=-1$.

In [14], Lazebnik and Ustimenko constructed the family of graphs $D(k, q)$ which give cxplicit examples of graphs with arbitrary large valency and $\gamma \geq \log _{q}(q-1)$. Their definition (see Section 2) and analysis are basically elementary. The construction was motivated by results on embeddings of Chevalley group geometries in their corresponding: Lie algebras, and on the notion of blow-up of a graph ([13, 27-30]). In [17], Lazebnik, Ustimenko and Woldar showed that $\gamma=\log _{q}(q-1)$ for infinitely many values of q. Recently they discovered, with the aid of A. Schliep, that for $k \geq 6$ graphs $D(k, q)$ are disconnected, and, in fact, the number of connected components of these graphs grows exponentially with k. The main part of this paper is devoted to the analysis of these components. As they are all isomorphic for fixed k and q, we denote any one of them by $C D(k, q)$. It will immediately follow that $\gamma \geq 4 / 3 \log _{q}(q-1)$ for the family of graphs $C D(k, q)$.

2. The family $D(k, q)$

In this section we describe the graphs $D(k, q)$ and mention some of their properties. The reader is referred to [14] for additional information.

Let q be a prime power, and let P and L be two copies of the countably infinite dimensional vector space V over $G F(q)$. Elements of P will be called points and those of L lines. In order to distinguish points from lines we introduce the use of parentheses and brackets: If $x \in V$, then $(x) \in P$ and $[x] \in L$. It will also be advantageous to adopt the notation for coordinates of points and lines introduced in [14]:

$$
\begin{gathered}
(p)=\left(p_{1}, p_{11}, p_{12}, p_{21}, p_{22}, p_{22}^{\prime}, p_{23}, \ldots, p_{i i}, p_{i i}^{\prime}, p_{i, i+1}, p_{i+1, i}, \ldots\right) \\
{[l]=\left[l_{1}, l_{11}, l_{12}, l_{21}, l_{22}, l_{22}^{\prime}, l_{23}, \ldots, l_{i i}, l_{i i}^{\prime}, l_{i, i+1}, l_{i+1, i}, \ldots\right) .}
\end{gathered}
$$

We now define an incidence structure (P, L, I) as follows. We say point (p) is incident to line $[l]$, and we write $(p) \Gamma[l]$, if the following relations on their coordinates hold:

$$
\begin{align*}
& l_{11}-p_{11}=l_{1} p_{1} \\
& l_{12}-p_{12}=l_{11} p_{1} \\
& l_{21}-p_{21}=l_{1} p_{11} \\
& l_{i i}-p_{i i}=l_{1} p_{i-1, i} \tag{2.1}\\
& l_{i i}^{\prime}-p_{i i}^{\prime}=l_{i, i-1} p_{1} \\
& l_{i, i+1}-p_{i, i+1}=l_{i i} p_{1} \\
& l_{i+1, i}-p_{i+1, i}=l_{1} p_{i i}^{\prime}
\end{align*}
$$

(The last four relations are defined for $i \geq 2$.) These incidence relations for (P, L, I) become adjacency relations for a related bipartite graph. We speak now of the incidence graph of (P, L, I), which has vertex set $P \cup L$ and edge set consisting of all pairs $\{(p),[l]\}$ for which $(p) I[l]$.

To facilitate notation in future results, it will be convenient for us to define $p_{0,-1}=$ $p_{-1,0}=l_{0,-1}=p_{1,0}=l_{0,1}=0, p_{0,0}=l_{0,0}=-1, p_{0,0}^{\prime}=l_{0,0}^{\prime}=1, p_{0,1}=p_{1}, l_{1,0}=l_{1}$, $l_{1,1}^{\prime}=l_{1,1}, p_{1,1}^{\prime}=p_{1,1}$, and to rewrite (2.1) in the form :

$$
\begin{align*}
& l_{i i}-p_{i i}=l_{1} p_{i-1, i} \\
& l_{i i}^{\prime}-p_{i i}^{\prime}=l_{i, i-1} p_{1} \\
& l_{i, i+1}-p_{i, i+1}=l_{i i} p_{1} \tag{2.2}\\
& l_{i+1, i}-p_{i+1, i}=l_{1} p_{i i}^{\prime} \\
& \text { for } \quad i=0,1,2, \ldots
\end{align*}
$$

Notice that for $i=0$, the four conditions (2.2) are satisfied by every point and line, and, for $i=1$, the first two equations coincide and give $l_{1,1}-p_{1,1}=l_{1} p_{1}$.

For each positive integer $k \geq 2$ we obtain an incidence structure (P_{k}, L_{k}, I_{k}) as follows. First, P_{k} and L_{k} are obtained from P and L, respectively, by simply projecting each vector onto its k initial coordinates. Incidence I_{k} is then defined by imposing the first $k-1$ incidence relations and ignoring all others. For fixed q, the incidence graph corresponding to the structure $\left(P_{k}, L_{k}, I_{k}\right)$ is denoted by $D(k, q)$. It is convenient to define $D(1, q)$ to be equal to $D(2, q)$. The properties of graphs $D(k, q)$ with which we are concerned are presented in the following

Proposition 2.1 Let q be a prime power, and $k \geq 1$. Then
(i) $D(k, q)$ is a q-regular bipartite graph of order $2 q^{k}\left(2 q^{2}\right.$ for $\left.k=1\right)$;
(ii) the automorphism group $\operatorname{Aut}(D(k, q))$ is transitive on points, lines, and edges;
(iii) for odd $k, g(D(k, q)) \geq k+5$;
(iv) for odd k and any prime power $q \equiv 1\left(\bmod \frac{k+5}{2}\right), g(D(k, q))=k+5$.

Proofs of parts (i),(ii),(iii) can be found in [14]; that of part (iv) in [17].

3. The family $C D(k, q)$

"There is a crack in everything.
That's how the light gets in."

- Leonard Cohen: Anthem.

It turns out that for $k \geq 6$, graphs $D(k, q)$ are disconnected! Let $N_{k, q}$ be the number of connected components of $D(k, q)$.

Lemma 3.1 Let $k \geq 1$, and let $t=\left\lfloor\frac{k+2}{4}\right\rfloor$. Then $N_{k, q} \geq q^{t-1}$.

Proof. For $k=1$ the statement is obvious, so we assume that $k \geq 2$. Let $u=$ $\left(u_{1}, u_{11}, \ldots, u_{t t}^{\prime}, \ldots\right)$ be a vertex of $D(k, q)$; it does not matter whether u is a line or a point. For every $r, 2 \leq r \leq t$, let

$$
a_{r}=a_{r}(u)=\sum_{i=0}^{r}\left(u_{i i} u_{r-i, r-i}^{\prime}-u_{i, i+1} u_{r-i, r-i-1}\right),
$$

and $\vec{a}=\vec{a}(u)=\left(a_{2}, a_{3}, \ldots, a_{t}\right)$. Let v be a vertex of $D(k, q)$ adjacent to u. We claim that $\vec{a}(u)=\vec{a}(v)$. Clearly we may assume that u is a point and v is a line adjacent to u, say $u=(p)$ and $v=[l]$. In the following transformations we assume that $l_{-1,-2}=l_{-1,-1}=$ $l_{-1,-1}^{\prime}=l_{-1,0}=0$; the terms whose indices are out of range are multiplied by zeros, and therefore their appearence does not create a problem. Since (p) and $[l]$ are adjacent, conditions (2.2) give:

$$
\begin{gathered}
a_{r}(p)=\sum_{i=0}^{r}\left(p_{i i} p_{r-i, r-i}^{\prime}-p_{i, i+1} p_{r-i, r-i-1}\right)= \\
\sum_{i=0}^{r}\left(l_{i i}-l_{1}\left(l_{i-1, i}-p_{1} l_{i-1, i-1}\right)\right)\left(l_{r-i, r-i}^{\prime}-p_{1} l_{r-i, r-i-1}\right)- \\
\sum_{i=0}^{r}\left(l_{i, i+1}-p_{1} l_{i i}\right)\left(l_{r-i, r-i-1}-l_{1}\left(l_{r-i-1, r-i-1}^{\prime}-p_{1} l_{r-i-1, r-i-2}\right)\right)= \\
\sum_{i=0}^{r}\left(l_{i i} l_{r-i, r-i}^{\prime}-l_{i, i+1} l_{r-i, r-i-1}\right)+l_{1} \sum_{i=0}^{r}\left(l_{i, i+1} l_{r-i-1, r-i-1}^{\prime}-l_{i-1, i} l_{r-i, r-i}^{\prime}\right)+ \\
p_{1} l_{1} \sum_{i=0}^{r}\left(l_{i-1, i-1} l_{r-i, r-i}^{\prime}-l_{i i} l_{r-i-1, r-i-1}^{\prime}\right)+p_{1} \sum_{i=0}^{r}\left(l_{i i}\left(l_{r-i, r-i-1}-l_{r-i, r-i-1}\right)\right)+ \\
p_{1} l_{1} \sum_{i=0}^{r}\left(l_{i-1, i} l_{r-i, r-i-1}-l_{i, i+1} l_{r-i-1, r-i-2}\right)+p_{1}^{2} l_{1} \sum_{i=0}^{r}\left(l_{i i} l_{r-i-1, r-i-2}-l_{i-1, i-1} l_{r-i, r-i-1}\right)= \\
\sum_{i=0}^{r}\left(l_{i} l_{r-i, r-i}-l_{i, i+1} l_{r-i, r-i-1}\right)+l_{1} \cdot 0+p_{1} l_{1} \cdot 0+p_{1} \cdot 0+p_{1} l_{1} \cdot 0+p_{1}^{2} l_{1} \cdot 0=a_{r}(l) .
\end{gathered}
$$

Since $a_{r}(u)=a_{r}(v)$ for every $r, 2 \leq r \leq t$, we obtain that $\vec{a}(u)=\vec{a}(v)$ for any pair of adjacent vertices of $D(k, q)$. This implies that for any connected component C of $D(k, q)$ and any vertices x, y of $C, \vec{a}(x)=\vec{a}(y)$. Thus we may define $\vec{a}(C)=\vec{a}(v)$, where v is a vertex of the connected component C.

Let us show that for every vector $\vec{c}=\left(c_{2}, c_{3}, \ldots, c_{t}\right) \in(G F(q))^{t-1}$ there exists a component C of $D(k, q)$ such that $\vec{a}(C)=\vec{c}$. To do this, we just consider the following point (p) in $D(k, q)$:

$$
(p)=\left(0,0,0,0,0, p_{22}^{\prime}, 0,0,0, p_{33}^{\prime}, \ldots, 0,0,0, p_{t t}^{\prime}, \ldots\right)
$$

where $p_{i i}^{\prime}=-c_{i}$ for all $i, 2 \leq i \leq t$. Obviously, $\vec{a}(p)=\vec{c}$, and taking C to be the connected component of $D(k, q)$ containing (p), we obtain $\vec{a}(C)=\vec{c}$. Thus every $\vec{c} \in$ $(G F(q))^{t-1}$ is "realizable" by a component of $D(k, q)$. Therefore $N_{k, q}$ is at least as large as $\left|(G F(q))^{t-1}\right|=q^{t-1}$.

Due to the transitivity of $\operatorname{Aut}(D(k, q))$ on the the set of points of $D(k, q)$, (Proposition 2.1 (ii)), all connected components of $D(k, q)$ are isomorphic graphs and we denote any of them by $C D(k, q)$. We are ready to state the main result of this paper. Its proof is an immediate application of Proposition 2.1 and Lemma 3.1.

Theorem 3.2 Let $k \geq 1, t=\left\lfloor\frac{k+2}{4}\right\rfloor, q$ be a prime power, $N_{k, q}$ be the number of connectcd components of $D(k, q)$, and let $C D(k, q)$ be a connected component of $D(k, q)$. Then
(i) $C D(k, q)$ is a bipartite, connected, q-regular graph of order $v=\frac{2 q^{k}}{N_{k, q}} \leq 2 q^{k-t+1}$;
(ii) $\operatorname{Aut}(C D(k, q))$ acts transitively on points, lines, and edges of $C D(k, q)$;
(iii) for odd k, the girth $g(C D(k, q)) \geq k+5$, and, for $q \equiv 1\left(\bmod \frac{k+5}{2}\right), g(C D(k, q))=k+5$.
(iv) $e=\frac{v q}{2}=2^{-1-\frac{1}{k}}\left(N_{k, q}\right)^{\frac{1}{k}} v^{1+\frac{1}{k}}$, where e is the size of $C D(k, q)$.

Corollary 3.3 For $s \geq 2$, ex $\left(v,\left\{C_{3}, C_{4}, \cdots, C_{2 s+1}\right\}\right)=\Omega\left(v^{1+\frac{2}{30-3+c}}\right)$, wherc $\epsilon=0$ if s is odd, and $\epsilon=1$ if s is even.

Proof. Set $2 s=k+3$. Let v and e be the order and the size of the graph $C D(k, q)$. Then $v \leq 2 q^{k-t+1}$, and $e=\frac{1}{2} v q \geq 2^{-1-\frac{1}{k-i+1}} v^{1+\frac{1}{k-i+1}}$. If s is odd, then $k-t+1=\frac{3 s-3}{2}$, and, if s is even, $k-t+1=\frac{3 s-2}{2}$.

Acknowledgment

We are indebted to Alexander Schliep, whose computer programs gave us an insight into the structure of the graphs $D(k, q)$.

References.

[1]. C.T. Benson, Minimal regular graphs of girths eight and twelve, Canad. J. Math. 18 (1966), pp. 1091-1094.
[2]. F. Bien, Constructions of telephone networks by group representations, Notices Amer. Math. Soc. 36, 1989, pp. 5-22.
[3]. N.L. Biggs, Graphs with large girth, Ars Combinatoria, 25-C (1988) 73-80.
[4]. N.L. Biggs and A.G. Boshier, Note on the Girth of Ramanujan Graphs, Journal of Combinatorial Theory, Series B 49, pp. 190-194 (1990).
[5]. N.L. Biggs and M.J. Hoare, The sextet construction for cubic graphs, Combinatorica 3 (1983), 153-165.
[6]. B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[7]. J. A. Bondy and M. Simonovits, Cycles of even length in graphs, J. Combinatorial Theory (B), 16 (1974), pp. 97-105.
[8]. A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance - Regular Graphs. SpringerVerlag, Heidelberg-New York, 1989.
[9]. Fan K. Chung, Constructing random-like graphs. In "Probabilistic Combinatorics and its Applications." Lecture Notes, A.M.S.., San Francisco, 1991, pp. 1-24.
[10]. R.J. Faudree and M. Simonovits, On a class of degenerate extremal graph problems, Combinatorica 3 (1) (1983), pp. 83-93.
[11]. W. Imrich, Explicit construction of graphs without small cycles, Combinatorica 2 (1984) 53-59.
[12]. W.M. Kantor, Generalized polygons, SCABs and GABs, In Buildings and the Geometry of Diagrams, Proceedings Como 1984, Lecture Notes in Math. 1181, (L.A. Rosati, ed.), Springer Verlag, Berlin, 1986, pp. 79-158.
[13]. F. Lazebnik, V. A. Ustimenko, New examples of graphs without small cycles and of large size, to appear in European Journal of Combinatorics.
[14]. F. Lazebnik, V. Ustimenko, Explicit Construction of Graphs with an Arbitrary Large Girth and of Large Size, to appear in Applied Discrete Mathematics.
[15]. F. Lazebnik, V. A. Ustimenko, Some Algebraic Constructions of Dense Graphs of Large Girth and of Large Size, in "Expanding Graphs", edited by J. Friedman, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 10, AMS, 1993, pp. 75-93.
[16]. F. Lazebnik, V. A. Ustimenko and A. J. Woldar, Properties of Certain Families of 2k-Cycle Free Graphs, to appear in J. of Combinatorial Theory Series (B).
[17]. F. Lazebnik, V. A. Ustimenko and A. J. Woldar, Graphs of Prescribed Girth and Bi-Degree, submitted for publication
[18]. A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan Conjecture and Explicit Construction of Expanders, Proc. Stoc. 86 (1986), pp. 240-246
[19]. A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (3) (1988), pp. 261-277.
[20]. W. Mantel, Problem 28, soln. by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff, Wiskundige Opgaven 10 (1907), pp. 303-307.
[21]. G. A. Margulis, Explicit construction of graphs without short cycles and low density codes, Combinatorica, 2, 1982, pp. 71-78.
[22]. G. A. Margulis, Arithmetic groups and graphs without short cycles, 6 th Internat. Symp. on Information Theory, Tashkent 1984, Abstracts, Vol. 1, pp. 123-125 (in Russian).
[23]. G. A. Margulis, Some new constructions of low-density parity check codes. 3rd Internat. Seminar on Information Theory, convolution codes and multi-user communication, Sochi, 1987, pp. 275-279 (in Russian).
[24]. G. A. Margulis, Explicit group-theoretical construction of combinatorial schemes and their application to the design of expanders and concentrators, Journal of Problems of Information Transmission, 1988, pp. 39-46 (translation from Problemy Peredachi Informatsii, vol. 24, No. 1, pp. 51-60, January-March 1988).
[25]. P. Sarnak, Some applications of modular forms, Cambridge Tracts of Mathematics 99 (1090), Cambridge Univ. Press.
[20]. M. Simonovits, Extremal Graph Theory. In "Selected Topics in Graph Theory 2" edited by L.W. Beineke and R.J. Wilson, Academic Press, London, 1983, pp. 161200.
[27]. V. A. Ustimenko, Division algebras and Tits geometries, DAN USSR 296, No. 5 (1987), pp. 1061-1065. (Russian)
[28]. V. A. Ustimenko, A linear interpretation of the flag geometries of Chevalley groups, Kicv University, Ukrainskii Matematicheskii Zhurnal 42, No. 3 (March 1990), pp. 383-387; English transl.
[20]. V. A. Ustimenko, On the embeddings of some geometries and flag systems in Lie algebras and superalgebras, in Root systems, representation and geometries (1000), Kiev, IM AN UkrSSR, pp. 3-16.
[30]. V. A. Ustimenko, On some properties of geometries of the Chevalley groups and their generalizations, in Studies in Algebraic Theory of Combinatorial Objects, Moskow 1986, The English version will appear in Kluwer Publ., Dordresht, 1991, pp. 112-121.
[31]. V. A. Ustimenko and A. J. Woldar, An improvement on the Erdős bound for graphs of girth 16 , submitted for publication.
[32]. A. I. Weiss, Girth of bipartite sextet graphs, Combinatorica 4(2-3) (1984) pp. 241245.
[33]. R. Wenger, Extremal graphs with no C^{4}, C^{6},or C^{10} 's, J. of Combinatorial Theory, Series B 52, pp. 113-116 (1991)
[34]. A. J. Woldar and V. A. Ustimenko, An application of group theory to extremal graph theory, submitted for publication.

[^0]: ${ }^{1}$ This research was partially supported by NSF grant DMS-9115473.

