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Summary

Pictures are geometric realisations of the combinatorial objects counted in the Littlewood-Richardson rule;
they can be seen as a generalisation of various kinds of (skew) Young tableaux, and also of permuta.tions.
It was shown by Zelevinsky that the Robinson-Schensted correspondence can be generalised to operate on
(pairs of) pictures, while retaining its bijective nature; Fomin and Gieene have shown that the generalised
correspondence is independent of the particular choice of ordering squares of a diagram ("reading") that
is used in its definition. We extend these residts further in several ways. It is shown that to a large
extent the choice of a "reading" can be avoided altogether in defining the correspondence, repladng a total
ordering onZ x Z bya more natural partial ordering; thus the naturality result of Fomin and Greene is
obtained in a direct way. Furthermore it is shown that the well known connection between the Robinson-
Schensted algorithm and Schutzenberger algorithm implies that the latter also has a natural generalisation
to pictures, but in the latter case the naturality of the correspondence defined is not shared by the defining
procedure. That correspondence can be defined in another way, however, namely in terms of an operation
called glissement (jeu de taquin). This leads to our main result: glissement can be generaliscd to act on
pictures, and the definition is natural in that it requires no choice of a total ordering. Moreover, due to
tlie symmetry of the picture concept, generalised glissement can be applied in two ways (at both sides of a
picture), unlike ordinary glissement. It is well known that one of the tableaux computed by the Robinson-
Schensted algorithm can alternatively be found by means of glissement; in the generaiiscd version bolh
tableaux can. Finally it can be shown that both forms of glissement commute with each other.

R&ume

On appelle dessins les realisations geometriques des objets combinatoires enumeres par la regle dc Littlewood
et Richardson; on peut les percevoir comme generalisant plusieurs types de tableaux (gauches) de Young,
ainsi que les permutations. Zelevinsky a montre que la correspondence de Robinson et Schensted peut
elre etendue a des (couples de) dessins, tout en restanl bijective; Fomin et Greene ont montre que cette
gencraJisation de la correspondence est naturelle au sens qu'elle ne depend pas du choix de 1'ordre dcs
carres d'un diagramme ("lecture") qui est utilise dans sa definition. On poursuit 1c developement <le
ccs resultats de plusieurs manieres. On montre que Ie choix d'une "lecture" peat etrc en grandc mcsurc
cvite si au lieu d'un ordre totaJ sur Z x Z on considere un ordre partiel plus naturel; par consequent on
olilicnt uiie preuve dirccte du resullat de Fomin et Greene. De plus on montre que la relation d^a. connuc
ciitrc I'algorithme dc R-obinson et Schensted et 1'algorithme de Schutzenberger entraine une gcncralisation
n.iturcllc de 1'aJgorithme de Schutzenberger au cadre des dessins; mais la definition de la correspondence
ne jouit pas de la meme propriete naturelle que dans Ie cas de Robinson-Schensted. Toutefois, cette
correspondence peut etre definie aussi en termes d'une operation appcllee glissement (jeu de taquin). On
arrive ainsi au resultat principal de ec papier: 1'operation de glissement peut etre etendue aux dessins et sa
definition est naturelle au sens qu'elle n'exige pas de choix d'un ordre total. De plus, grace a la symetrie de
la notion de dessin, 1'operation de glissement generalise peat s'appliquer sous deux formes (des deux coles
J'lin dessin), ce qui n'est pas Ie cas pour Ie glissement habituel. On connait deja 1c fait qu'un des tableaux
calcules par 1'algorithme de Robinson et Schensted peut etre construit egzdement en utilisant ['operation
de glissement; la version generalisee permet la construction des deux tableaux. On conclut en remarquant
qi ie lcs deux formes d'application du glissement generalise commutent.

§1. Introduction.
A picture between skew diagrams is a bijection of their squares satisfying certain conditions. Although the
definition appears to be artificial, the concept is an important one in the theory of the symmetric group,
and it provides a unifying generalisation of concepts like Young tableaux of various kinds, skew tableaux,
permutations, and Littlewood-Richardson fillings. The importance of the general notion of picture was
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indicated in [Zel], where it was shown that the number of pictures between any pair of skew diagrams
equals the intertwining number of the corresponding representations of the symmetric group. This result
contains the Littlewood-Richardson rule as a special case; it is proved by reducing to that case by means of
an algorithm that generalises the Robinson-Schensted algorithm from permutations to (arbitrary) pictures.
The definition of pictures used in [Zel] is more symmetric than the original one in [JP], yet its use of a
particular total ordering '^^' on N xN (which also appears in the traditional formulation of the Littlewood-
Richardson rule) seems to be somewhat artificial. This total ordering is used to view general pictures just as
permutations, and it is in this way that the generalised Robinson-Schensted correspondence is obtained; this
slightly obscures the significance of the pictures themselves. In [FG] it is shown that this total ordering can
be replaced in the definition of pictures by a partial ordering '^^', which is just the natural partial ordering
rotated a quarter turn. Moreover, it is shown that in the definition of the geaeralised Robinson-Schensted
correspondence the use of'<j' is not essential: the same result will be obtained if instead of this ordering
one uses any other total ordering extending '</', showing that the correspondence is more "natural" than
it woiild otherwise appear to be.

In this paper we take this approach a step further. We show that the insertion procedure ofgencralised
Robinson-Schensted algorithm (and its inverse) can be defined directly in terms of pictures (i.e., witliout
reducing them to permutations first), using the partial ordering '^^-'. This leads to a simpler and more direct
proof of the naturality result in [FG]. The connection with the classical Robinson-Schensted correspondence
is still preserved via the choice of a total ordering. Thus we can employ known properties of the Robinson-
Schensted correspondence, and its relation to the Schiitzenberger algorithm, an involutory operation on
Yoiing tableaux defined by "deflating" the original tableau by repeated use of a specific procedure while
biiilding up the resulting tableau (see [Schiil], [vLee]). This allows us to deduce that that operation can also
be extended to pictures, and is natural in the same sense as the Robinson-Schensted correspondence is. The
gciicralised Schiitzenberger correspondence, in combination with the Robinson-Schensted correspondence,
enables the definition of a (non-obvious) bijection between the sets of pictures with given domain and image
and those with the transposed domain and image; these sets were already known to have the same cardinality
by the transposition symmetry of the character theory of the symmetric group.

Contrary to the insertion procedure of the Robinson-Schensted algorithm, it is easily seen that. tlie
deflation procedure of the Schiitzenberger algorithm cannot be defined directly in terms of the partial ordcr-
ing '^^' only. On the other hand, Schiitzenberger has shown in [Schii2] that this involution can equivalently
be obtained by a different, non-determlnistic construction, called glissement (also termed jeu de taquin).
We show that this construction can be directly generalised to operate on pictures instead of skew tableaux,
iising only '<^'. In fact it can be applied equally well on both sides of a picture (domain and image), and
tlius becomes a more symmetric and powerful operation than it already was. The existence of this procedure
not only proves the naturality of the Schiitzenberger correspondence for pictures in a direct way, it can also
t)c iiscd as an alternative definition of the Robinson-Schensted correspond for pictures (by a direct extension
of t. ho method of [Schii2]). Here the two "tableaux" associated to a picture by the Robinson-Schciistccl
correspond arise quite naturally from the two ways of applying glissement. Finally it is shown that these
t\vn forms of glissemcnl for pictures commute with each other; as a consequence the bijcction tl>at traiis-
|)HSCS domain and iinage of a picture commutes with all the operations given here, despite its complicalctl
flcfiiiition.

§2. Pictures.

Define two partial orderings '^^' and '^^' on Zx Z by

(the natural ordering), and

(iJ)^(i'J')

(', J')^ ('", /)

»<t'Aj$J"

' > '' A J ^ /

(a transverse ordering). A skew diagram ^ is a finite subset of Z x Z that is convex with respect to (lie
iiatural ordering, i.e., if .c, 2-   X and x <^y <\ z then y   \; denote the set of all skew diagrams by 6'. The
elements of Z x Z are usually depicted as squares, and we shall let the first coordinate increase downwards
and the second increase to the right, like matrix indices; with this convention the arrows attached to the '^'
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signs point towards of the smaller elements (like the '<' sign itself). Here is a typical skew diagram:

F

Let V denote its subset of Young diagrams, i.e., of finite order ideals for '^^' in N x N (these correspond
bijectively to partitions); the non-empty Young diagrams are just the skew diagrams that, viewed as poset
by the natural ordering, contain the origin as their minunal element (upper left corner). For each /i, i/   75
with /i C i/ the set-theoretic difference r \p is a skew diagram, and if a skew diagram is contained in N x N
it can always be written in this form, not necessarily uniquely.

2.1. Definition. Let x, ^>   S and /:x -^ V' a bijection; f is called a. picture if it defines a morphism of
partia/Jy ordered sets (^, <^) -»(V", ̂ ^) and if at the same time /-l defines a morpAism (^>, ̂ ^) -* (^, ̂ ^).

Note that, despite the use of the term morphism, a composition of two pictures is not a picture, because
of the different orderings used; because the ordering on each of ̂  and ̂  switches between the requirements
for / and /-1, we cannot speak of pictures as isomorphisms in any sense either. One way of displaying
pictures is to draw its domain and image skew diagrams, and to label each point and its image with a unique
letter. Here is an example of a picture displayed in this way.

£j
V-

e | c

Let Pic(^, V>) denote the set of all pictures from x to ̂ . It is immediately clear from the definition that if/
is a picture, then so is /~1, which provides a natural bijection between Pic(x, V)) and Pic(V', ^). Applying a
translation to ̂ - or i/> can obviously be matched by corresponding changes to pictures from \ to ip, so we may
consider skew diagrams up to translations when pictures are concerned (in fact the picture displayed already
gives no indication of its absolute position). The set S is closed under the operations of transposition (given
by (i, j) ̂  (iJY = (j, i)) and central symmetry (given by (»', ;') .-» -(», ;") = (-«, -j))- By composition with
these reflections one can easily show that P'ic(x, ̂ ) is naturally in bijection with Pic(x', -^'), Pic(-^', ̂ '),
and Pic(-^-, -^). Here are the results of applying these symmetries to the picture displayed above.

a\d / I/
d\a

c I e

'l'lior<' is no equally obvious bijection between Pic(,\, ^) and Pic(\', ^t), but nevertheless a bijection l)cluct;n
t. licse sets will be constnicted below. These operations generate all symmetrics of the set of pictures one
roiild liope for, since already with \\\ = |0| = 2 one finds examples for which |Pic(?c, V')| ̂  \P'\c(\, ^')\.

Tliere are other ways of representing pictures than shown above. The row encoding (respectively column
ciicoding) of a picture /:>;-» V< is the skew diagram \ filled with numbers, by filling each square s G ,y with
tlic row (respectively column) coordinate of its image /(s). For instance, for the picture show above these
are

respectively

assuming that ip lies in Nx N, as close to the origin as possible. The set of squares witli one same entry in tlie
row encoding of / constitute the image under /-1 ofarowof^, and since that row is totally ordered by '^^
the morphism property of/"1 determines the way in which it is mapped to its image uniquely; tlic sninc
liolds for the column encoding. Therefore, if the image diagram rf> is known, either the row or the column
encoding fixes a picture completely. The morphism property of / implies that in any row encoding the rows
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are weakly decreasing and the columns strictly decreasing, while in any column encoding rows are strictly
increasing and columns weakly increasing; the definition of pictures poses some less obvious conditions in
addition to these.

However, by selecting particular skew diagrams for x and ̂  these conditions simplify, and in this way we
can get various kind of combinatorial objects as special cases of pictures. For instance, ifi/i is an anti-chain for
'^^'(i. e., no two distinct squares are comparable), then the morphism condition for /-l is trivially satisfied,
and similarly for x and /. Hence if both x and ̂  are anti-chains for '^', then pictures are just arbitrary
bijections, or via column encoding, permutations. If only ^ is an anti-chain we similarly get the notion of
a skew tableau, and if moreover x ls a Young diagram, of a (standard) Young tableau. If we interchange ^
and ̂ », then a Young diagram will be represented by the anti-chain x filled with numbers such that, when
read from bottom left to top right, they form a "lattice permutation" or mot de Ysim&noucbi. If we relax
the condition of being an anti-chain to having at most one square in each row, then we obtain generalised
Young tableaiuc in the sense of[Knl], and the generalised permutatioas of that paper are obtained by taking
such skew diagrams at both ends of the picture.

The picture condition can be made more explicit by making a table of allowed relative positions of
images. To an ordered pair of distinct points in Zx Z we associate one of eight possible relative positions,
by determining for both their coordinates whether that of the first point is less than, equal to, or greater
tlian that of the second; these positions can be indicated by the eight compass directions. The following
table expresses the allowed combinations of the relative position of a pair of points and of its image under a
picture.

/

\

/

M

\ \ /^

The following proposition, which is essentially equivalent to Lemma 3. 4 of [FG], states that pictures caii
be characterised by a condition that is at first glance weaker than the definition we gave.

2. 2. Proposition. Let /: x -> V" be a bijection between two skew diagrsmns, and assume that for all pairs
a:i!/   X the following two conditions hold:
(i) we do not simultaneously have x <^ y and f(y) </ f{x),
(ii) we do not sj'mu/taneous/y have f(x) <^ f(y) and y </- x.
T/icn / is a. picture.

The main practical use of this proposition is that it allows us to replace the ordering '^^' in the
definition of pictures by any stronger ordering, for instance by a total one. In particular we may use an
ordering '<r' by rows, where the order among the rows is reversed:

(ij) ̂ r ('"', /) <==> ' > '" V (i = i' A J ^ ;")
(tliis is llic reverse ordering of '<, j' of [Zel], we have chosen our traiisverse ordcrings opposite respect lo
ihose of [Zcl] and [FG] since this works out better in connection with the Robinson-Schensted atgoriltim).
When we replace '^^. ' by '^r' in the definition of pictures, and use column encoding of pictures, we arrive
at a combinatorial concept that is very close to the fillings of (skew) diagrams occurring in the Littlewood-
Richardson rule. In fact the coefficient gv), computed by the Littlewood-Richardson rule is |Pic(t/\ A, ^)|,
which can be shown to be equal to |Pic(AU^, i/)|, where A y ^ is the skew diagram built from A and /^ as
follows:
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This means that for pairs of skew diagrams of the form ^ = Atelp, V) = */, the number |Pic(^, V>)| is equal to
the inner product ({\}, {^>}} of the corresponding symmetric group representations. It is shown in the next
section (following [Zel]) that this remains true for arbitrary pairs of skew diagrams.

§3. The Robinson-Schensted algorithm for pictures.
The following result is due to Zelevinsky ([Zel], Theorem 2):

3. 1. Theorem. For &ll\, ^eS there is a n&turaJ bijectioa Pic(x, ̂ ) ̂  UAST' pic(A> V') x pic(x, A).

In the context of [Zel], natural means that an explicit bijection is constructed by means of an algorithm. In
fact, the bijection is obtained by using the (ordinary) Robinson-Schensted algorithm, essentially as follows.
The following trivial generalisation of this algorithm allows it to operate on bijections A-* B of two totally
ordered sets of n elements, in place of permutations of n. The elements of A are taken in increasing order
and their images in B figure in place of the numbers inserted into the tableau P by the well known insertion
procedure of [Sche]; the elements of A themselves are used to fill the other tableau Q. This construction
can then be applied to any bijection ̂  -» V', where \ and V> are totally ordered by '^p', and yields a pair of
bijcctions A -> V' and A -» y, for some Young diagram A; to match the statement of the theorem we lake
t. lic invcrsc of Ihe second bijection (since the inverse of a picture is a picture, the order of the arguments of
'I'ir' is irrelevant; we have chosen the order so as to preserve \ as domain and ^ as image). The essential
]>oint of the theorem is that the bijection ̂  -> V' isa picture in this way if and only if the same is true for
Llic bijections computed from it. The theorem immediately implies |Pic(x, ^)| = {{x], W) for arbitrary
X, ip ̂  S, since the set of irreducible representations {{A} | A  7>} forms an orthonormal base with respect
to the inner product of representations.

In [FG] it is shown that the construction of the theorem is natural in a stronger sense, namely that tlic
same result is obtained if other total orderings are used on \ and V>, as long as each of them is compatible with
'^^' (they call this choosing 'readings' of ̂  and rfi). Their proof is rather technical, showing that one can

transform any reading into a standard reading (the reading by rows) by small steps that correspond to tlic
elementary transformations of [Knl], where at each step the correspondence between pictures is unchanged.
We sliall indicate here a simpler and more direct proof, which at the same time establishes the theorcm and
proves the nafcurality of the construction in the sense of [FG]. We show that one does not need the toLal
ordering '^r' to define the insertion and deletion procedures used in the Robinson-Schensted algoritlim for
pictures, but that these can be specified directly in terms of the partial ordering '^^'. This is based on the
simple lemma below. To facilitate its formulation define an inner (resp. outer) cocorner of^ 5 to be a
square s   Zx Z such that s ^ ^ and ^ U {s}   <5, which diagram has s as a minimal (resp. maximal)
element (the terminology is adapted from [vLee]). Also, for A   'P and k e N \et A[t] denote tlie row
{(»>j)  . 5k I «"='(. } numbered Jfc of A and similarly put A[>I] = A[^t+i] = Ui >t ^[.. ]-

3. 2. Lcmma. Let A  77, ^  <?, p  Pic(A, V>), and let s be an outer cocorner of ̂ . Then '<^^ ' induces a
tota/ ordering on p[\[o]} U {s}. If moreover s is not the ma.ximum of this totally ordered set, then it successor
rnin^^, { y   p[A[o]] | s <^ y } is an outer cocomer ofp[A[>o]].

Now let A, 1/1, p, s be as in the lemma. We construct a sequence xo,..., Xr for some r G N, with x,   A
for ; < r and .Cr eN xN an outer cocorner of A, and a corresponding sequence SQ,.. ., Sr with SQ = s and
.s, = p(.c, -i)   ̂  for i > 0. We shall have moreover that each s, is an outer cocorner ofp[A[^, ]]. The terms of
tlie sequences are determined successively; assume the we have constructed all 2:1 for i < k, and consequently
all s, for i ^ k, and that Sk is an outer cocorner ofp[A[^t]]. Then by restricting to A[^t] and applying the
lemma we find that p[>[k]] U {sjt} is totally ordered by '^^'. If sjt is the maximum of this set we complete
the construction by putting r = Jfc and defining Zr to be the first square in row r that lies outside A (which is
an outer cocorner of A) i.e., Xr = (r, \r). Otherwise the set {.1; £ \[k] \ St <^ p(x)} is non-empty, and a;i: is
defined to be its leftmost element. Then 54+1 = p(xk) = min^^ { y G p[>[k]] \Sk </ y} is an outer cocorner
ofp[A[>ji;]] by the lemma, and we may proceed to the next step of the construction.

When the construction is complete we put A' = A U {xr}   P, and define a bijection p': A' -+ {&} U V-
by p'(xi) = S{ forO^ z ^ r and p'(z) = p(z) for z G A\ {zo, . .., Xr-i}. Since the set {sjt+i) u P'[A[<:]]
equals p[\[k]} U {sk} for all A < r, it is totally ordered by '^^. ', and si is the predecessor in this ordering
of St+i; therefore if p' and Xr are given, the full sequences can be reconstructed by an inverse procedure.
These constructions are identical to (the transpose of) those in [Zel], except that we use a partial ordering
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'^^' instead of a total ordering such as '^r'. However, since we use this ordering only on subsets on which
it induces a total ordering, it is iminediately clear that the same correspondence will be defined if we replace
'^^ by any ordering that extends it. In particular the proof m [Zel] that p is again a picture, and conversely
that if a picture p': A' -* V>/ and a corner Xr of A' are given then the inverse construction will produce a
picture p:\ -<. ip and an outer cocorner SQ of V', apply directly to our construction. In fact it would be
possible to simplify that proof slightly by using proposition 2.2.

If we number the elements of V> by 1,.. ., n according to some total ordering extending '<^', then the
procedure becomes just the insertion procedure of the Robinson-Schensted algorithm in the formulation of
[Sche]. This suggests that we define the full analogue of the Robinson-Schensted algorithm (which constructs
the bijection of theorem 3. 1) as follows. Let a picture f:\-*ifi be given, and put n = |^| = |^>|. Order the

elements of ̂  into a list ci,.. ., Cn in such a way that c, <^ Cj only occurs if i" < j. Then for »' = 1, 2,.. ., n,
succesively compute pictures p, : A^*) -> /[{ci,.. ., c,-}] by starting with A^°) = 0, and computing p, from p,--1
for i > 0 by performing the construction above with p = p,--i (and therefore A = A^*"1), V> = /[{ci,..., Cj_i}])
and s = /(c, ); we define p.- to be the resulting picture p', and we also define <f, to be the last square Xr
determined in the construction (so that A^ = A(i-l) U {d{}). Since {ci,..., c, } is an order ideal of ^
with respect to '$^' and / is a picture, /(c, ) is indeed an outer cocorner of/[{ci,.. ., c, _i}], so that the
construction is legitimate. When pn is finally determined put A = A<") and p = pn (which is clearly a picture
A - V'), and also define a bijection q:^ -* X by q(c{) = di. Since the construction mimics the ordinary
riobinson-Schensted algorithm, it follows from a well known symmetry property of that construction (see
for instance [vLee], Theorem 3. 1) that if it is applied to f~ :il> -* ̂ , it will compute the pair (t]~ , p~ )
instead of (p, q). From this it follows directly that q \s a picture, and that the choice involved in ordering
the list ci,.. ., Cn does not affect the pair (p, q) computed. The invertibility of each step guarantees that tlic
picture / can be reconstructed from (p, q), and hence that we have established a bijection as stated in the
theorem above.

As an illustration we show here the last few steps of the algorithm applied to the picture that lias been
our working example (the first steps are hardly illustrative). Recall that we had labeled its domain as follows

For the list G],. . ., 07 we choose the sequence labeled /, g, d, e, a, 6, c (the other legitimate choice woiild be to
iiitcrchange e and a). Then the pictures p4,.. ., p7 are succesively

Pl =17^-^ P5= P6=|
s

P7=P=

For a proper understanding it should be pointed out that the symbols a,..., g do not denote mathematical
values, but are just used to indicate matching squares within a single picture; however, for subdiagrams
of ,v and </' (like the images of the p,, which are subdiagrams of ̂ >) the same labels have been iised as
for displaying /. To illustrate a single insertion, consider the transition from ps to ps. First the point
lal)clud 6 is added to the image, and is compared with the images of the first row, together forming t. lic chain
a <^ g <^ b <^ e. It has a successor, e, which therefore moves on to the next step; in the chaiii of images
il <^, e it is maximal so that the insertion stops at this step, and the image labeled e becomes llic image of
a new square at the end of the second row that is added to the domain. The other picture computed is

1 = where the image diagram corresponds to

displaying the order in which the images were determined. Note that the point-image pairs are determined
one by one, but the intermediate stages do not always correspond to pictures: after ps is computed the pairs
of <7 labeled a, d, e, f, g are determined, but the corresponding subset of the domain \ is not a skew diagram.

§4. The Schutzenberger algorithm for pictures.
As was mentioned above, the set Pic(^-, ^) is in bijection with P\c(-\, -rf>), Pic(^', -</''), and Pic(-,v', </''),
by composing a picture with the indicated reflections in domain and image; we shall denote the counterparts
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of a picture / so obtained by -/, /<, and -/<. An obvious question is what happens to the pair of pictures
computed by the Rx>binson-Schensted algorithm when we apply these symmetries to /; the answer cannot
simply be that the same symmetry is applied to the pair, since shapes that should be Young diagrams
are turned upside down. An answer can be given using an algorithmic operation related to the Robinson-
Schensted algorithm: the Schiitzenberger algorithm, which defines a shape preserving transformation of
Young tableaux; it was first defined in [Schiil], see also [Kn2] and [vLeej. It has similar properties to the
Robinson-Schensted algorithm, and there is a strong connection between the two, due to Schiitzenberger,
as expressed by [vLee], theorem 5. 1; this theorem precisely describes, for the case of permutations (whicli
we view as pictures whose domain and image are anti-chains for '^^'), the effects of our symmetries on the
tableaux computed by the Robinson-Schensted algorithm.

To handle the general case, we need a generalisation of the Schiitzenberger algorithm in the form of an
operation 5 that bijectively maps Pic(A, V') to Pic(A, -V') whenever the domain A is a Young diagram. It is
derived from the ordinary Schiitzenberger algorithm by choosing a total ordering on ̂  extending '^^', and
transferring it to -^ by symmetry; the former is used to view a picture A -»^ as a Young tableau, and the
latter to interpret the Young tableau computed from it as bijection A -» -V'. The reversal here is in fact
qiiite natural, since the Schiitzenberger algorithm extracts entries from the original tableau in increasing
order while computing the entries of the new tableau in decreasing order; therefore its picture counterpart
removes a point with image a:   V< in the same step as it defines a point of the computed picture Lo liavc
iinagc -x   -'/'.

Tlie following thcorcm gives the fundamental properties of the operation S. To facilitate its forniulat. ioii,
we iisc the proposition RS(f, p, q) to express the fact that the Robinson-Schensted algorithm applied to llic
picture / yields the pictures p and q-l (the inverse is taken to make q of the proper form for application
of S).

4.1. Theorem. For every picture p: A -* V> with A   7?, tAe byection 5(p): A -» -^ is a picture, it value is
independent of the choice of total ordering in the definition of 5, and 5(5(p)) =p. FurtAermore, if f is any
picture and p and q are such th&t RS(f, p, q), then

RS(-f, S(p), S(q)),
RS(ft, Pt, S{qt)). and

RS(-ft, S(pt ), qt)

The proof is quite simple, given the mentioned theorem for the ordinary Schiitzenberger algorithm. By
clioosing fixed total orderings on \ and 4> extending '<^', we view / as a permutation, to which we can apply
the theorem. We know that the outcomes of the ordinary and generalised Robinson-Schensted algorithms
are consistent, and if we choose the proper ordering on the image diagram for the computation of the various
applications of S, then the theorem gives us the three relations stated in the theorem. Since the bijections
computed by the generalised Robinson-Schensted algorithm are pictures, and are independent of the chosen
total orderings, the same must be true for the generalised Schiitzenberger algorithm (this already follows
from any one of the three relations). The fact that 5(5(p)) = p follows directly from the corresponding
property of the ordinary Schiitzenberger algorithm.

This correspondence allows us to construct a bijection Pic(^, V1) -» Pic(^<, ^'), which we shall write

/ -< /T. In the special case that y is a. Young diagram we put /T == 5(/(), and in the general case we
define it by RS(f, p, q) => RS(fT , pT, qT) (it is fairly easy to see that these definitions do not conflict). As

an illustration we take up our running example for which we had

/=
/

p=
L 9=

e | c

and doing the required computations we get

PT=
^

IL
9T=

9]
f= I. aw
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5 Glissemeni

Note that for /J we switched to a different set of letters, as there is DO obvious correspondence between
its individual point-image pairs and those of /. In fact, there is no easily understood connection between
/ and fT that does not involve the Robinson-Schensted algorithm. Nevertheless the operation seems to

have some significance, in view of the fact that it can be easily shown to satisfy the identities fTT 
= f,

(/-l)r = (/T)-1. (-/)T = -(/T), (/<)T = (/T)<. and when applicable 5(/T) = 5(/)T.
Since we get independence of the choice of the total ordering almost for free, it is natural to ask whether

the operation S could be defined without choosing a total ordering at all, like we showed for the Robinson-
Schensted iasertioa procedure. The reason that that procedure could be adapted without problems is that,
if we regard a picture X -» rfi asa, Young tableau of shape A with entries in a set that is only partially
ordered, then no comparison is ever needed of entries that are incomparable by '<^'. The hope that the
same might be true for the basic deflation procedure of the Schiitzenberger algorithm is vain, however, for
two reasons. This procedure starts with creating an empty square by removing the entry at the origin, and
then repeatedly slides its neighbour to the right or below into the empty square, whichever is smaller; when
it is finished the procedure is repeated for the entry that is now at the origin, etc. The first problem in doing
this with pictures is that that the image of a point that is a minimum for '^^' is minimal for '^^', not
for '<s. ', so after removing it the image may no longer be a skew diagram. The other problem is that the
entries are removed from the tableau strictly in increasing order, so apparently every pair of distinct entries
is compared either explicitly or implicitly (by transitivity), in the process. We must therefore conclude that,
althoiigh the choice of total ordering does not affect the outcome of S, it does greatly aflTect the sequence
of steps by which this result is obtained. Without the connection with the Robinson-Schensted algorithm,
it. would also be hard to understand why S preserves the picture property. IIowever, we shall show in tl»c
next section that a direct definition without choosing total orderings is still possible, provided we iisc an
alternative construction by so-called glissements, which is given in [Schii2], section 2.

§5. Glissement.

The notion of glissement is based on an operation very similar to the deflation procedure of the Schiitzen-
bcrgcr algorithm. Instead of operating on Young tableaux it acts on skew tableaux, and instead of removing
tlic entry at the origin to create an empty square it starts with designating an inner cocorner of tlic skew
tableau as initial position of the "empty square"; from then on however it is guided by exactly the same rule
for moving entries into the empty square. In view of the negative observations of the previous section, the
following therefore comes as a bit of a surprise.

5. 1. Tlieorcm. The notion of glissement can be generalised in a natural way to pictures, in the following
sense. With a picture f:\ - T/I and a j'nner cocorner s of \ are associated a picture //:y/ -> ^>, called
t/ic domain-glissement of f into the square s, with {s} U^- =^/ U {s'} for some outer cocorner s' of,y'.
Clioosing any total ordering compatible with '^^ ' on ̂  we may consider f and f as skew tableaux, and as
such f is the glissement of f into s, as defined in [Schu2j.

Clearly for any chosen total ordering the glissement / of / is uniquely defined; we first show that /'
docs not depend on this choice, nor indeed does any step of its computation.

5. 2. Lcmma. With f and f as in the theorem, any pair of images x, y G ^ that are compared with each
otlicr diiring the computation of the glissement are already comparable by '^^'.

To prove this, assume the contrary, and let (i, j) be the first coordinates (i.e., minimal for '^^') for
which the images of squares x = (i + l, j) and y = (i, j + 1) of ,\- are being compared but are incomparablc
for '^^'. Then f(x) lies above and to the left of/(y), i. e., f(x) = [k, l), f(y) = (k', {') with k < k' and
/ < /'. Let z be the square (<:', /) which lies below f(x) and to the left of/(y); we have /(.c) <s. z <\. /(y)
and hence z e rp. Since / is a picture we have x <^ f~ (z) <^- y and f~ (z) -^ (i + 1, J" 4- 1), so necessarily
}~ (z) = (i", j). This excludes the possibility that /(i) and /(y) are compared at the first step of computing
the glissement, so this comparison takes place after the entry z was moved into the empty square, leaving
the square (i, j) empty. By possibly replacing / by / we may assume that the move was a horizontal one
into (i, j - 1). Then at that move z was compared against the image /(a) where a = (»' - l, j" + 1), and
apparently found to be smaller; as the comparison was made before f{x} and /(y) were compared, we must
in fact have z <^ f(a). But this contradicts the fact that, because a lies directly to the left of a;, /(a) lies to
tlic left of the column of /(a:), thus proving the lemma. The reasoning can be illustrated as follows, where

-342-



5 Glissemenf

for the sake of compactness images are indicated by overlining and inverse images by underlining; the empty
squares indicate that there might, but need not, be intermediate squares.

IU

To prove the theorem it suffices to verify that /' will always be a picture, which is done by establishing
the conditions of proposition 2.2. The fact that for some (indeed, any) chosen total ordering on V>/ is a skew
tableau immediately gives us condition (i), so we only need to consider the possibility of a pair a-', »/   \'
that violates condition 2.2(ii) for /', i.e., for which f'(x ) <^ f'(y') while y1 <^ x . Now consider the

squares x, y   X for which f(x) = /'(a;') and f(y) = /'(y/); since / is a picture and f(x) <^ f(y) we liavc
i <^ y. But from the definition ofglissement x and x' can be at most one place apart, and similarly for y
and y/; the only way that we can have x </ y and y/ </ x' is when a- and y are horizontally adjacent while
x' and y' are vertically adjacent, or vice versa. In the former case the image of x must have been compared
against that of the square a directly above y, and by the lemma we must have f(x) <^ /(a), but this is in
contradiction with the fact that f(x) <^ /(y) and /(a) lies below the row of/(y). The other case is handled
similarly, completing the proof; the following illustrates the two cases (the arrows point from x to x and
from y to y').

^-| respectively f-^\
-y\

^.

The generalised version ofglissement was named domain-glissement because the invertibility of pictures
allows another operation to be derived from it: a picture /' is called the image-glissement of / into the square .s
if /'"' is the domain-glissement of /-1 into the square s. As most of the theory of glissement in [Scliii2]
gencralises directly to the picture case, this theory becomes more symmetric and acquires added significance
by the possibility to apply glissement at both sides of a picture. For instance, it was shown in [Schii2] that
for any permutation the first Young tableau associated to it by the Robinson-Schensted algorithm can be
alternatively computed by viewing the permutation as a skew tableau whose shape is an anti-chain for <s,'
and repeatedly forming glissements (in any order) until the shape is a Young diagram; it now follows that for
any picture /: ̂  -* V> 6o(A pictures obtained from it by the generalised Robinson-Schensted algorithm can be
similarly obtained from / by using forming domain-glissements respectively by forming image-glissements.
One can easily check this for the picture for which demonstrated the Robinson-Schensted algorithm.

Using glissements of pictures, and results of [Schii2] on ordinary glissements, we can also give the
following definition of S that does not require the choice of total orderings. Let p:A -< ^ bea picture
with A   7>; take -p:-A -< -V> (whose domain is a anti-Young diagram), and form domain-glisscmcnls
to transform -A into (a translation of) a Young diagram; this Young diagram will always be A and t. hu
picture A -> -V' so obtained is 5(p). With these descriptions of the Robinson-Schensted and Schiitzenbergcr
correspondences, theorem 4. 1 becomes quite obvious.

The finite partial order called C^, in [Schii2], which plays a crucial role there, also has a counterpart
for pictures: its underlying set is the set of pairs {(r, /(a;)) | .c   ^}, with a partial ordering defined by
(x, f(x) <: (y, /(y)) <==>. a* ̂ ^ yA/(z) ^^ /(y); the significance of this poset associated to / has been
shown in [FG], sections 6 and 7. It appears that nearly all of Schiitzenberger's long paper can be generalised
easily to the case of pictures, and some results (e. g., 4. 7) even become simpler, since they seem to deal with
pictures avant la lettre.

The two-sided nature of the theory ofglissement raises a question about the interaction between domain-
glissement and image-glissement, which could of course not be considered for ordinary glissement.

5. 3. Theorein. The operations of domain-glissement and image-glissement commute, i. e., for any picture
f:\ -r ip and inner cocorners s and t of \ and ̂  respectively, the image-glissement into i of the domain-
glissement into s of f equaJs the dom&in-glissement into s of the image-glissement into t of f.

We omit here the slightly technical proof, but do mention that it is not always true that the individual
steps in the computation of one glissement are unaffected by performing glissement at the opposite side;
the equality holds only for the final pictures. In other words, the sequence of moves may follow another
path, although the theorem does imply that the paths must necessarily end in the same square. Taking
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6 Concluding remarks

multiple glissements at the opposite side, we deduce that for any pair of pictures for which the second of
the pictures (g) computed by the Robinson-Schensted algorithm are the same, and which therefore have the
same domain, the domains stay equal after we form the glissemeat into the same square of both pictures;
this is remarkable since the two pictures can differ considerably in other respects. Another consequence of
the theorem is that the operation f ^ fT of the previous section commutes with both domain-glissement
and image-glissement; again this is surprising in view of the complicated change produced by the operation.

§6. Concluding remarks.

The fact that the Robinson-Schensted algorithm can be generalised in a natural way to pictures, while
retaining its remarkable properties, provides a great amount of new insight; e.g., versions of the algorithm
with repeated entries should really be understood as special instances of the general picture case. In this
light it is important that the Schutzeaberger algorithm, which is so intimately related to it, can also be
generalised to pictures. The most significant fact seems to be that glissement can be generalised to pictures,
in a two-sided way, especially since both other correspondences can be defined in terms of glissement.

A question remains what would be the best way to set up the theory if one does not assume the facts
known for the non-picture versions of the algorithms. In the approach taken here, we used results proved
for the ordinary Robinson-Schensted algorithm (especially its symmetry with respect to inverses) in order
to establish that the generalised version is well defined and natural. This makes it difficult to do everything
directly for picture, and also the proofs known for the symmetry property (see for instance [Fom] or fv Lee])
all seem to depend essentially on a total ordering of the steps and entries. The approach of [Schii2] that
starts with glissement does not suffer from such difficulties. A drawback of this setup is however, that it
requires a lot of work before one obtains any well defined correspondences to begin with, which includes
reasoning about finite posets and adapting several results from the classical formulation of the theory in
a more complicated form; in particular, the invertibility of the Robinson-Schenstedcorrespondence is much
less obvious when formulated in terms of glissements. For the moment it seems best to mix the various
approaches as convenient for each result.
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