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Abstract.
Given a list of n numbers m R, one wants to decide wether every number in the list

occurs at least k times. I will show that (1 - c)n log3(n/A:) is a lower bound for the depth of
a linear decision tree determining this problem. This is done by using the Bjorner-Lovasz
method, which tiims the problem into one of estimating the Mobius function for a certain
partition lattice. I will also calculate the exponential generating function for the Mobius
function of a partition poset with restricted block sizes in general.

Abstrait.
Etant donnee ime liste de n nombres appartiennent a R, on veut decider si chaqu un est

repete au moms k fois. Nous montons que (1 -  )nlog3(n/fc) est une borne inferieure a la
profondeur d'lin arbre de decision lineaire poiir ce probleme. Nous einployons la methode
de Bjorner-Lovasz, qui reduit Ie probleme a 1'estimation de la fonction Mobius d'un certain
trelllis de partitions. Aussl, nous calculons en generEd la fonction exponentielle generatrice
pour la fonction Mobius d'un poset de partitions ayant tallies de bloques restraintes.

Introduction. Identifying the list of numbers with a point x   R", the problem can be
viewed as deciding whether x belongs to a certain subset Vn, k of R". Vn, k can be described
ds the union of a subspace arrangement. Given n and k let A.n, k denote the set of all linear
subspaces of R" defined by some equations of type x,^ =213 = .. . = x^ where r > k such
that every coordinate occurs in one of the equations. Then

Vn, k=^AeAn,, A.

Now the problem is to decide whether x is in Vn, k or not. Partizdly order the elements of
An, k by reversed inclusion, adding R" as 6 we get the intersection lattice denoted Ln, k- (For
a discussion of lattices Eind subspace arrangements see [B] or [0]. ) Ln^k is isomorphic to the
partition lattice IIn,* consisting of partitions of {1, 2,... , n) where block sizes 1, 2,..., A--1
are forbidden (Prop. 2. 1). The model for deciding if a point x belongs to the subspace
arrajigement or not is a linear decision tree, a, rooted temary tree where at every interior
node a linear function is evaluated at x, and the three edges leaving the node are labeled

I will use Theorem 3. 7 in [BL], which gives a lower bound on the'<' t(_»=" and ">".
number l~(Vn, k) of no-leaves in the decision tree neimely:

r(^)^ 1^^(6, 1)1

Typeset by A/^S-T^
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In Section 1 I will calculate the exponential generatmg functiou for the Mobiiis function of
a partition poset with an arbitrary set of forbidden block sizes. In Section 2 I will then use
it to get a lower boiind on |/i£^, t(6, 1)|, leading to the complexity-theoretic lower bound.

1. The M5bius function of partition posets with restricted block sizes.

The intersection lattices we will be interested in have a combinatorial description in
terms of set partitions. We wiU derive the exponential generatmg function for such partition
posets. This is done also in [BL,Section 4], but only in the case when singleton blocks are
allowed. Here we will need the case when singleton blocks are forbidden. I will treat both
cases simultaneously with a method different from the one used in [BL]. The arguments
are purely combinatorial and we will work in a setting more general thzrn the application
requires.

Given any set T C Z+, we consider the set Hn^ of partitions of [n] = {1, 2,... ,n} into
blocks whose sizes are iu T. Ordering the elements by refinement we get a poset, which is
not a lattice iu general. If 1 ^ T then we have to add the discrete partition (1)(2).. . (n) to
Hn, r as 0. We denote by p. n,r the Mobius function of the poset Hn. r, where the subscript
n often wiU be suppressed. Let also /^r(n) = /^n, r(6, i), if n   T. It wiU be convenient
to extend the definition of /Xn. ^w. o-) by setting it to 0 if either TT or <r is not in Tln. T- In
particular /ir(n) =0 ifn ̂  T.

First we need a basic recurrence formula.

Proposition 1.1. If n   T\{1} we have:

n!(1) /.r(n)=- ^ ^c'(l)... ^c"-(n-l)^^^,,
E.- T\{n}'c'=n '. '.\J^'^]-

i/1   r

(2) ^T(n)= ^ (-l)S^^. (2)... ^"-(n-2)^^"^, -l, , /l ̂  T
'3^. T\{n) 'Ci=n

Proof: When 1   T we have

[0, (l, 2, 3,..., /)(/+l,..., n)]=[6, (l, 2,..., 0]x[6, (/+l,..., n)]

and hence /xr(0, (1, 2,..., /)(/ + 1,... , n)) = ^r(0/^r(n - /).
we also know that there are nT. iA^c, ! Partitions of [n] oftype ci,... ,Cn. By definition

of the Mobius function we get the first formula.
If 1 ^T we have instead

[0, (1, 2,..., /)(/ + 1,..., n)]\{6} = ([6, (1, 2,..., /)]\{6}) x ([6, (/+!,..., n)]\{6}),
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and hence

/, T(6, (i, 2,..., /)(/+i,..., "))=

^ /. r(7r, (l, 2,..., 0(/+l,..., "))=
6<ir<(1...0('+l...n)

^ ^(TTl X7T2, (l, 2,..., /)(/+l,..., n))=
6<iri^(l... ()

6<W2<('+1-")

^ /xr(^, (l, 2,..., 0)^r(^, (/+l,..., n))=
6<in$(l...O

6<xa<(»+l... n)

= -(-/ir(0)(-^r(" - 0) = -^T(O^T(" - 0

This gives the second equation, where the -1 term is for 0 = (1)(2)... (n) which is not
included in theosum. D

The next step is to calculate the exponential generating function for each specific T.
Define

^ a;"
^^)=^^(")^T

n=l

remembering that /ir(n) =0 ifn ̂  T. Define also for every TT   Hn.z^.

srW= ̂ ^r(6, <T)
a<v

Also let ST(n) = ^^(l) . By the definition of the Mobius function, we have sr(7r) == 0
for aU TT   IIn.r, TT 7^ 6. In particular 5r(n) = 0 ifn   T\{1}.
Remark: Note that if n ^ T, ̂ ^(n) gets the value that -^r(n) would have had if n had
belonged to T. Hence ifn ̂  T one can replace ^r(n) by -ST(") in Proposition 1. 1.

Proposition 1.2. TJie exponentiaJ generating function for Hn.r is given by:

(3) FT(^)=hi|l+ ^
n62+\(T\{l})

^(")-^T , z/l T

(4) F^)=-ki(e1 - ^ 5Hn)^f) 'l71^T
nez^\r

Proof: Case 1: 1   T
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Usmg the recurrence formula in Proposition 1. 1 we get,

o= £., ̂  = E., (, E __^nw... ^-(")5o^, ) ̂  =
ner\{i} "" "6T\{i} \E. 67"=. =» -^. /. ^.^

fi +"z(^+'s^i+... 'i-i-
=16^1-r-Jr-'r a!)22! 'r""y

.

E,,, (, £ ^. (l)-''^(n)5(j^)^=
n6Z+\(T\{i}) \E, er"=.=" "^-/-j-y .-

^n.""'*-!- s !"-(")^°
JGT n6^\(T\{l})

= eFT(x) - 1 - E ^(n)^[
n6^. \(T\{l})

and the equation follows. The * equality (above and bdow) follows from the above Remark.
Case 1:\iT

»=E(, £ (-l)En''^(2)-''^(n)no^. -l)^=
" T \E. 6T . <=..="

(-/xr(2)r2)c' (-/ir(3)a;3)cs (-/xT(n)zn)cn ^ _ Y-^ _

=^^,.fr... <2!>c":2! (31>U<:1! '" ("!)c-<:"! ) ^nl
/xrQ-)^ , ^T2U^2} _ ^ _i _Y- f:_

[l-'--+!^jr--)-1-^-j6T

Y- I v- (-^r(2)x2)c2 (-^r(3)i3)c» (-/. r(n - 2)i"-2)c"-' ^ ^
z-^\^ ^_ (2!)C'C2! (3!)C'C3! '" ((n-2)!)c"-'Cn-2!
n^T \I.,, 6T t<:<="

=ne--"^-l-i:^+I:Mn)-l)^=
; T n T n^T

=e-rr^-er+^. r(n)^
n^T

and the proposition follows. D
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2. The k-of-each problem.

The problem posed is the following: given a list of n numbers in R one wants to decide
whether every number in the list occurs at least k times.
Algorithm: The following algorithm shows that the k-of-each problem cein be solved
using a tree with depth Snlog^n/k). Assume (for simplicity) that n = 2mk. We start
with determining the (2m-lfc)-th largest element; this takes 3n comparisons (see [R]).
Then we go on with finding the (2m-2A)-th largest elements ajnong those smaller and also
among those larger than this element. In the j-th phase, those elements found so far split
all elements into blocks of size 2m~}k, and we find the element of each block which splits
it into two equal parts (where each of these special elements is counted in the block before
it).

After m phases, we have found the fc-th, 2k-th, . .. , 2mA-th largest elements. Now we
check for each element if it is equal to the special elements before or after it. If it is not
equal to either one of them, then there cannot be fc - 1 other elements equal to it and the
answer is No. While checking each element the tree will remember how many of them that
are equal to each special element (that might be equal). If there are k of each kind then
the answer is Yes, otherwise No. The total number of linear tests performed is:

3nm + 2n == 3n log; -^ +2n ^ 8n log3 -^. D

We will be interested in the partition poset IIn, fc where block sizes {1, 2,... , fc - 1} are
forbidden, with the discrete partition (1)(2)... (n) added as zero. Observe that Iln. k is
a lattice with the same join-operator as IIn. The meet-operation is that of Tin (coarsest
common refinement) imless one gets some block of size less than k, then the meet will be
0. Our interest in IIn. t comes from the following proposition.

Proposition 2. 1. Ln, k is isomorpbic to Hn. fc.

Proof: Ifa Hn, fc, let

B(, = {x ̂  R"|z; == xj if i ajid j are in the same block in a}

We get that dim By =Number of blocks in cr.
It is immediate that Bp\/ B^ = B^^B^ = B^w and from this follows that
Ln, k ^ Hn, fc D

When T = Z+\{1, 2,... , fc - 1}, let ^.n, k denote /in, r, ^jk(n) denote /xr(n), and so on.
In Rn. fc we have that Sk{n) =1 for alln ̂  k, so we get

Fk(x) =-ln(ex - pk{x)),

where pk(x) = ^,^1 n^-  w we have come to the main theorem of this section. It says
that the above algorithm is (up to a constant) the fastest possible in the worst case.
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Theorem. Tiie number of no-2eaves in a tree deciding the k-of-eacb problem will be at
least

n!

4n(9k)n

for at least one n m every interval of length N, for some constant N. The depth will be
bounded asymptoticsdly below for every e > 0 by

(5)
n

(l- )nlog3p

Proof: We use the result in [B-L] Theorem 3. 7, which says that the number of no-leaves
in a linear decision tree is bounded below by the absolute value of the Mobius fimction for
the corresponding intersection lattice. The theorem will be shown in the following pages
using three lesamas.

Let Rk denote the radius of convergence for Fk{x) considered as a function on C. Let
2i, ii,... , Z(, i( denote the nonreal zeroes of ez -pk{z) with naodulus Rk. The real number
-Rk might also be a zero, let ̂  = 1 if this is the case, otherwise let 5 == 0. Write zj = R):e '
with 0 < 0j <TT for j = !,..., (. Observe that there cannot be other zeroes with modulus
arbitrarily close to Rk, since as. entire function with aa accumiilationpoint of zeroes has
to be identically zero. So we can speaJc of the next zero which will have strictly larger
modulus thzin Rk- Let R' denote this value (it inight be infinity), which will be the radius
of convergence of

In f- . _ .. e/_~PA(2) .. . \ =V&^".
^ - (-^))^5,\(z - ., )(. - -z, )) = 4. °"2--

As long as we are only dealing with real powerseries with a nouzero constant there is
no problem using the laws of logarithm. But when it comes to separating (2 - zj) from
(z - Zj) we have to take care. But with the usual branchcut along the negative real axis
the following caculations are valid when z is a. positive real number.

lii(z2-2Re(zj)z+R'i)=\n((z+Rkei(e'-^z+Rke-t^-^ =
= ln(z 4- Rkei(9'-n)) + ln(2 + Rke~i(^~K)) =

=ln^.<--)+k, (^^+l)+
+ln^-<-->+ln(^.^+l)=
. ^+f;hlpf_^\fhlF('fcT ^ " \~^) "^~~^

=^-E^fi)^
zl

n=l
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The calcidations for a real zero are easier and all together we get:

ln(ez - p, (z)) = ^ln(z2 - 2^z, )z + R2,) + 6^z - (-^))+
J=l

+ In ez-Pk^}
, (. -(-^))<n^(z-z, )(z-i, )^

=E(-i-S-(,)^)-(-g(-^^). I:-n
Comparing coefficients we get the following bound for sufficiently large n, where 1 < c <
^-:
~Rk-

|^(n)| ^ |2E^cos(-n^)+^cos(-n7T)|
/n| ^nRn,

J_ ̂ |2E;.=i cos(-n^) + <!>cos(-n7T)| _ j_
:- Rn, \ n ~ ^^

Hence we need to estimate Rk from above and the sum of cosines from below. Rk is
easy to estimate when k is odd and at least 5, since then there is a real root to ex - pk{x)
in the interval [-fc, 0]. But for the general case there is a need for some heavy artillery
from complex analysis. For the following Lemma I'm in debt to Daniel Bertllsson:

Modulus Lemina. There is a zero of ez - pk(z) with modulus less than 9k.

Proof: The main ingredient in the argument is the following version of Lajidau's theorem
(see [J] and [H]): Suppose /:Di = {z C| |z| < 1} -> C\{0, 1} is an analytic function.
Then |/'(0)| < 2|/(0)| (| hi |/(0)|| + A) where A = r^- w 4. 45.

Suppose now ez - p^z) ^ 0, for all z, \z\ < R. Define an analytic function g : DR -* C
by

^)fc = 1 - e-^(z)
There is a a;, a?fc = 1 such that g(z) 7^ a; for all z, \z\ < R. (Otherwise g would assume all
k-roots of unity as values, and hence ?*(.?) = 0 for k different z   C. ) Define f(z) = g^RZ),
for all z   ^?i. The function f does not take the values 0 and 1. Landau's theorem says,

g'W
w

R <2 9W
U}

hi , ^(0)
w

+A

^.

But kgWg'W = ^(1 - e-zpjk(^)) |,=o= -P'fc(O) = -1 and g(0) = l, so ^ ^ 2A, i. e.

R <: 2Ak « 8.9k We can now conclude that in the disc |2| < 9k there is a zero to
ez-pk{z). D

Now we need to estimate the sum of cosines. We cannot hope for a bound that is valid
for all n, but we can show it for enough n to draw the conclusions of the the Theorem.
The following lemma is what we need with m=2t or 2t +1.
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Lemma of Cosines. Let Oi, 02, --., Gm be real numbers. Then there is an integer N such
that is any set of N consecutive integers, there is an integer n such that

cos n0i
1=1

\/m

This should be a known lemma but we have not been able to locate it in the literature
so we include a proof due to Mats Boij.
Proof: For all integers n we define /(n) = Y,^ cos n0,, and for all integers n and N we
define g^n) = E^-l fW2 /N. We can compute /(n)2 as

T* - m

/(")2 = ^ cos2 n0. + ^ 2 cos n0i cos "^- = ^+ ̂ ^ cos 2n0,
.=i T^j- ^ Ai=i

+ ̂  cos n(0i + 6j) + cos n(0, - ^-).
i^J

We now use the following well-known formiila for cosines.
n+N-1

sm-2I
cos k<^ =

k=n

sin-^ cos ̂ "-ly?
smf

This shows that either siny/2 = 0 and E^n"1 cosA:</? = N or
|n+N-l

(6)

We have that
n+N-l

cos ky
fc=n

^-^-
sm

n+//-1 . m

^(")= E A^)2/^=^+^ ^ ^Ecos2^.
I;=n

^ ^ 2^
Jfc=n - i=l

n+//-1

+^ E E(cos^i+^)+cos^'-^))-
fc=n iyij

Changing the order of summation gives together with (6) that there is an integer N such
that gN^n) > m/4 for all integers n. But then there is an integer n in every set of N
consecutive integers, such that /(n)2 > m/4, that is |/(n)| > v/m/2, which proves the
lemma. D

Now we can prove the first part of the theorem. Let M be such that ^r < ^ whenever
n > M. Using the lemmas above we get that for every integer / > M there is an integer n
such that \n- l\ < N and

^(n)^4n^^(I) W^
n

==> log3|/ifc(n)| > nlog3^-4n.
The last tool we need is a nnonotonicity lenuna to prove that the depth of the linear decision
trees is almost monotone with respect to n.
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Monotonicity Leniina. Tiie depth of as optimal linear decision tree for An, k is at most
n more tbas the depth of a tree for An+r. jt- for all r ^ k.

Proof: Given an x   R", find a niunber a;n+i = a:n+2 ==... = a:n+r larger than all coor-
dinates in x. This can be done with n comparisons. Now one cein run (x, a;n+i,..., 3-n+r)
in an optimal tree for An+r, jk and get a correct answer. D

Now let n > CN, for some large constant C. Then the depth will be larger thzin.

(l-^)"l°g3^-5n.
This suffices to prove the theorem. D

Remark 1: All the three lemmas ajid the calculations of Section 2 remains valid if one

instead of forbidding the blocksizes 1,... , A;- 1 forbidds any finite set of sizes that includes
1. Hence the lower boimd will be valid also here with k meaning the largest forbidden
blocksize plus one.

Remark 2: The Modiilus lemma is not needed for odd values of k since then there is a

real root. This means that one could prove the theorem for odd k easier. And for even k
one can by taking the input twice turn it into the (2fc - l)-of-each problem. This way one
would prove the theorem without the Modulus lemma but get a half in front of the lower
bound. But with this proof Remark 1 would no longer be valid.
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