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Abstract
We consider sums of the form

E xx/w <i
» S.

tTi'D('»r)

where ,\->l/p is a skew character of the symmetric group and mv(7r) is tlle ^umbel'of
in versions oi-r. Our main result gives a lower bound ou the number of factors of 1 + g and
l"_^'wtiTch'divide-th7 above sum, and is shown to be sharp when \/^ is a hook partition
shape.

Resume
Nous considcrons dcs sommcs dc la forme

in.v(v)E xx/w ^
f 5.

ou \ ''u est un caractcre gauche du groupe symetrique et m7/(7r) designe Ie nombl'e d'_^ve"^ns
dc -. NoVrc rcsultat principal donnc une borne inferieure pour Ie nombre de facteurs (1 -<
ct~ (1 - ?)'qui'diviscnt ccs' sommes. Nous demontrons en particulier que cette borne est
exacte lorsquc \/ p. cst une cqucrre.
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Section 1. Introduction

In this paper, we consider sums over the symmetric group 5» of the form

E xx/ttWg'nvw
T-eSn

where .)(x^ is a skew character of the synunetric group [JP] and inv(Tr) is the number of
inversions of TT, i. e.

inv^) = #{(i, j) :l^i<j^n, 7T-l(i) > 7r-l(j)}.

There are two motivations for considering such sums. Firstly, other thaji some special
results of Gessel [Ge] and Edelman [Ed], there is very little known about the joint distri-
bution of inversions and conjugacy class (i.e. cyde type) in Sn. This is in stark contrast
to the joint distributions known for inversions and descent statistics [GaGe], and for cycle
type and descent statistics [GRj. Thus it seems reasonable to ask what can be said about
the sum .

E A7r)9t"o(')
T Sn

when / is some class function, i. e. a function which is constant on conjugacy classes in
Sn, such as an irreducible character %x.

Remark
As pointed out by the referee, there is a different interpretation one can attach to these
sums, namely that

^XX/ttWqinvw={^/^^}
7T 5n

where (, ) is the usual Hall inner product on symmetric functions, s\/^ is the skew Schur
function corresponding to A//x, and Fn is a certain syrametric function with coefficients in
Z[g] which encodes all the information about the distribution of inversioas and conjugacy
class in 5'n:

^-£ ,
tTlt>(7T)

PA(^)
w 5»

where p\{~n~) is the power sum symmetric function corresponding to the cycle type of T (see
[Mac]).

The second motivation is by analogy to the work of [DF, Rej. Here it was shown that
sums of the form

E^w)9d"(7r)
weiy

have high divisibility by linear polynomial factors, where W is a clzissical Weyl group, ^
is a one-dimenslonzd character of W, zind des is the descent statistic on W.

Our main theorem is the following
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Theorem 1. Let \/ p. be a skew shape with longest row of length r ajid longest column
of length s. Then

is divisible by

E ̂ A/'l(7r) 9tno(')
T 5»

(l+, )Lr/2J(l-g)L-/2J.

This Theorem is proven in Section 2.
The dlvisibilitles asserted by the previous theorem. are soinetiraes tight, as demonstrated

by

Theorem 2. If \ is a. hook partition (r, la-l) then

E XXWQinvw={'L-^'/21S(q)
»- 5.

=(l+g)Lr/2J^(g)

where S(q), R{q)   Z[q] satisfy

(n+l)'L'/2j!
^'+l)r
tl I . /.!. II

s is even

s is odd

an c/

/?(-!)==
(n+l)!Lr/2j!

(r+1)! r is even

r is odd

This is proven in Section 2. It is also conjectured there that .?($) has non-negative
coefflcients whenever r >^ s. In Section 3, we look more closely at the very special case
s = 2 where can prove this conjecture by a very interesting bijection. In this special case,
the results relate to the joint distribution offbced points and inversions over the symraetric
group.

Section 2. Proof of Theorem 1

Theorem 1 will follow by a sequence of straightforward reductions £roni the foUowing
lemma, which appears to be the essence of the divisibilities appearing in this context.
Notation: for AC [n], let S^ be the subgroup of permutations in Sn which only permute
within the elements of .4. and fix all elements of [n] - A.

Lemma 3. Fix a. subset A C [n] having ca.rdiiisdity r and fix any permutation a- ̂ . S[^_^.
Then

V^ r, inv(^o-)
/ ^

^. SA
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is A-visible by (1 + $)Lr/2J

Proof:. Ivlake a change of variable top = 1 +9. We need to show pl-r/2j divides

ynv(^) 
^ y-^ ^#J^_^inv(^)-#J

7T65A ' ^A
JC7»«(»)

y ^_^yn i, (a)+#Jp#J y^ (_iy"^(w)
^c(^) ' 5^

JCJnc(»)

Here Inv^Tr) denotes the inversion set of TT, that is

Inv^) = {(i, j) :1 ̂ i <J ̂ n, 7T-l(i) > 7r-l(j-)}

So it suffices to show that for any J C ([1f^ with ̂ J < [r/2j we have

£
'65^

JCJnc(r)

(-1) »nt>(n-) _= 0

Since 2^J ^ r - 2, there must exist a pair i, j   A which are not involved in any of the
pairs in J, and hence raultiplication on the left by the transposition {ij) is a sign-reversing
involution which shows all terms hi the above sum cancel. D

Remark
The preceding leraraa bears some resemblance to results of Bjorner and Wachs [BW] on the
distribution of inversions over certain subsets of 5n which they call generalized quotients.
In particular, for certain of these generalized quotients, they produce nice hook-formiila
factorizations for the generating function of inverslons, which naturaUy have high divlsi-
bility by (1 + q)- It would be desirable to understand this connection better.

Proof of Theorem 1. We wish to show that if A//2 is a ske.w shape with longest row of
length r and longest column of length s, then

is divisible by

^ xx/tlW g'no(7r)
7T£5»

(1-g)^(l-g)^.
Our strategy wiU be to reduce the theoreni to a very special case and then apply the
Lemma.

First note that if (A//x) denotes the skew shape which is the transpose of \/fi, then

^ ^A^'(. ) g-(-) = ^ ^/. (. ) ^n(. ) g-(7r)
^ 5.

- E ̂ A/'(7r) (-9)inu(')
wes,

^- S»
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using the fact that
xwtl<\^=xx^W^W

Therefore it suffices to show only divisibility by (1 + q)^-r^2^.
Using the Littlewood-Richardson riile [Sa], one knows that

^/^)=E^M
I/

where the sum. ranges over a multiset of partitions i/ which aU have longest part of size at
least r. Then using the Jacobi-Trudi identity [Sa], one can write

xvW = ^ ±xH (p)(^)
p

Here p runs over a set of partitions of n, and J?(p) is the skew diagram, having disjoint
horizontal rows of size p, for each i. A picture of 5'(5, 4, 2, 2) is shown below:

Furthermore, expanding the Jacobi-Trudi determinant along its top row tells us that
each p appearing in the above sum. will have its largest part pi of size at least r. Since we
are only trying to show divisibility by (1 +?)^2-^, it therefore suffices to prove the theorem.
in the special case where A/^ = H{p) for some partition p with largest part of size r.

The character XH Is easY to write down explicitly, as it is the character of the per-
mutation representation of S-n acting on the left cosets of the Young subgroup Sp which
permutes the first pi numbers among themselves, permutes the next p; among themselves,
etc. So XH {^) ls the number of such left cosets fixed by TT. Therefore,

E
.n- 5n

XH((>)^) qinv(v) = ^ #{cosets r5p : 7rr5p = r^p) qinv^~>
7<-eSn

^mr(^)£
cosets r5, '65

r5a=r5,

E £ . inv(vf-Kk)

(Al,..., Ak) (<ri...., 'k)
WA, =[n}. #A, =p, ', 5^;

£ £ £ ».t'nti(7ri<T)

(AI ... A,, ) (.. l. -.. 'k) WlS^A^
UA, =(n], #A, =p; ', 5^^.

where a- = TT-^- . -TTk in the last summation. By the Lemma, each of these sums

,
ini»(wi<7)

viGSA^
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are divisible by (1 + g)l-r/2-l, and hence the theorem is proven. D

Remark
At least some of the divisibility asserted by Theorem 1 is immediate, nzunely that for
5^2 the sum is divisible by (1 - g)1, and by the trzinspose symmetry, for r ^ 2 the sum
is divisible by (1 + g)1. We simply note that by the Littlewood-Richardson riile, for 5^2,
^A/^ does not contain the trivial character hi its irreducible decomposition, and hence by
the orthogonality relation for characters, we have

E ̂ /W 9tn'(1r) I =
Lw65n J o==l

E x^(7r) . l(7r)= °
»£5»

This implies the sum is divisible by (1 - q) .

Section 3. Proof of Theorem 2

We only give a sketch of the proof.
To begin, we note that our earlier conunent about the effect of transposing the shape

A/^ on the sum. implies that we only need to prove that 5(1) has the asserted value.
We will proceed by descending induction on r, beginning with the beise case r = n.

Note that in this case X<~r' ^ is the trivial character and

^q-W=[n]\, =[n], [n-l},... [2], [l},
^£Sn

where [n]g = 1+g+g2+... +gn-l. The theorem then immediately follows in this case from
the above expression. For the inductive step, our strategy will be to replace ^:(r'1 ) with
a character we can compute more explicitly. Let (l'-l) © (r) denote the skew shape which
has a coluran of size s - 1 disjomt froni a row of size r a^ shown below for r =4, 5 = 6:

By an easy case of the Littlewood-Richardson rule,

and hence

/C-l)®(r) ^ y(^. i'~l) + y(^+i. r-3)

^(r, l-1) ̂  ^(l'-l)®(r) _ ^(r+1, 1--2)
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Using the last equation, one can check that the inductive step is equivalent to proving the
following:

s.... ^(l'-l)9(r)w ^( ^)

(l+g)Lr/2J

(n+2)n![r/2j!
r is even

g=-l

(r+1)!
n^21! r is odd

To prove the last expression, we make the change of variable p = 1+g as before, and
we will use the fact that the character ^(1 )®(T") is the induction from 5, _i x Sr to Sn
of the character sgn 0 1. We then have

rE.. s^(l'~l)ffi(r)M^(-)i
-(T^)Lr/2J

g=-l

S. S^(l"l)e(r)(7r)(P-l)tn'(')
, L'-/2J

p=0

p-Lr/2J E E ^(^|^)(P-I)-(-)
W65n^(^)

»(<<)=A p=0

p-Lr/2J E E ^"(7ri^) E p^J(-irv ^-#J

7r6sn^(^) . c(^)
>(A)»A JC/nof. -) p=0

=(-i)Lr/2J E E ^-(-IM-A)
^(.^),. C(M) ^^ ;^^^

#J=lr/2J

The proof then proceeds by finding a sequence of relatively simple sign-reversmg involutions
which sieve the above sum. down to a small set of terms, each. having sign (-l)l-r/2-l. and
having the desired cardinaJity to prove the assertion. D

The data suggests that even more is true in the hook case:

Conjecture 4. Let A be a AooA partition (r, la-l), and 5(g) as before, i.e

E^(7r)^(7r)=(i-5)L'/2J^)
.^ 5n

If r ^ 5, then S(q) has non-negative coefScients.

Section 4. The defining representation
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When 5=2, the character X( ls essentially the defining character of Sn, i.e. the
permutation representation of 5^ acting on [n]. This character has the particularly simple
expression

X(n-l'l)(^) = #Fix^} - 1
where Fix^) is the set of fixed points or 1-cydes of TT i. e.

Fix{Tr) ={k:l^k^n, Vk=k}

Therefore our results in this case have interpretations in terms of the joint distribution
of fixed points and inversions over the symmetnc group, some of which are interestiug.
For example, it is weU-known and easy to see that "the average permuta-tion m Sn has
one &ced point" and "the average permutation m 5nhas ̂  (^) mverslons". The foUowing
coroUary asserts that the value of #Fix(v) . inv^) for the "average permutation TT in Sn"coro

IS
(3n + l)(n - 2)

12

Corollary 5.

S#^w. -w=(3n+l^-2)"'
w£5«

Proof. Let /(g) denote the sum

^ X(n-l'l)Wqinvw = E (#Fia:(7r) - l)9tnr('r)
V^Sn W 5n

Then we have

^-^(M
- [t^\,
= ^{#FixW-l)-inv{^

9=1

w 5»

By Theorem 2 in the case 5 = 2, we have 5(1) = (n + l)!/6. Combining this with the easy
fact that ,

E tnv(7r) = (D i-
^ Sn

gives the resiilt. D

The preceding result can be considerably strengthened:
Proposition 6.

^ #Fix^ gtnl>(w) =E^-l]'^n-fc]'. E^4
^Sn k=l j>0

+2j k-1 n -k'
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r wjiere
M'<r"i _ inj:<?

[kl, ~[k}\, [n-k}\

Proof.

^ #Fi.w qinv^ = s E ̂ m°(')
T-CS^ fc=l - Sn

»), =*

=£ E ,mt>((r) £ ,
tno(r)

fc=l <765(i.k_i]XS(k}xS(k+i,n] r Sn, .. k°k
ri<---Tk-l> rk+l<---

where the last equality comes from the well-known fact that any permutation TT may be
factored uniquely as TT = o-r with o-   5(i, fc_i] x 5{fc} x 5[fc4-i, n] and

TI < ... < Tfc-i and Tk+i < ... r-n.

Note that we are restricting this factorization to the set of TT which fix fc, but this creates
no difficiilties. Since S^eSn <linv(v) = tn]'2' we have

^ #Fix{^ qinv^ = ^[k - l]!, [n - A:]!, ^
W 5n

,
inv(n)

Jk=l r Sn, r>, =k
l<---rk-l. rk+l<'"'

zind it only remams to compute the last sum on the right-hand side. Given such a r, define
two subsets J\, Jz ̂  [n\ by

Jl = {i:l ^i ^fc-1, r-l(i) ^ fc + 1}
Jt= {i:k+l^i ^n, r-l(i) <. k - 1}

Note that J\^Ji must have the same cardinality which we denote by j, and choosing the
sets Ji, J2 completely determines r. There are exactly j2 inversions between Ji and J;,
and exactly 2j inversions between k and J\, Jz. This accounts for the gj +2J term in the
sum. The remaining inversions of r come from among the numbers in [1, fc - 1] and ajnong
the numbers in [k + l, n], and correspond to MacMahon's "inv" statistic on subsets [Ma]
applied to the sets J\, J2 respectively. Since the distribution of "inv" over fc-subsets of an
n-set is given by [^j^, the theorem foUows. D

Remark
The last sum on the right-hand side in the preceding theorem is similar to the q- Vandermonde
convolution

E^"
J^O

k-1 n- k

]

n-1
k
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but does not sum so nicely. However, when weset g = 1 or g= -l, the two are the same.

Finally, we wish to prove the s == 2 case of Conjecture 4. Unravemng the statement in
this case, it conjectures that for all fc ̂  n, one has

^ #Fix{ir) ̂  #{?r  5» : inv(TT) ̂  k}
»6S»

. n»(»)$k

Recalling that the average permutation in 5n has one fixed point, this may be paraphrased
as saying that the set of all permutations with length at most k have, on average, more
than "their fair share" affixed pomts. This seems plausible, since one woiild thjnk that

having few inversions and havuig fixed points should be positively correlated. It is not
hard to see that the assertion follows from

Theorem 7. Tiiere exists a byection <f> between the sets

{(7T, Jc) : ff C 5n, ke [n], -n-fc = fc} ̂  Sn

with the property that if <f>(TT, k) = cr then mv(o-) >. inv^).
Proof. First define the folding bijection f : [n]-^ M by

2min{Jfc-l, n-fc}+l if ̂  ^ Ffl
2mm{Jfc-l, n-fc}+2 if k > \^

Given a pair (7T, fc) as in the left-hand side of the theorcm, dcfme the pennutation o- =
crio-2 . . . o-n as follows: o-i = /(fc), and 0-2, ... , o'n are the niunbcrs [n] - k listed m the same
relative order of magnitude as TTI, ... , 7rfc-i, ^fc+i» . . . ̂ "n. It is easy to check that this is a
bijection with the desired property. D

Can such a bijection 4> be found so that o- ̂  TT in weak Bruhat order'! This would imply
that the permutations in any lower order ideal of wezA Bruhat order have, on average,
"more than their fair share" affixed points.
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