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Abstract

We consider a way of counting the number Ca(v) of crossings of a partition n- of{l,..., n},
which is motivated by the study of a certain g-analogue, called Ry-transform, of the logarithm
of the Fourier transform for probability distributions with finite moments of all orders. Co(-)
appears in a description of the ̂ -transform via a summation formula on the set-partitions (see
equation (9) below). We discuss the relatioD between this and two other equivalent descriptions
of the ̂ -transform: (a) one in terms of weighted shifts, which makes clear that the case q =Q
has to do with the theory of free convoluiion, as developed by D. Voiculescu; (b) another via
a matrix equation related to the method of Stieltjes for expanding continued J-fractions as
power series; the latter description gives an interesting connection to the g-continuous Hermite
orthogonal polynomials.

R^suna^

Nous considerons un mode de compter Ie nombre c<>(ir) de croisements d'une partition T de
{1,.. ., n}, quiest motive par 1'etude d'une g-analogue, appelee transformation R,, du logarithm
de la transformation de Fourier d'une distribution de probabilite avec des moments finis. Co(-)
apparait dans une description de la transformation /?, faite au moyen d'une formule de som-
mation d'apres 1'ensemble de partitions de {1,.. ., n} (cf. 1'equation (9) dans Ie texte dessous).
Nous discutons la relation entre cette formule et deux autres descriptions equivalentes de la
transformation R, : (a) une d'elles en termes des shifts ponderes, qui montre que lecas g = 0
est lie a la convolution libre de D. Voiculescu; (b) une autre via une equation matricielle appar-
entee a la methode de Stieltjes pour developper des fractions continues de Jacobi. La derniere
description montre une liaison interessante avec Ie g-analogue contiau de polynomes d'Hermite.
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Extended abstract

1. The definition of Co(7r) For n ^ 1, we denote by 7?({1,. .., n}) the set of partitions of

{!,..., n}. For v   7?({1,.. ., n}) and 1 ^ mi. ms ^ n, we will write "mi ^ ms" for the fact that

mi and m^ are in the same dass (block) of ff.

Recall that a partition v of {!,..., n} is said to be non-crossing (notion introduced in [5]) if

there is no 4-tuple (mi, ms, my, m^) such that l^m-i <mi < mj< m^^ n, mi ̂  ma^' my ̂  m^.
We will call left-reduced number of crossings of ?r   P({1,..., n}) the number:

I l^mi <ms <ms<m4 ^ n, mi ̂  ma,
Co(7r) == card ̂  (mi, m2, m3, m4) | m; ~ "14, each of mi, m2 is minimal

I in the dass of v contaiuing it
(1)

The words "left-reduced" in the name of Co(?T) refer to the fact that rather than counting aU the

4-tuples mentioned in the preceding paragraph, we impose a more restrictive condition "on the

left" (the minimality requirement on mi and m; implies of course mi 9^ m;). It is easy to check,

however, that a partition T   P({1,..., "}) is non-crossing if and only if it has Co(7r) = 0.

There are, of course, many other ways of "counting the crossings" of a partition of {1,..., n},

which also have the property mentioned in the previous phrase; so the choice made in formula (1)

needs some justification. Our motivation for considering it came from considerations on some q-

analogues of the convolution of probability distributions with finite moments of all orders. The goal

of the present abstract is to present some of these considerations, and how crossings of partitions
are related to them.

Up to the present moment we did not find references to Co(-) of formula (1), in the literature. It

remains possible, however, that some relation exists with other examples of "statistics on partitions"
which have been studied.

2. Convolution, free convolution, and their linearizing transforms We will work with

normalized linear functionals on the algebra C{X} ofpolynomials, and we will view these functioaals

as a simplified algebraic way of looking to probability distributions with finite moments of all orders.

Thus we will speak for example about the convolution product of two such functionals ^i, ^z» which

will be denoted here by ̂  . p,i (because the symbol "*" is used for the free product), and has the
formula:

(/^r^X/) = (^i®^)(/(Xi+X2)), / C(X}. (2)

The tensor product /zi ® ,23 is viewed in (2) as the linear functional on the algebra of polynomials

in -Yi and ^2, which has (^ ® ̂ 2)(^im^'2l) = ^i(^F)^2(^), m, n > 0.
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It is well-known that the convolution product is linearized by the logarithm of the Fourier

transform, i.e.

log ^fii . fit) = log ^^) + log ^(fi^, (3)

for any distributions ^i, /X2. In the framework we have considered, the Fourier transform of a

functional ^ is viewed as a formal power series, (^~(^))(-?) = 23^o ^i -2;n» (obtained by formally

expanding as a sum "the integral / eitzdp, {t)"); moreover, log T is taken as S^LI ̂ (-l)n+l(^"(^) -
1)", a formal power series vanishing at zero.

la the work of D. Voiculescu ([11], [12]), a theory of free convolution of distributions was de-

veloped; the free convolution of the functionals /ii, /X2 is denoted by /ti|+|^2 and acts by a formula

similar to (2), but where the tensor product of /^i and ̂ 2 is replaced by their free product ̂ i *^2:

(^iB^2)(/) = (/ii*^)(/(Xi+X2)), / C(X). (4)

For the definition of/xi*/i2, which is a linear functional on the algebra of non-commu<fng polynomials

in Xi and Xz, see for instance Section 1.5 of [13j.

The analogue of log T of (3) for the free convolution is a certain R-transform constructed in

[II], [12]; that is, for a given distribution /i one constructs its ̂ -transform R(p) which is a formal

power series vanishing at zero; and the formula

R{^\^2) =R{^)+R(^) (5)

holds for every ̂ i and ,12.

The definition of the ̂ -transform is in terms of certain infimte Toeplitz (i.e. constant along
the diagonals) matrices. More precisely, let us denote by .S' and S* the matrices of the unilateral

shift and its adjoint with respect to the canonical basis of the Hilbert space f2(N) (the (i, j")-entry

of 5' is 1 when i = j + 1, and 0 otherwise; S* is the transpose of S). Given a formal power series

vanishing at zero, 0(z) = J^=^ OinZn, we will denote by Tg the Toeplitz matrbc

Te = 5'*+ai7+Q25+Q3^2+--
/ "1 1

Q'2 Q'1 1
Q'3 Q'2 "1 1

Q!4 Q'3 0'2 0'!

+On+iSn+
\

(6)

Note that it makes sense to calculate powers of Ty (and hence polynomials of T$, i.e. linear

combinations of its powers).

With these notations, the definition of the A-transform goes as follows:
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Definition 1 ([12], Section 2) Given p, : C{X) -^ C Unear, with ̂ (1) = 1, there exists a unique
formal power series vanishing at zero, 6(z) = ^^ a^z", such that /x(/) = the (0, 0)-entry of f(Tg)
for every /   C{X} (Te defined as in (6)). This 6 is denoted by iZ(/i), and called the ̂ -transform
of/z.

3. The Ag-transforms Let now q   [0, 1] be a parameter, and denote by Sq the infinite matrix
which has its (i, j")-entry equal to:

(5. ),, = { y/N" ^=J^+1 (7)
0, otherwise,

where [».], is the g-number 1 +g+ ... + g-i, for i ^ 1. Sy is a g-deformation of the unilateral shift
(corresponding to q = 0), which has appeared both on work on the quantum SU(2) group (see for
instance [15]), and in relation to the so-called ̂ -deformation of the commutation relations (see for
instance [2]). The adjoint of the matrbc Sg of (7) wiU be denoted by S^.

We define the Ag-transform by replacing S with Sy in the Definition 1 above. That is, for a
given formal power series vanishing at zero, 0(z) = ^^i CtnZn, we put

Te,, = 5;+Ql/+02^+Q35,2+---+Qn+l5,n+--- (8)

(the sum makes sense, because any two of the matrices which are summed are supported on different
diagonals). Then we make the

Definition 2 Given /z : C(X) -^ C Unear, with /i(l) = 1, there exists a unique formal power
series vanishing at zero, 6{z} = ^^ a^z", such that ̂ (/) = the (0, 0)-entry of f(Te, y) for every
/   C(X). This ̂  is denoted by Ry(fi) (and called the ̂ -transform of/x).

The ̂ , -transforms so defined are in some sense interpolating (for q running in [0, 1]) between the
free and the classical situation. The point will be that the ̂ -transform also has other descriptions
(presented in Theorems 1, 2 below) which correspond to some basic approaches used for g = 0
and/or g = 1, and which turn out to remain equivalent for arbitrary q   [0, 1].

4. The relation between ^, -transforms and crossings of partitions comes from the
following

Theorem 1 Let q C [0, 1] be a parameter, let p. : C(X) -* C be a Unear functional such that
,2(1) = 1, and consider the formal power series 9 = R^), e(z) = E^°=i "n^". Then for every n ^ 1
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we have

L

Kxn) = E 9COW n[i5, i - 1], ! a^, ].

^67'({l,..., n}) j=l
^={Bl,....B*}

(9)

(co(7r) is as defined in Section 1, and the a's are the coefficients of 0. \Bj\ stands, as usual, for

the number of elements of JBj, and we use the customary notation for g-factorials: [0]g! = 1,

M, '=[iy2], ---[^for^l.)

As it was clear from the Definition 2, The Ao-transform (obtained for g = 0) coincides with the

A-transform of Voiculescu. We mention that the summation formula on non-crossing partitions

which is obtained from (9) in this case had been observed by R. Speicher [9].

On the other hand it is not so clear from Definition 2 why the Ai-traiisform (obtained for g = 1)
should be related to the logarithm of the Fourier transform. This is, however, easy to see from (9).
Indeed, by putting g = 1 in (9) and using the fact that for a partition n = fci + 2ky + .. . + nkn

(ki,..., kn > 0) of the number n there are n!/[(l!)fcl .. . (n!)fc"A;i! ... &"!] partitions of {l,..., n}
which have k^ classes of 1 element, ..., kn classes of n elements, we get:

/^") 
_ ^ Wkl--Wcn

Ai!... fcJn!
£

A;l,..., fcn>0

A;i+2fc2 +-+n^n=n

-, n^l; (10)

in (10), fi: C{X} ̂  C is Unear with /x(l) = 1, and (Qn)^i are the coefficients of ̂ i(/z). But, as

it is easily checked, (10) means that the series E^=o ^ zn is the exponential of S^=i ̂ .?") and
this entails the formula

(^(^))(z) = -iz{ log ̂ ))/(-^). (11)

Thus, the ^i-transform differs from the logarithm of the Fourier transform only by a linear au-

tomorpliism of the space of formal power series vanishing at zero (and, in particular, it shares

the property of log T of linearizing usual convolution). Relation (10) is in fact equivalent to the

well-known formida connecting the moments of a distribution and its so-called cumulants (see [8],
Section 11. 12.8 for details).

We mention that one of the ingredients entering the proof of Theorem 1 is the identity stated
as foUows. For n > 1, we denote by Cn the set of n-tuples

m n

{e=(6l,..., Cn) | £!,..., "  NU{-1}, ̂ Cj ̂ 0 for every 1 ^m^n, ^Cj = 0}.
J=l j=l

(One thinks of the elements of Cn as of paths in the square lattice, by identifying (ei,..., Cn) with
the sequence of points (0, 0), (1, Ci), (2, Ci +  2),..., (n, fi + ... + fn) = (n, 0). ) We denote by pr,:
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?({!,..., n}) -* Cn the map which associates to the partition T = {Bi,..., Bk}   7?({1,. .., n})
the n-tuple £ = (ci,.. ., Cn) 6 Cn given by:

\Bj\ - 1, if m = mi'n Bj for some (uniquely determined) 1 <j <: k,
em = 1 -1', ' otherwise.

Then for every £ = (ci,.. -, Cn)   Cn we have:

E 9CO(T) = ( n [<i +... +  .-i], ) . ( H [e, ], ! )-1.
» p^l(£) Km<n Km<n

such thai tuck that

<m=-l <m>0

(13)

The case q = 0 of (13), which asserts that the map pn defined in (12) becomes a bijection when
restricted to non-crossing partitions, is a well-known remark ofPoupard ([7], Section 1.3).

5. The relation with the g-continuous Hermite polynomials Another characterization

of the jRg-transform is provided by the following

Theorem 2 Let g   [0, 1] be a parameter, let p, : C{X} -^ C be a linear functional such that

/x(l) = 1, and consider the formal power series 9 = R^), 6{z~) = E^=i »n2". Then the matrix
equation

7i,o 1
72,0 72,1 1

(14)73, 0 73, 1 73,2 1
74,0 74. 1 74,2 74,3 1

( 1
7l,o 1
72,0 72.1 1
73,0 73, 1 73.2 1

/

( ^[QWW 1
«2[1], !/[0], ! ai[l], !/[l], ! 1
a3[2], !/[0], ! Q2[2], !/[l], ! ai[2], !/[2],! 1
a4[3], !/[0], ! a3[3], !/[l], ! Q2[3], !/[2], ! Qi[3], !/[3], ! 1

/

(where (Q;n)^i are the coefiicients of 9, and (7,, j), >j->o are unknowns) has a unique solution, and
we have /x(Xn) = 7n,o for every n ^ 1.

The equation (14) is very similar (especially if we also take into account the significance of the
first column of F) to what one has when converting a continued J-fraction into a power series, after
the method of Stieltjes (see [14], Section 53). The difference between (14) and the matrix equation
of Stieltjes is that the third matrbc in (14) may have non-zero (i, j")-entries for aU pairs (i, j) such
that j <. i+ 1 (and not only for those (i, j) with |t - j\ ^ 1).
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Note that if the considered power series ff happens to be a quadratic polynomial. vanishing at

zero, 0(z) = a^z + a-^z2 (i. e. 0:3 = 0:4 = ... = 0), then the theorem of Stieltjes can indeed be

applied, and gives

^^Xn)zn =
"=o 1 - a^z -

1

[1]^2. 3-2 (15)

1 - QI^-- [2Lo2?r
1-a^-JS^.

1 - Q:l2 -

with ̂  = Ag'l(0). In particular, by putting ai = 0 and a'2 = 1 in (15), we have that the generating

'?

1

function for the moments of Ag'l(2'2) is the expansion of

~w^~_
l2L?r

T3L^

(16)

i- ty,,
1-

This continued fraction is known to be associated to the g-continuous Hermite polynomials (see

for instance [4], equation (4.4), or Sections 2 and 3. 5 of [1]); therefore, Ag-l(z2) is the measure
associated with this set of orthogonal polynomials.

We mention that various facts concerning the particular case discussed in the preceding para-

graph were known. On one hand, the formula for the moment of order 2n of Ag"l(z2) provided by
Theorem 1 above is '^qc°^\ with summation after all the matchings (i.e. partitions into classes
with exactly two elements) of {1,. . ., 2n). The relation between this sum and the continued frac-

tion (16) was pointed out by Touchard [10] (see also Flajolet [3]). On the other hand, the operator

Sg + S^ (with 5g as in equation (7) above) was studied by Bozejko and Speicher [2] Part II, and
its connection with the g-continuous Hermite polynomials was found. (By the Definition 2 above,

the linear functional ̂ l(z2) sends a polynomial / into the (0, 0)-entry of /(5'g + S^). )
We also mention, without entering into details, that the importance of the particular example

discussed above comes from the fact that it plays the role of "central limit" in a certain analogue of
the central limit theorem for the "g-convolution" operation which is linearized by the Ag-transform
(see Section 4 of [6] for an exact statement of this).

The proofs of the above Theorems 1 and 2 are presented in the paper [6].
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