# An identity related to the enumeration of crossings of partitions 

Alexandru Nica<br>Department of Mathematics<br>University of California<br>Berkeley, California 94720<br>(e-mail: nica@cory.berkeley.edu)


#### Abstract

We consider a way of counting the number $c_{o}(\pi)$ of crossings of a partition $\pi$ of $\{1, \ldots, n\}$, which is motivated by the study of a certain $q$-analogue, called $R_{q}$-transform, of the logarithm of the Fourier transform for probability distributions with finite moments of all orders. $c_{o}(\cdot)$ appears in a description of the $R_{q}$-transform via a summation formula on the set-partitions (see equation (9) below). We discuss the relation between this and two other equivalent descriptions of the $R_{q}$-transform: (a) one in terms of weighted shifts, which makes clear that the case $q=0$ has to do with the theory of free convolution, as developed by D. Voiculescu; (b) another via a matrix equation related to the method of Stieltjes for expanding continued $J$-fractions as power series; the latter description gives an interesting connection to the $q$-continuous Hermite orthogonal polynomials.


## Résumé

Nous considérons un mode de compter le nombre $c_{0}(\pi)$ de croisements d'une partition $\pi$ de $\{1, \ldots, n\}$, qui est motivé par l'étude d'une $q$-analogue, appelée transformation $R_{q}$, du logarithm de la transformation de Fourier d'une distribution de probabilité avec des moments finis. $c_{o}(\cdot)$ apparait dans une description de la transformation $R_{q}$ faite au moyen d'une formule de sommation d'après l'ensemble de partitions de $\{1, \ldots, n\}$ (cf. l'équation (9) dans le texte dessous). Nous discutons la relation entre cette formule et deux autres descriptions équivalentes de la transformation $R_{q}$ : (a) une d'elles en termes des shifts ponderés, qui montre que le cas $q=0$ est lié à la convolution libre de D. Voiculescu; (b) une autre via une équation matricielle apparentée à la méthode de Stieltjes pour développer des fractions continues de Jacobi. La dernière description montre une liaison intéressante avec le $q$-analogue continu de polynômes d'Hermite.

## Extended abstract

1. The definition of $c_{o}(\pi)$ For $n \geq 1$, we denote by $\mathcal{P}(\{1, \ldots, n\})$ the set of partitions of $\{1, \ldots, n\}$. For $\pi \in \mathcal{P}(\{1, \ldots, n\})$ and $1 \leq m_{1}, m_{2} \leq n$, we will write " $m_{1} \underset{\sim}{\sim} m_{2}$ " for the fact that $m_{1}$ and $m_{2}$ are in the same class (block) of $\pi$.

Recall that a partition $\pi$ of $\{1, \ldots, n\}$ is said to be non-crossing (notion introduced in [5]) if there is no 4-tuple ( $m_{1}, m_{2}, m_{3}, m_{4}$ ) such that $1 \leq m_{1}<m_{2}<m_{3}<m_{4} \leq n, m_{1} \underset{\sim}{\sim} m_{3} \underset{\sim}{\pi} m_{2} \underset{\sim}{\sim} m_{4}$.

We will call left-reduced number of crossings of $\pi \in \mathcal{P}(\{1, \ldots, n\})$ the number:

$$
c_{o}(\pi)=\operatorname{card}\left\{\begin{array}{ll}
\left(m_{1}, m_{2}, m_{3}, m_{4}\right) & \begin{array}{l}
1 \leq m_{1}<m_{2}<m_{3}<m_{4} \leq n, m_{1} \stackrel{\pi}{\sim} m_{3}, \\
m_{2} \underset{\sim}{\pi} m_{4}, \text { each of } m_{1}, m_{2} \text { is minimal } \\
\text { in the class of } \pi \text { containing it }
\end{array} \tag{1}
\end{array}\right\} .
$$

The words "left-reduced" in the name of $c_{o}(\pi)$ refer to the fact that rather than counting all the 4-tuples mentioned in the preceding paragraph, we impose a more restrictive condition "on the left" (the minimality requirement on $m_{1}$ and $m_{2}$ implies of course $m_{1} \mathcal{Z}_{2} m_{2}$ ). It is easy to check, however, that a partition $\pi \in \mathcal{P}(\{1, \ldots, n\})$ is non-crossing if and only if it has $c_{o}(\pi)=0$.

There are, of course, many other ways of "counting the crossings" of a partition of $\{1, \ldots, n\}$, which also have the property mentioned in the previous phrase; so the choice made in formula (1) needs some justification. Our motivation for considering it came from considerations on some $q$ analogues of the convolution of probability distributions with finite moments of all orders. The goal of the present abstract is to present some of these considerations, and how crossings of partitions are related to them.

Up to the present moment we did not find references to $c_{o}(\cdot)$ of formula (1), in the literature. It remains possible, however, that some relation exists with other examples of "statistics on partitions" which have been studied.
2. Convolution, free convolution, and their linearizing transforms We will work with normalized linear functionals on the algebra $\mathbf{C}\langle X\rangle$ of polynomials, and we will view these functionals as a simplified algebraic way of looking to probability distributions with finite moments of all orders. Thus we will speak for example about the convolution product of two such functionals $\mu_{1}, \mu_{2}$, which will be denoted here by $\mu_{1} \cdot \mu_{2}$ (because the symbol " ${ }_{\star}$ " is used for the free product), and has the formula:

$$
\begin{equation*}
\left(\mu_{1} \cdot \mu_{2}\right)(f)=\left(\mu_{1} \otimes \mu_{2}\right)\left(f\left(X_{1}+X_{2}\right)\right), \quad f \in \mathbf{C}\langle X\rangle \tag{2}
\end{equation*}
$$

The tensor product $\mu_{1} \otimes \mu_{2}$ is viewed in (2) as the linear functional on the algebra of polynomials in $X_{1}$ and $X_{2}$, which has $\left(\mu_{1} \otimes \mu_{2}\right)\left(X_{1}^{m} X_{2}^{n}\right)=\mu_{1}\left(X_{1}^{m}\right) \mu_{2}\left(X_{2}^{n}\right), m, n \geq 0$.

It is well-known that the convolution product is linearized by the logarithm of the Fourier transform, i.e.

$$
\begin{equation*}
\log \mathcal{F}\left(\mu_{1} \cdot \mu_{2}\right)=\log \mathcal{F}\left(\mu_{1}\right)+\log \mathcal{F}\left(\mu_{2}\right) \tag{3}
\end{equation*}
$$

for any distributions $\mu_{1}, \mu_{2}$. In the framework we have considered, the Fourier transform of a functional $\mu$ is viewed as a formal power series, $(\mathcal{F}(\mu))(z)=\sum_{n=0}^{\infty} \frac{i^{n} \mu\left(X^{n}\right)}{n!} z^{n}$, (obtained by formally expanding as a sum "the integral $\int e^{i t z} d \mu(t)$ "); moreover, $\log \mathcal{F}$ is taken as $\sum_{n=1}^{\infty} \frac{1}{n}(-1)^{n+1}(\mathcal{F}(\mu)-$ $1)^{n}$, a formal power series vanishing at zero.

In the work of D. Voiculescu ([11],[12]), a theory of free convolution of distributions was developed; the free convolution of the functionals $\mu_{1}, \mu_{2}$ is denoted by $\mu_{1} \sharp \mu_{2}$ and acts by a formula similar to (2), but where the tensor product of $\mu_{1}$ and $\mu_{2}$ is replaced by their free product $\mu_{1} \star \mu_{2}$ :

$$
\begin{equation*}
\left(\mu_{1} \boxplus \mu_{2}\right)(f)=\left(\mu_{1} \star \mu_{2}\right)\left(f\left(X_{1}+X_{2}\right)\right), \quad f \in \mathbb{C}\langle X\rangle \tag{4}
\end{equation*}
$$

For the definition of $\mu_{1} \star \mu_{2}$, which is a linear functional on the algebra of non-commuting polynomials in $X_{1}$ and $X_{2}$, see for instance Section 1.5 of [13].

The analogue of $\log \mathcal{F}$ of (3) for the free convolution is a certain $R$-transform constructed in [11], [12]; that is, for a given distribution $\mu$ one constructs its $R$ - $\operatorname{transform} R(\mu)$ which is a formal power series vanishing at zero; and the formula

$$
\begin{equation*}
R\left(\mu_{1} \boxplus \mu_{2}\right)=R\left(\mu_{1}\right)+R\left(\mu_{2}\right) \tag{5}
\end{equation*}
$$

holds for every $\mu_{1}$ and $\mu_{2}$.

The definition of the $R$-transform is in terms of certain infinite Toeplitz (i.e. constant along the diagonals) matrices. More precisely, let us denote by $S$ and $S^{*}$ the matrices of the unilateral shift and its adjoint with respect to the canonical basis of the Hilbert space $l^{2}(\mathrm{~N})$ (the $(i, j)$-entry of $S$ is 1 when $i=j+1$, and 0 otherwise; $S^{*}$ is the transpose of $S$ ). Given a formal power series vanishing at zero, $\theta(z)=\sum_{n=1}^{\infty} \alpha_{n} z^{n}$, we will denote by $T_{\theta}$ the Toeplitz matrix

$$
\begin{align*}
T_{\theta}=S^{*} & +\alpha_{1} I+\alpha_{2} S+\alpha_{3} S^{2}+\cdots+\alpha_{n+1} S^{n}+\cdots  \tag{6}\\
& =\left(\begin{array}{ccccc}
\alpha_{1} & 1 & \\
\alpha_{2} & \alpha_{1} & 1 & & \\
\alpha_{3} & \alpha_{2} & \alpha_{1} & 1 & \\
\alpha_{4} & \alpha_{3} & \alpha_{2} & \alpha_{1} & 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
\end{align*}
$$

Note that it makes sense to calculate powers of $T_{\theta}$ (and hence polynomials of $T_{\theta}$, i.e. linear combinations of its powers).

With these notations, the definition of the $R$-transform goes as follows:

Definition 1 ([12], Section 2) Given $\mu: \mathbf{C}\langle X\rangle \rightarrow \mathbf{C}$ linear, with $\mu(1)=1$, there exists a unique formal power series vanishing at zero, $\theta(z)=\sum_{n=1}^{\infty} \alpha_{n} z^{n}$, such that $\mu(f)=$ the ( 0,0 )-entry of $f\left(T_{\theta}\right)$ for every $f \in \mathrm{C}\langle X\rangle\left(T_{\theta}\right.$ defined as in (6)). This $\theta$ is denoted by $R(\mu)$, and called the $R$-transform of $\mu$.
3. The $R_{q}$-transforms Let now $q \in[0,1]$ be a parameter, and denote by $S_{q}$ the infinite matrix which has its $(i, j)$-entry equal to:

$$
\left(S_{q}\right)_{i, j}= \begin{cases}\sqrt{[i]_{q}}, & \text { if } i=j+1  \tag{7}\\ 0, & \text { otherwise }\end{cases}
$$

where $[i]_{q}$ is the $q$-number $1+q+\cdots+q^{i-1}$, for $i \geq 1 . S_{q}$ is a $q$-deformation of the unilateral shift (corresponding to $q=0$ ), which has appeared both on work on the quantum $S U(2)$ group (see for instance [15]), and in relation to the so-called $q$-deformation of the commutation relations (see for instance [2]). The adjoint of the matrix $S_{q}$ of (7) will be denoted by $S_{q}^{*}$.

We define the $R_{q}$-transform by replacing $S$ with $S_{q}$ in the Definition 1 above. That is, for a given formal power series vanishing at zero, $\theta(z)=\sum_{n=1}^{\infty} \alpha_{n} z^{n}$, we put

$$
\begin{equation*}
T_{\theta, q}=S_{q}^{m}+\alpha_{1} I+\alpha_{2} S_{q}+\alpha_{3} S_{q}^{2}+\cdots+\alpha_{n+1} S_{q}^{n}+\cdots \tag{8}
\end{equation*}
$$

(the sum makes sense, because any two of the matrices which are summed are supported on different diagonals). Then we make the

Definition 2 Given $\mu: \mathbf{C}(X\rangle \rightarrow \mathbf{C}$ linear, with $\mu(1)=1$, there exists a unique formal power series vanishing at zero, $\theta(z)=\sum_{n=1}^{\infty} \alpha_{n} z^{n}$, such that $\mu(f)=$ the $(0,0)$-entry of $f\left(T_{\theta, q}\right)$ for every $f \in \mathrm{C}\langle X\rangle$. This $\theta$ is denoted by $R_{q}(\mu)$ (and called the $R_{q}$-transform of $\mu$ ).

The $R_{q}$-transforms so defined are in some sense interpolating (for $q$ running in $[0,1]$ ) between the free and the classical situation. The point will be that the $R_{q}$-transform also has other descriptions (presented in Theorems 1,2 below) which correspond to some basic approaches used for $q=0$ and/or $q=1$, and which turn out to remain equivalent for arbitrary $q \in[0,1]$.
4. The relation between $R_{q}$-transforms and crossings of partitions comes from the following

Theorem 1 Let $q \in[0,1]$ be a parameter, let $\mu: \mathbf{C}(X) \rightarrow \mathbf{C}$ be a linear functional such that $\mu(1)=1$, and consider the formal power series $\theta=R_{q}(\mu), \theta(z)=\sum_{n=1}^{\infty} \alpha_{n} z^{n}$. Then for every $n \geq 1$
we have

$$
\begin{equation*}
\mu\left(X^{n}\right)=\sum_{\substack{\pi \in \mathcal{P}(\{1, \ldots, n\}) \\ \pi=\left\{B_{1}, \ldots, B_{k}\right\}}} q^{c_{o}(\pi)} \prod_{j=1}^{k}\left[\left|B_{j}\right|-1\right]_{q}!\alpha_{\left|B_{j}\right|} \tag{9}
\end{equation*}
$$

( $c_{o}(\pi)$ is as defined in Section 1, and the $\alpha$ 's are the coefficients of $\theta .\left|B_{j}\right|$ stands, as usual, for the number of elements of $B_{j}$, and we use the customary notation for $q$-factorials: $[0]_{q}!=1$, $[l]_{q}!=[1]_{q}[2]_{q} \cdots[l]_{q}$ for $l \geq 1$.)

As it was clear from the Definition 2, The $R_{0}$-transform (obtained for $q=0$ ) coincides with the $R$-transform of Voiculescu. We mention that the summation formula on non-crossing partitions which is obtained from (9) in this case had been observed by R. Speicher [9].

On the other hand it is not so clear from Definition 2 why the $R_{1}$-transform (obtained for $q=1$ ) should be related to the logarithm of the Fourier transform. This is, however, easy to see from (9). Indeed, by putting $q=1$ in (9) and using the fact that for a partition $n=k_{1}+2 k_{2}+\cdots+n k_{n}$ $\left(k_{1}, \ldots, k_{n} \geq 0\right)$ of the number $n$ there are $n!/\left[(1!)^{k_{1}} \cdots(n!)^{k_{n}} k_{1}!\cdots k_{n}!\right]$ partitions of $\{1, \ldots, n\}$ which have $k_{1}$ classes of 1 element, $\ldots, k_{n}$ classes of $n$ elements, we get:

$$
\begin{equation*}
\frac{\mu\left(X^{n}\right)}{n!}=\sum_{\substack{k_{1}, \ldots, k_{n} \geq 0 \\ k_{1}+2 k_{2}+\cdots+n k_{n}=n}} \frac{\left(\frac{\alpha_{1}}{1}\right)^{k_{1}} \cdots\left(\frac{\alpha_{n}}{n}\right)^{k_{n}}}{k_{1}!\cdots k_{n}!}, n \geq 1 ; \tag{10}
\end{equation*}
$$

in (10), $\mu: \mathbf{C}\langle X\rangle \rightarrow \mathbf{C}$ is linear with $\mu(1)=1$, and $\left(\alpha_{n}\right)_{n=1}^{\infty}$ are the coefficients of $R_{1}(\mu)$. But, as it is easily checked, (10) means that the series $\sum_{n=0}^{\infty} \frac{\mu\left(X^{n}\right)}{n!} z^{n}$ is the exponential of $\sum_{n=1}^{\infty} \frac{\alpha_{n}}{n} z^{n}$, and this entails the formula

$$
\begin{equation*}
\left(R_{1}(\mu)\right)(z)=-i z(\log \mathcal{F}(\mu))^{\prime}(-i z) \tag{11}
\end{equation*}
$$

Thus, the $R_{1}$-transform differs from the logarithm of the Fourier transform only by a linear automorphism of the space of formal power series vanishing at zero (and, in particular, it shares the property of $\log \mathcal{F}$ of linearizing usual convolution). Relation (10) is in fact equivalent to the well-known formula connecting the moments of a distribution and its so-called cumulants (see [8], Section II.12.8 for details).

We mention that one of the ingredients entering the proof of Theorem 1 is the identity stated as follows. For $n \geq 1$, we denote by $\mathcal{C}_{n}$ the set of $n$-tuples

$$
\left\{\underline{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \mid \epsilon_{1}, \ldots, \epsilon_{n} \in \mathrm{~N} \cup\{-1\}, \sum_{j=1}^{m} \epsilon_{j} \geq 0 \text { for every } 1 \leq m \leq n, \sum_{j=1}^{n} \epsilon_{j}=0\right\}
$$

(One thinks of the elements of $\mathcal{C}_{n}$ as of paths in the square lattice, by identifying $\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ with the sequence of points $(0,0),\left(1, \epsilon_{1}\right),\left(2, \epsilon_{1}+\epsilon_{2}\right), \ldots,\left(n, \epsilon_{1}+\cdots+\epsilon_{n}\right)=(n, 0)$. ) We denote by $\rho_{n}$ :
$\mathcal{P}(\{1, \ldots, n\}) \rightarrow \mathcal{C}_{n}$ the map which associates to the partition $\pi=\left\{B_{1}, \ldots, B_{k}\right\} \in \mathcal{P}(\{1, \ldots, n\})$ the $n$-tuple $\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in \mathcal{C}_{n}$ given by:

$$
\epsilon_{m}= \begin{cases}\left|B_{j}\right|-1, & \text { if } m=\min B_{j} \text { for some (uniquely determined) } 1 \leq j \leq k  \tag{12}\\ -1, & \text { otherwise }\end{cases}
$$

Then for every $\underline{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in \mathcal{C}_{n}$ we have:

$$
\begin{equation*}
\sum_{\pi \in \rho_{n}^{-1}(\epsilon)} q^{c_{0}(\pi)}=\left(\underset{\substack{1 \leq m \leq n \\ \text { such that } \\ \epsilon_{m}=-1}}{ }\left[\epsilon_{1}+\ldots+\epsilon_{m-1}\right]_{q}\right) \cdot\left(\prod_{\substack{1 \leq m \leq n \\ \text { such that } \\ e_{m} \geq 0}}\left[\epsilon_{m}\right]_{q}!\right)^{-1} . \tag{13}
\end{equation*}
$$

The case $q=0$ of (13), which asserts that the map $\rho_{n}$ defined in (12) becomes a bijection when restricted to non-crossing partitions, is a well-known remark of Poupard ([7], Section 1.3).
5. The relation with the $q$-continuous Hermite polynomials Another characterization of the $R_{q}$-transform is provided by the following

Theorem 2 Let $q \in[0,1]$ be a parameter, let $\mu: \mathbf{C}\langle X\rangle \rightarrow \mathbf{C}$ be a linear functional such that $\mu(1)=1$, and consider the formal power series $\theta=R_{q}(\mu), \theta(z)=\sum_{n=1}^{\infty} \alpha_{n} z^{n}$. Then the matrix equation

$$
\begin{align*}
& \left(\begin{array}{ccccc}
\gamma_{1,0} & 1 & & & \\
\gamma_{2,0} & \gamma_{2,1} & 1 & & \\
\gamma_{3,0} & \gamma_{3,1} & \gamma_{3,2} & 1 & \\
\gamma_{4,0} & \gamma_{4,1} & \gamma_{4,2} & \gamma_{4,3} & 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)=\left(\begin{array}{cccc}
1 & & & \\
\gamma_{1,0} & 1 & & \\
\gamma_{2,0} & \gamma_{2,1} & 1 & \\
\gamma_{3,0} & \gamma_{3,1} & \gamma_{3,2} & 1 \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)  \tag{14}\\
& \left(\begin{array}{ccccc}
\alpha_{1}[0]_{q}!/\left[[0]_{q}!\right. & 1 & & \\
\alpha_{2}[1]_{!}!/[0]_{q}! & \alpha_{1}[1]_{q}!/[1]_{q}! & 1 \\
\alpha_{3}[2]_{!} / /[0]_{q}! & \alpha_{2}[2]!!/[1]_{q}! & \alpha_{1}[2]_{q}![2]_{q}! & 1 & \\
\alpha_{4}[3]_{!}!/[0]_{q}! & \alpha_{3}[3]_{!}!/[1]_{q}! & \alpha_{2}[3]_{!}!/[2]_{q}! & \alpha_{1}[3]_{q}!/[3]_{q}! & 1 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
\end{align*}
$$

(where $\left(\alpha_{n}\right)_{n=1}^{\infty}$ are the coefficients of $\theta$, and $\left(\gamma_{i, j}\right)_{i>j \geq 0}$ are unknowns) has a unique solution, and we have $\mu\left(X^{n}\right)=\gamma_{n, 0}$ for every $n \geq 1$.

The equation (14) is very similar (especially if we also take into account the significance of the first column of $\Gamma$ ) to what one has when converting a continued $J$-fraction into a power series, after the method of Stieltjes (see [14], Section 53). The difference between (14) and the matrix equation of Stieltjes is that the third matrix in (14) may have non-zero $(i, j)$-entries for all pairs $(i, j)$ such that $j \leq i+1$ (and not only for those $(i, j)$ with $|i-j| \leq 1$ ).

Note that if the considered power series $\theta$ happens to be a quadratic polynomial vanishing at zero, $\theta(z)=\alpha_{1} z+\alpha_{2} z^{2}$ (i.e. $\alpha_{3}=\alpha_{4}=\ldots=0$ ), then the theorem of Stieltjes can indeed be applied, and gives

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mu\left(X^{n}\right) z^{n}=\frac{1}{1-\alpha_{1} z-\frac{[1]_{g} \alpha_{2} z^{2}}{1-\alpha_{1} z-\frac{[2]_{q} \alpha_{2} z^{2}}{1-\alpha_{1} z-\frac{[3]_{q} \alpha_{2} z^{2}}{1-\alpha_{1} z-\cdots}}}}, \tag{15}
\end{equation*}
$$

with $\mu=R_{q}^{-1}(\theta)$. In particular, by putting $\alpha_{1}=0$ and $\alpha_{2}=1$ in (15), we have that the generating function for the moments of $R_{q}^{-1}\left(z^{2}\right)$ is the expansion of

$$
\begin{equation*}
\frac{1}{1-\frac{[1]_{q} z^{2}}{1-\frac{\left[2_{g} z^{2}\right.}{1-\frac{[3]_{q} z^{2}}{1-\ldots}}}} \tag{16}
\end{equation*}
$$

This continued fraction is known to be associated to the $q$-continuous Hermite polynomials (see for instance [4], equation (4.4), or Sections 2 and 3.5 of [1]); therefore, $R_{q}^{-1}\left(z^{2}\right)$ is the measure associated with this set of orthogonal polynomials.

We mention that various facts concerning the particular case discussed in the preceding paragraph were known. On one hand, the formula for the moment of order $2 n$ of $R_{q}^{-1}\left(z^{2}\right)$ provided by Theorem 1 above is $\sum_{\pi} q^{c_{0}(\pi)}$, with summation after all the matchings (i.e. partitions into classes with exactly two elements) of $\{1, \ldots, 2 n\}$. The relation between this sum and the continued fraction (16) was pointed out by Touchard [10] (see also Flajolet [3]). On the other hand, the operator $S_{q}+S_{q}^{*}$ (with $S_{q}$ as in equation (7) above) was studied by Bożejko and Speicher [2] Part II, and its connection with the $q$-continuous Hermite polynomials was found. (By the Definition 2 above, the linear functional $R_{q}^{-1}\left(z^{2}\right)$ sends a polynomial $f$ into the ( 0,0 )-entry of $f\left(S_{q}+S_{q}^{*}\right)$.)

We also mention, without entering into details, that the importance of the particular example discussed above comes from the fact that it plays the role of "central limit" in a certain analogue of the central limit theorem for the " $q$-convolution" operation which is linearized by the $R_{q}$-transform (see Section 4 of [6] for an exact statement of this).

The proofs of the above Theorems 1 and 2 are presented in the paper [6].

## References

[1] R. Askey, M. Ismail. Recurrence relations, continued fractions and orthogonal polynomials, Memoirs of the Amer. Math. Soc. 49(1984), No. 300 .
[2] M. Bożejko, R. Speicher. An example of a generalized Brownian motion, part I in Comm. Math. Phys. 137(1991), 519-531; part II in Quantum probability and related topics VII (L. Accardi, editor), 1990, 67-77.
[3] Ph. Flajolet. Combinatorial aspects of continued fractions, Discrete Math. 32(1980), 125-161.
[4] M.E.H. Ismail, D. Stanton, G. Viennot. The combinatorics of $q$-Hermite polynomials and the Askey-Wilson integral, Europ. J. Combinatorics 8(1987), 379-392.
[5] G. Kreweras. Sur les partitions non-croisées d'un cycle, Discrete Math. 1(1972), 333-350.
[6] A. Nica. A one-parameter family of transforms, linearizing convolution laws for probability distributions, preprint.
[7] Y. Poupard. Étude et dénombrement paralleles des partitions non-croisées d'un cycle et des découpages d'un polygone convexe, Discrete Math. 2(1972), 279-288.
[8] A.N. Shiryayev. Probability, Springer Verlag 1984.
[9] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions, preprint.
[10] J. Touchard. Sur un problème de configurations et sur les fractions continues, Canadian J. Math. 4(1952), 2-25.
[11] D. Voiculescu. Symmetries of some reduced free product C*-algebras, in Operator algebras and their connection with topology and ergodic theory, H. Araki, C.C. Moore, S. Stratila, D. Voiculescu editors (Springer Lecture Notes in Mathematics, volume 1132, 1985), 556-588.
[12] D. Voiculescu. Addition of certain non-commuting random variables, J. Funct. Anal. 66(1986), 323-346.
[13] D.V. Voiculescu, K.J. Dykema, A. Nica. Free random variables, CRM Monograph Series, volume 1, 1993 (published by the AMS).
[14] H.S. Wall. Analytic theory of continued fractions, van Nostrand, 1948.
[15] S.L. Woronowicz. Twisted $S U(2)$ group. An example of a non-commutative differential calculus, Publ. RIMS, Kyoto Univ. 23(1987), 117-181.

