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Abstract
We study a map called plactification from reduced words to words. The map takes nilplactic
(Coxeter-Knuth) equivalence to plactlc (Knuth) eqiiivalence, Euid has applications to the

enumeration of reduced words, Schubert polynomials and Specht modiiles.

Resume
Nous etudions une fonction appelee plaxification, des mots reduits aux mots. Cette fonc-
tion envoie les equivalences nilplaxiques (Coxeter-Knuth) sur les equivalences plaxiques
(Knuth), et possede des applications dans 1'enumeration des mots reduits, les polynomes
de Schubert et les modules de Specht.

Section 1. Introduction

The problem of counting the reduced words of a given permutation has received a great
deal of attention since about 1980 [St]. A fundamental tool in this subject is the mysterious
equivalence relation on reduced words known as nilplactic equivalence [LS1] or Coxeter-
Knuth equivalence [EG}, which bears a striking resemblance to the better understood
cquiv-alence relation on words known as plactic equivalence [LS2] or Knuth equivalence

This paper describes a map (considered earlier by Lascoux and Schutzenberger [La])
called plactification. This map takes reduced words to words and maps nilplactic equiv-
alence to plactic equivalence, substantiating the "striking resemblance" alluded to above.
The map has other pleasant properties, giving rise to applications to the enumeration of
reduced words, the theory of Schubert polynomials, and decomposltions of certain Specht
modules.

The paper is organized as follows. Section 2 establishes terminology. Section 3 defines
the plactification map and proves its main properties. Section 4 discusses applications.
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Section 2. Definitions

We will assume the reader has some familiarity with the notions of partitions X and their
Ferrers diagrams, standard Young tableaux, column-strict tableaux, and skew colmnn-strict
tableaux. All tableaux will be assumed to be of Ferrers shape, unless they are specifically
referred to as skew. A good reference for these notions is [Sa]. We also assume the
reader is soinewhat familiar with the notions of plactic (Knuih) equivalence. ^ the Robinson-
Schensted-Knuth correspondence, a-nd jeu-de-taquin, which we briefly review here (for more
thorough discussions, see [EG, Kn, Saj). The plactic or Knuth equivalence on words is the
transitive closure of the relations

if i -^ j < k, and

ikj

. jik

K

/v'

kij

. jkz

^ i < J <: k- We will often think of a skew column-strict tableau T as a word by reference
to its (row-) reading word, defined to be the concatciiation . . -b b2b\ where br is the rth
row of T. Thus when we speak of the Knuth equivalence class of T, we are referring to the
Knuth class of this word. Reading words of column-strict tableaux of Ferrers shapes will
be called tableau words. For T a skew tableau, it will sometimes be convenient for us to
use the column-reading word of T, defined to be the concatenation b b2b . . . where b is
the decreeising rearrangement of the ith column of T. It is well-known that the row-reading
and column-reading word of T are Knuth equivalent, so we can talk about the Knuth class
of T by reference to either reading word. Every word b is Knuth equivalent to a unique
column-strict tableau P(6). Robins on-SchensiecL-Knuth (row-insertion is an algorithm for
producing P(6) one step at a time: let Pr(b) be the unique column-strict tableau Knuth
equivalent to bib-i-'-br. P(b~) is often called the infertion tableau of b. The recording
tableau Q{b~) for this process is the standard Young tableaux having the same shape as
P(6) with entry r in the cell of Pr(&) which is not in Pr-\{b}- In this case, we say

(0-&)=(P(6), 0(^))

Given a skew column-strict tableau, one can also obtain the insertion tableau for its reading
word by doing jeu-de-taquin slides to bring T into the northwest corner (see [Sa]).

Example
Let b = 4252412. Then its J?5A'-insertioii looks like

2 5 2 2
Pi0)=4, ?2(&)=4, -P3(?i)=4 u, -P4(&)=4 5

P^h) =
224
4 5

1 24
PeO) = 2 5

4

1 2 2
P^(6) = 2 4 = P(&)

4 5

-384-



COUNTING REDUCED WORDS

and hence
'122

(0<-fc)=(P(6), Q(fc))= | 2 4
4 5

Since b is the reading word of the column-strict tableau

r=

1 2
2 4

2 5
4

one can also obtain P{b) by jeu-de-taqmn sUdes:

1

2

2 5
4

2

4
2

4

1

2

5

2

4

6 7

1 2 2
2 4
4 5

We now discuss reduced words. Given a permutation w in the symmetric group Sn, a
reduced word a is a sequence aiaz .. - a; of minimal length such that w = Sa. Sa,... s^a,,
where~5. is"the~ adjacent transposition (i i + 1). Here f(w) is caUed the length of w. Let
7?cd(w)'denote the set of all reduced words for w. Since the adjacent transpositions s,
obey the braid relations

s, Sj =s, Si if |z-j|>l
5, 5, +l5, = 5,-+l3, S,+l

one can define the mlplactic or Coxeter-Knuth equivalence relation on Red{w) to be the
transitive closure of these relations:

..., fc;... ^... ^...

..., ik... ^---3ki...
... t i+ 1 r" ~. ... z+1 i t'+l---

CK

where i < j < k. [EG], [LS1] show that, miraculously, all of the constructions involving
Knu'th equivalence we have described carry over to Coxeter-Kputh equivalence. Thus for
any'reducedword a, there is a unique column-strict tableau P(a) whose reading word is
Coxeter-'Knuth equivalent to a. One may obtain P(a) by Coxeter-Knuth insertion (see
[EG]), and we write

(0<°-a)=(P(a), Q(a))

Note that in this case P(a) is not only column-strict, but also strictly increasing along TO ̂ ,
since otherwise its reading word would not be reduced. If a is a reduced word which is the
reading word of a tableau T, then one can obtmn_P(a) by doing mlplactic jeu. de-taquin
slides to bring T into the northwest corner (see [LSl]).
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Example
a = 4253413 is a reduced word for w = 251643. Then its CA'-insertion looks like

A(")=4, P2(a)=^, ?3(a)=^ 5, ?4(a)- 2 3
4 5'

1 3 4
?5(a)=^ ^ ", ?6(a)=2 5

4

1 3 4
?7(a)= 2 4 =P(a)

4 5

zind hence
134

((0^a)=(P(a), Q(a))= (24 ,
.

4 5

Since a is the reading word of the column-strict tableau

1 3
3 4

2 5
4

r=

one can also obtain P(a) by nilplactic jeu-de-taquin slides:

1 3
3 4

2 5
4

1 3
234
4 5

1 3 4
2 4
4 5

We need one more tool in order to define the plactification map: the plactic action of
the symmetric group on words [LS2], which we recall here. Given a word b and positive
integer r, the r-parenthesization of & consists of replacing each occurrence ofr+ 1 by a left
parenthesis "(" and each occurrence of r by a right parenthesis ")". Say that an occurrence
of r + 1 and and occurrence of r are r-paired if they get replaced by a set of parentheses
which close each other under the usual rules of parenthesization. An r+1 or r which is
not r-paired with anyone will be called r-unpaired, and it follows that the subsequence of
r-unpaired r, r+ 1 s infc must look like:

rr... rr+lr+1-.. r+l

s i

where s, t are some integers. The plactic action of Sr on b leaves all other entries fixed and
replaces this subsequence by

rr---rr+lr+l---r+l
.V

t s

to form a new word denoted o-r(fc).

Example
If 6 = 133431312213432 then a^b) = 122431312212432.

The following properties of r-pedring and o-r are not hard to check [LS2]:
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Proposition 1. The number of r-paired r's and r + 1's is invariant under Knuth trans-
formations, and hence constant on Knutb eqiiivaJence classes.

Proposition 2. o-r commutes wjtii with Knuth equivalence, i.e. ifb ~ 6 (Aen o-r(&) ~

a^b').
Proposition 3.

Q^rW = Q{b):

Proposition 4.

(1) <7.2=«f.
(2) (7,-(7j = <7j<7, J/ |l - j| > 1.
(3) CT, (T, +l<7, = (T. +lO'.O'i+l

Remark
We will not make use of it, but this last proposition allowed Lascoux and Schiitzenberger
to define the plactic action of any permutatlon w on a word b to be

O-. l ... <7-., (&)

for any decomposition u? = s^ ... s,,, since the symmetric group is well-known to have
presentation given by the generators {s, } and relations (1), (2), (3).

Section 3. The plactification map

We are now in a position to define the plactification map 4> from reduced words to
words. Given a reduced word a that begins with the letter r (so a = ra), ^(a) is defined
rccursively by

<^(a) = ra-r(f>{a)

Therefore, ifn = QI ... a; then we have

<?(a) = ai^i(a2(7a2(---a;-i^ai_i(a;)---))

Example

^(5345134) = 5(75(3<73(4(74(5(75(l(Tl(3(73(4))))))
=5a5(3a3(4<74(5<75(lai(33)))))
= 5<75(3<73(4<74(5<75(133))))
= 5(75 (3<73 (4(74(5133)))

= 5(75(3(73(44133))

= 5a5(344133)

= 5344133
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We begin with a few simple observations about the map <}). First, note that it is invertlble:
the formula

^-i(rfc)==^-l(a, (6))

recursively defines the inverse. So <?'' is an injective map from reduced words to words. The
following proposition is not difficult to prove.

Proposition 5. Let a be a reduced word which is the (row-, columii-)reading word of a
skew column-strict tableau T. Then 4>{a) is the (row-, column-)reading word of a skew
coluinn-strict tableau of the same shape, denoted 4>(.T))-

For the moment, our primary goal is to characterize the image <^(J?ed(w)). To this end,
we recall from [Mac] that the Rothe diagram D(w) is the set of cells in the plane having
row and column indices

{(Z, j) : 2 < U^-l and j < w, }.

Given any set of cells D in the plane, the row-filled diagram F{D) is the filling of D in
which every cell in row r contains the entry r. Say a word b is D-peelable if there is some
column C of F{D) which occurs flush north as a vertical segment V in the first column of
P(&), and fc = P(fc)/V is P-peelable where D = D/C.

Example
w = 251643 has

x

x

P(w) =
x x

x x

x

1

2

F(P(w)) =
2 2

4 4
5

There are three P(w)-peelable column-strict tableau words, with "peelings" exhibited
below:

9
99 9

^: ^44^. 4^->T^0
4 4 J
5 5 ° .

1 2 2
2 4
4 5

1 2 2
244
5

2 2
4

4 5

. 2 2
4 4

2 2

4 4
0

2 2
4 4
0

0

4

2

4

2

4

2

4

It will eventually be shown below that ^Red(w~1)) is exactly the set of £)(w)-peelable
words b. First we note a few consequences of £)(w)-peelability. For any word b, the
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content of b is the sequence (ci, C2,... ), where c, is the number of occurrences of i in b.
For a permutation w, the code of w is the sequence (ci, C2,... ) where

C, =#{(!, j)^' <J, ^. >^-)-

The following proposition is evident:

Proposition 6. Kb is D{w)-peelable, then the content of b is the same as the code of w.

Proposition 7. If 6 is P(w)-peeiable, then

(1) all r's in b are r-paired ifwr < Wr+i ,
(2) allr+l's in b are r-paired if Wr > Wr+ i.

The proof proceeds by induction on the number of columns of Z) = D(w).
Here are two important properties of plactlfication:

Theorem 8.

(A) If a,, a' in Red(w) satisfy a ^ a/ then ̂ (a) ̂  <?(>(a ).
(B) For a in Red{w~1), 4>{a) is D(w)-peelable.

Proof. Both assertions are proven simultaneously by Induction on l(w}. so let A;, B; be
assertions A, B for aU permutations w with /(w) = /. The theorem immediately follows
from the next two lemmas, which require some work to prove. D

Lemma 9. Bk fork < I implies Ai.

Lemma 10. Afc for k < I and Bk for k < I imply BI.

We can now characterize the image 4>{Red{w}}:

Theorem 11. b = 4>{a) for some a in Red{w~1) if and only if b is D{w)-peelable.
Assertion B of the previous theorem gives one implication. The other direction follows

by induction on the number of columns of D (w).
Interestingly, the plactification map not only takes Coxeter-Knuth to Knuth equivalence,

but also preserves recording tableaux:

Proposition 12.
Q(<^(a)) - Q(a)

This result can be proven by induction, using the column insertion versions of the CK
and RSK correspondences.

Section 4. Applications

The first application gives a new, efficient way of counting the number of reduced words
of a permutation.
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Theorem. For any permutation w, the cardinality of Red{w) is

Y, fa hape(P)
p

where P runs over all D(w)-peelable column-stnct tableaux and f\ is the number of
standard Young tableaux of shape X.

Proof. The fact that the cardinality of Red(w) is

'shapeP
p

where P nms over all tableau which are reduced words for u»-l was proven by [EG], [LSl].
We have seen (Theorem 11, Proposition 5) that <?i> is a shape-preserving bijection between
this set of P and the set of I5(w)-peelable tableaux. D

Remark

This theorem is quite practical, since the definition of peclability adinits ail efficient algo-
rithm for producing all D(w)-peelable column-strict tableaux.

The second application is the expansion of a Schubert polynomial as a sum of key
polynoinials, indexed by the 2?(iy)-peelable tableaux.

Theorem 13. For any permutation w, we have

©w = ^ , K content K-(P))
p

where Gw and /Ca are the Schubert polynomials and key polynomials respectively ofLascoux
and Schutzenberger [LS3], [LS4], and P runs over all D(w')-peelablc coluinss-stnct tableaux.

The last application is again closely related to the first two, and deals witli decomposing
Specht modules of the symnietric group over C into irreducible representations. Given a
diagrain D, i. e. an n-element subset of the pleine Z x Z, and a field F, the Specht module
S° is a representation of the syiiunetric group 5"n over the field F defined using the Young-
symmetrizer construction (see [JP] for a definition). Wlien D is a Ferrers diagram A, 5"
is irreducible for F = C, and leads to a construction of all irreducibles over arbitrary' fields
F. When D \s a skew diagram, the Littlewood-Richards on rule decomposes S° into Specht
modules Sx [JP]. It is a natural question to ask about such decompositions for more general
diagrams D.

It was known (although never written down) that using results of Kraskiewicz and
Pragacz [KP] and [LSl], [EG] along with Schur-Weyl duality, one can prove the following:
Theorem 14. Let ¥ be a field of characteristic zero. Then for any permutation w

gD(w) ̂  ^R) gahape(P)
p

where P runs over a?/ tableau reduced words for w-l .

Therefore, we immediately deduce
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Corollary 15. If V is a field of chaj-actenstic zero and w any permutation, then
:u>) _ /T\ Qi/iape(P)

p

where P runs over all D(w)-peelable column-strict tableaux.

This corollary is interesting for the foUowing reason. In [RS2], it is shown that there is
ano^er class of diagrams D for which the decomposition of SD into irreduciblesover C is
given by the shapes of the £)-peelable tableaux. This other class is the class of co/umn-
^onveidiagrams^, i.e. those D for which each column has no gaps between its cells.
Both Rothe diagrams £>(w) and coliimn-convex diagrams D have the property that one
can~rearrajige the colunms'of D (which does not affect SD as an ̂ -representation) t^o
malce P have the northwest property: if i'i < i"2 and Ji < J'2 aud (^, J"i), (^, j2) are in D
then (z'i, ji) is in D. This suggests the foUowing conjecture:
Conjecture 16. If ¥ is a field of characteristic zero, and D has the northwest property,

gD ̂  ff^ gshape(P)

as P runs over all D-peelable coliimn-strict tableaux.
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