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§1. INTRODUCTION

Since the title of this conference is -Formal power series ... ", it seems justified to give a survey
on noncommutative series. We shall concentrate only on rational series. They are not very known in
algebraic or enumerative combinatorics, although their one. variable version, the linear recursive
sequences, are well-known.

Noncommutative rational series, as they are considered in this survey, appear as a generalization
of languages which are recognizable by a finite automaton; they count the multiplicities of the recognition
process. On the other hand, Kleene's theorem (a language is recognizable if and only if it is
regular) lead Schutzenberger to the observation that the Kleene star operation on languages is actually
an inversion, and that his theorem was quite close to the characterization of linear recursive sequences
through rational fractions.

We try here to give an overview of the algebraic, arithmetic and combinatorial aspects of rational
series, together with applications to variable-length codes. No proof is given. If not precisely indicated, the
proofs of the theorems may be found in [BR88], or [E74], [SS78].

§2. RATIONAL AND RECOGNIZABLE SERIES

Let Q ((A)) denote the Q-algebra of noncommutative formal series in the variables in A (we take
Q for simplicity). "A polynomial is an element of Q <A), which is the subalgebra of Q ((A)) generated
by the variables. A rational series is an element obtained from polynomials by algebraic operations (sum,
product), and inversion (recall that a series is invertible if and only its constant term is invertible).

Example : A={a, b};^-a- a2)-1 =^, F. an, (\-a-b()- a)-1 6)-1 = sum of the words
in A* (the free monoid generated by A) which have an even number of Vs,

(1 _ a _ ij)~} b(-\ -la- 2b)'} ̂ ^^- ^ w, where a^ is the integer represented in binary system
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by the word w (a for 0, b for 1). Note that a theory of series generalizing the third example is presented

in [AS92], under the name "k-regular sequences".

A series S is recognizable if 5(5) = >^.-:.. ^- ®T,, where 5 is the mapping such that for any
word w, one has 5(w) =y u®v (w= uv in the free monoTd A). Observe that there is a natural

iw=:uv

pairing Q«A)) x Q <A)-» iQ, defined by (5, P) = ^^^. (S, w}(P, w) (where (S, w} is the
coefficient of w in S). In this way, Q {(A)) is the dual space of Q {A), and a recognizable series is a
representative function, in the sense of Hopf algebraists. A more combinatorial, or computer-scientist,
look at recognizable series comes from automata theory. We illustrate if by some examples. Look at the

graphs of figure 1.

Figure 1

Let w a fixed word and count the number of paths from 1 to 1 in the graphs (in the third one, the
paths from 1 to 2, and one counts each path with its multiplicity, which for a gwen path is the product of
the multiplicities of the edges). Then this number is the coefficient in the corresponding series of the

previous example.

An equivalent definition of recognizable series involves Hankel matrices : a series is recognizable

if and only the infinite matrix {{S, uv}) . has finite rank (cf. [CP71], [F74], [J75]).

The fundamental result is due to Schutzenberger [861] : a series If rational if and only it is

recognizable.

§3. SYNTACTIC ALGEBRA AND LINEAR RECURSION

The previous Hopf-algebraic approach, and the automata theory point of view (through the minimal

automaton and the syntactic monoTd), both lead to the following definition : the syntactic algebra of a

series S is the quotient of the algebra Q (A) by the biggest two-sided ideal contained in Ker S [S being

viewed as a linear function on Q (A)). The Schutzenberger theorem then takes the form : a series is
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r
rational if and only if its syntactic algebra is finite-dimensional.

In the one-variable case, it is well-known that ^^or" an is rational if and only if the se^uence
(r^) satisfies a linear recursion : r^i, + ai r^k. i + - + a^n = 0 for any n in IN (a? .... ott are
constants in Q). Taking k minimum (i.e. the shortest such recursion), the syntactic algebra is Q [a}/(a'

k-l
+ a, a"" + ... +a^).

In the noncommutative case, linear recursion also exist [S61, BR88]. Their existence is in strong

relationship with the fact that each right ideal of Q {A} is a free Q (A) - module (Cohn [C61]). We
only give an example : let 5 = ^^^^-aw w- where aw is as before the number represented in
binary system by w (a forO, A for 1). Then one has for any word w:

otaw = Otw. afraw = 2 a^- c^. a^ = 3 a^-2 a^

The fact that these relations, together with the initial conditions a, = 0, a^= 1, completely define
S, is a consequence of the fact that {a, ba. bb} is a complete prefix code, with set of left factors {1,
b} (for the definition of a code, see Sect. 9).

The syntactic algebra ̂  of a rational series S reflects the properties of S. For instance, the
coefficient (5, w) depends only on the commutative image of w if and only if ̂  is commutative; this
kind of result leads to the theory of pseudo-varieties of finite dimensional algebras and rational series
([R80]), analog to that of monoids and languages (see [E74], [P84]).

Another result illustrating the relationship between S and ̂  is the following :
if 5 = (1- C)-l, where C is a maximal code and C = ^^ w, then ̂  is semi-simple if and only if
C is a biprefix code (see [BP85]).

§4. LANGUAGES

A language (i. e. a subset of A) is rational (regular) if it may be obtained from the finite
languages by applying finitely many times the operations L, u Lz, L^ L-^ = {w^ w-^ \w^ L,} and L
= IJ oL" = submonoid generated by L.

Furthermore, a language is called recognizable (by a finite automaton) if it is the set of labels
of paths in a given directed graph (with edges labeled in A), where these paths go from a given vertex to
some vertex in a given set of vertices.
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The characteristic series of a language L is L=^, ^w. Then, a language is rational
(resp. recognizable) if and only if its characteristic series is. From this. one can deduce Kleene's
theorem : a language is rational if and only if it is recognizable. Actually, this theorem was proved
before Schutzenberger's one, and the path from the first to the second was certainly guided by the

observation of the following striking fact : the operation L = (JL" has a close analogy with the
inversion (1 -S)~l=^^QSn.

Besides rational languages, there is a bigger family of languages. closely related to rational

series, consisting of the supports of these series. We define. for a series S, supp(5) = {w e A \{S, w}
^0}. This family satisfies the usual closure properties of language theory (direct and inverse
homomorphism, intersection, union). The analogy with complement of varieties (in algebraic geometry)
leads to the following question : what happens when two supports are disjoint ? The conjecture is that

two supports are disjoint if and only they are rationally separated, i.e. if there is a rational
language containing one and not intersecting the other. Note that rational languages are closed under

complementation. A particular case of this conjecture has been proved [RR84] : if a language and its
complement are both supports, then they are rational. This shows also that the family of supports
is not closed under complementation, except in trivial cases.

Another open question, raised in [SS78], is the following : if L is the support of some rational

series in R {{X)}, is it also the support of some rational series in Q ((X)) ?

§5. EXTENSIONS

The previous question leads to the problem of extending the field of coefficients. Actually,

rational and recognizable series may be defined over any semi-ring (inversion is replaced by the star

operation, with S =^ S" if 5 has no constant term). Then Schutzenberger's theorem is still valid.
The question is to know if ̂  c L is an extension of semi-ring and if 5   K{{X)} is rational in L{{X)}, is
it then rational in K{{X)) ? The answer is known to be positive when K. L are fields, or if A" is a
noetberian ring and L its field of fractions. A nice result of Fliess [F] also shows that it is true for the
extension of semi-rings IN c Q+. However, it is not true for Q+£ R+. nor IN s- 2.

This question is even interesting even for one-variable series : in this case, one defines rational

series in IN[[a]], which are shown to be exactly the generating series of rational languages. It was shown

by Berstel [B71] that these series have "dominating roots", thus are closely related to the Pisot-

Vijanaragayan numbers. The converse was also proved ([S76], [KOE78]), and these series are thus
completely characterized.

-396-



A survey on noncommutative rational series

r
§6. UNAMBIGUOUS SERIES

The Hadamard product of two series S, T\s SQT=^{S, w}{T, w)w . If these series
are both rational, then so is their Hadamard product ([S]). The problem is that of invertibility. In
general, the Hadamard inverse of a rational series is not rational, e.g. S^>o^+l^-l an is not ratior1al
(the primes appearing as factors of the denominators of the. coefficients of a rational series are in finite
number: Eisenstein criterion). Let us be slightly more general. We say that a rational series 5 in Q {{X}}
is Hadamard sub-invertible if the series ̂ ,. /c... v. n<^H'>~1 w is rational. Equivalently, 5 is a regular

IV.(«S * W

element of the Hadamard algebra of rational series ; note that the indempotents of this algebra are by
Sect. 4 the characteristic series of rational languages, and S is regular if and only if there exists a
rational series T such that SQT=L. with L = supp(5) a rational language.

Denote by P(S) the set of primes p such that p divides the numerator or the denominator of
some nonzero coefficient (in reduced form) of S. Then S is called a Polya series if P(S) is finite.

The problem is to characterize Hadamard sub-invertible series, and Polya series. For this, we
need one definition more. Define the unambiguous rational operations : the sum 5 + T is unambiguous
if supp(5) n supp(F) = 0; the product 5 F is unambiguous if each word in supp(5) . supp(T) has a
unique factorization u v with u e supp(5 ̂ , v e supp(T); the star S =^^Sn is unambiguous if
supp(5) is a code. Then a series is called unambiguously rational if it is obtained from polynomials by a
finite number of unambiguous rational operations.

It is not difficult to verify that each unambiguously rational series is both Hadamard sub-
invertibte and a Polya series. The conjecture is the converse : each Hadamard sub-invertible rational
series, and each rational P61ya series, is unambiguously rational.

In the one-variable case, this conjecture is a theorem of Polya [P21] (for Polya series), and a
theorem of Benzaghou [Bn70] (for the Hadamard invertibility); see also [Bz84], [LT90]. In several
noncommuting variables, particular cases are known [R80a], [R79].

§7. DECIDABILITY

Most of the questions concerning rational series, or their supports, are undecidable. This is
because that one can easily encode the 10th Hilbert problem (undecidability of the solvability of a
diophantine equation). For example, it is undecidable if a given support is equal to the whole free monoTd
A. In the one-variable case however, this is still open and known under the name of Pisot problem.
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However, the question to know if the set of coefficients of a given rational series is finite is
decidable, and related to the Burnside problem for monoids of matrices (see

[J78], [MS77], [S62]).

§8. RATIONAL IDENTITIES

Each rational series may be written as a rational expression, which is a well-formed expression
using the letters in A, the scalars in Q, the symbols +, x and . (one takes usually ' instead of inversion).
For example, the sum of words in [a, b] having an even number of b's is (a + ba b). For a given series,
the rational expression is far from

. <

being unique. This leads to the problem of rational identities. For example, one has (ab) = 1 + a(ba)
b, (a + 6) ={a b) a .

Observe that both identities have evident combinatorial interpretations : the first one corresponds

to the two ways one can look at a word of the form ab ab ... ab (try to say repetitively ab. then aher a
while you do not know any more if you repeat ab or ba\, the second describes how to cut a word on a. b
after each b.

But these identities may also be proved by using algebraic operations and the fact that S is the
inverse of 1 - 5. Indeed, if we multiply both sides of the first identity by 1 - a^? on the left, then the left
-hand side becomes 1, and the right-hand side becomes

1 + a{ba) b-ab- aba(ba) Z?= 1 -aZ? +a(1 - ba} (ba) b=~\ - ab+ab='\.

For the second, we multiply by 1 -a-Z? on the right; the right-hand side becomes

(a b) a - [a b} a a -(ab) a b=(a b) a (J\ - a) - (a b) a b = (a b) - (a b) a b
=(a A) (1 -a ^)=1,

what was to be shown.

These calculations show that the previous identities are "trivial", i. e. are algebraic consequences of
the fact that 5'= (1 - S)~l. It is shown in [K91] that this holds for all rational identities. This result is
closely related to Amitsur's theorem on rational identities in a skew field, see [A66], [Be70], [C77]. When
the field of coefficients is replaced by a semi-ring, the theory is quite different, see [Co71], (K92].
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§9. CODES

A code is the (unique) basis of some free submonoTd of A . Series are well adapted for the study
of codes. A simple reason for that is that if C is a subset of A'\1, then C is a code if and only if
c'=d.

The main conjecture in the theory of codes is the factorization conjecture : given a finite and
maximal code C, there exist finite sets S and P of words such that A'=SC'P, i. e. each word
in A' has a unique decomposition s c,... c^p with se S. c^... , c^e C, pe P. Note the analogy with
the coset decomposition of a group with respect to a subgroup. It has been shown that there exist always
adecomposition A* =5C*P+F with F a finite set ([BR88], [ZG92]). The previous conjecture, by
inversion of series, may also be stated as follows : there exist polynomials P^, S^ in N(A) such that
C-l=/?i(A-l)5i. A weak form of this has been proved, with/>i, 5i. e 2 (A), see [BR88].

The factorization conjecture is easy to prove in the case of a prefix code (i. e. no word in the
code is a left factor of another word of the code). A code is biprefix if it is prefix, and if also its
reversal is prefix. When C is a thin (thin is a generalization of rational) maximal biprefix code, one
defines its indicator to be the series L such that (L, w) = number of factorizations w=sc^... c^p,
where ̂ (resp. p) is a right (resp. left) factor of some word in C. and where the c; are in C (cf. figure 2)

Figure 2

Then L has only finitely many coefficients, and the degree rf of C is defined to be the maximal
coefficient. The tower of C is the series T=^(d-{L, w})w, and one shows that
C-1=(A-1)T(A-1)+^(A-1).

Example : C = {a3, a2 ba, a1 bi, ab, b a2, baba, ba b2, b1 a, b }. Then
C-l=(a +Z?- 1) (2 +a +6+ 1) (a+Z?- 1) +3(a+6- 1).
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If T/ is defined from T by substracting 1 to each nonzero coefficient of T. then T is the tower of a new
biprefix code, called the derived code, of degree rf-1. In the previous example, the derived code is
therefore C'-l= (a+6-1) (1) (a+Z?- 1)+2(a+6 - 1)=(a+A)2- 1. hence C'= [a2, ab, ba,
A21.

One can construct all biprefix codes by reversing the previous process. This is a short overview
of the C6sari [Ce79] theory of biprefix codes, as it has been exposed and extended in the book by

Berstel and Perrin [BP85].
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