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The main result of this paper is a bijection between two distinctly combinatorially
defined sets ofsymplectic tableaux. The first -was developed by Zhelobenko (1961) and
King (1975), and the second by DeConcini (1979; in explicit tableau form) and by
Laksmibai andSeshadri (1979). From either of these sets one can calculate the character of
finite dimensional irreducible sp(2n) modules. To provide the bijection a new symplectic
jeu de taquin algorithm is developed. Schutzenberger's original jeu de taquin is a powerful
tableau manipulating tool which is used to obtain combinatorial and representation theoretic
results. The most famous of these is providing a bijective proof of the Uttlewood-
Richardson rule for decomposing tensor products of representations of gl(n, C). In the
future the symplectic jeu de taqin may be used to give an analogous proof of Littelmann's
(1988) results for decomposing tensor products ofsymplectic representations.

Le principal resultat de cet article est une bijection entre deux ensembles de tableaux
symplectiques qui different au niveau combinatoire de leur definition. Le premier fut
developpe par Zhehbenko (1961) et King (1975), et Ie second par De Concini (1979; de
maniere explicite en termes de tableaux) et par Laksmibai et Seshadri (1979). Onpeut
calculer les caracteres des representations irreductibles de dimension finie pour sp(2n), a
partir de n 'importe lequel de ces deux ensembles. Pour en arriver a cette bijection on
developpe un nouvel algorithme de jeu de taquin symplectique. Lejeu de taquin original,
du a Schiitzenberger, est un outil puissant pour obtenir des resultats aussi bien en
combinatoire qu' en theorie des representations. Le plus connu de ces resultats est une
preuve bijective de la regle de Littlewood et Richardson qui donne la decomposition des
produits tensoriels de representations de gl(n, C). On espere ainsi, qu'a I'avenir on pourra
utiliser lejeu de taquin symplectique pour obtenir une preuve analogue du resultat de
Liniemann (1988) sur la decomposition des produits tensoriels de representations
symplectiques.

0. Introduction

Let T(\, n) be the set of semistandard tableaux of shape \ and with entries from

[n] := {l, 2, "-, n}. Then T(X, n) acts as an index set for a basis of an irreducible

representadon of the Lie algebra gl(n). There are two disdnctly combinatorially defined
sets of tableaux, which we denote 1) (X, n) and ?C(X, n), each of which play an

analogous role for sp(2n). In this paper we provide an explicit bijection between 2?(/l, n)

and ?C(X, n). In the process we introduce a new symplectic jeu de taquin (SJDT)

algorithm.
The tableaux of ID(k, n) were developed by DeConcini (1979; [DeC]) and by

Laksmibai, MusUi, and Seshadri( 1979; [LSM]). The tableaux of ? (?., n) were

developed by Zhelobenko (1961; [Zel]) as Gelfand patterns, and later converted by King

(1975; [Kng]) to the form used below.
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The construcdon of these sets of tableaux involve, as a first step, imposing a total
order on a basis of the standard representation of the Lie algebra. Such a total order

corresponds naturally to specifying the algebra's defining bilinear form. The difference in
Ae construction of the two sets 2) (k, n) and ^:(X, n) stems primarily from the fact that

different total orders are used. In order to make the bijecdon problem more manageable we
defme a sequence of n sets of intermediate "hybrid" tableaux 5^k(^, n), 1 <k <n, where

<D(?i, n) = ^"(X,, n) and ^C(^, n) = ^'1(^. n). This sequence corresponds to a gradual

transformation of one total order to the other. Or, in terms of the defining skew symmetric
bilinear fonns for sp(2n), the sequence below.

-1

-1
-1

-1

-1

0

0

^-1
-1 0

0 1
-1 0

0 1

-1 0

0 1
-1 0

CThese bilinear forms correspond respectively to ID(k, n) = ^""(X, n), '^"n-l(X, n), ... ,

^i(^n)=^:(^, n).)
Each of these intermediate sets satisfies the following basis indexing theorem:

Theorem: Fix a positive integer n and a shape X. Then for l^k<n,

ch, (x)= ^xwt(T)
TeiW'a.n)

where, ch^(x) is the character of the irreducible representation of sp(2n) indexed by \.
(The weight wt('Z') is defined below.)

This Aeorem is a consequence of our main result.

Main Result: Fix positive integers n and k, k^n, and fix a shape X. The SJDT

gives an, explicit weight preserving bijection from Ae set 5^k(X, n) to the set
^'k-l(^, n).

I. Definitions and Reducine the Problem

What follows are the definidons of the tableaux contained in the set ^k(^, n)

which we will call k-admissible tableaux. We start by defining k-admissible columns and

then give a rules on when it is legal to glue such columns together to form larger tableaux.
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Before we start we must set up some notadon for finite sets. We shall denote the

cardinality of any set X, by \X\. For two subsets X, Y, we useX-Y for X^Y when
it is known that YC X. Similarly, we use X+Y for XuY when it is known that Xr\Y
is empty. For subsets X= { x^ <x; <... < x, } and Y= {y^<y^<---<y^} of a totally

ordered set, we say that X< 7 if: (i) s ^ t, and (ii) x, ̂ y, forl^ i^ t.

All columns wiU consist of entries from the set of symbols

[[n]] = {1, 1, 2, 2, 5, 3, ... , ii, n}.

A column fP is said to be admissible if no entry is repeated, and for all m, 1 ^m <n,

|{xe'P:||x||^m}|<m, where |[. ||:[[n]]->[nL N:=||a||:= a.

For 1 <k < n define the total order Ok on [[n]] as

R < V=I < ... < T < 1 <2< ... < k-1 < k < k+1 < k+1 < ... < ii<n.

A column is k-admissible if it is admissible and strictly increasing from the top w. r. t. Ok

(k-strictly increasing).

The weight of a tableau 1, wt(T), is the n-tuple (v;,..., Vn), where v, is the

number of i's in T minus the number of T's in (I. For example, if n = 5, the weight

of the tableau below is (0,-1,3, 1,0).

Remark: The set [[n]] may be thought of as a basis for the standard representation for
sp(2n). The order O1 is the one imposed by King, while DeConcini uses O".

Now we are able to give the definition of the sets 9C(X, n).

Definition: Fix positive integers n and k, k < n. Let The a. tableau with entries from
[[n]] and columns tT^, {T^--, T Then T isa I-admissible tableaux if

(i) 1^, <T^, ---, <T^ are all 1-admissible columns, and

(ii) (r^(I^^---^(I^ with respect to O1.
Define 9C(X, n) to be the set of all 1-admissible tableaux of shape 'k.

\ Note that condition (i) identifies the columns to be used, and (ii) specify's how
these columns may be glued together. De Concini's definition of 'D (k, n) is of the same
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form but the condition anagous to (ii) is a lot more complicated. It involves splitdng each
column rT, into two columns, a left half /T, and right half rT,. Then the column '?', _,
may sit to the left of column T, iff rT, _, < [T, with respect to O".

We now describe De Concini's splitdng process which involves breaking an n-
admissible column rP into two parts, generating two new parts, and then assembling these
four parts into the columns iT and £P.

Definition: For each positive integer n, define the map Fn , from pairs of subsets of
[n] to one column tableaiix, where FnCX, Y) is the column with entnes

{x:xeX}u{y:yeY} and ordered n-stncdy increasing.

Let 'P be an n-stricdy increasing column. Denote by Ay and Dy the subsets of

[n] such that y=F^A^, D^). Define 13, = A^ n D,, and Hy= [n]-(A^ uD^).

Lemma: The column tP is admissible if and only if Hy < ly.

Remark: De Concini uses Ais as his defmidon for an admissible column.

Let 'P be an n-admissible column and Ay, Dy, Hy, ly as above. Defme the following
sets:

J^:=max[XcHy:|X|=|4| and X <!,, ],
By:=(A3, -Iy)+Jy,

C^=(D^-I^+J^.
Note that the lemma guarantees the existance of Jy. For an n-admissible column 'P we

shall refer to Ay, By, Cp, Dy, as the associated subsets.

Definition: Let T be an n-admissible column and form the associated subsets

A^B^C^D^. Define ̂ !P:=F, (A^, C^) and !&:=?"( By, D^).

Remarks: The pairs of columns (^P, (S)) correspond to the admissible pairs of extreme
weights in [LSM]. It is easily seen that ̂ P< ̂  with respect to 0». The order 0" agrees
with the Bruhat order on extreme weights used in [LSM].

Definition: Fix positive integers n and k, k<n. Let Tbe a tableau with entries from

[[n]] and columns T^T^, ---, (T^. Then T is a n-admissible tableaux if

(i) 'Tp'7'2, - . ., T^ are all n-admissible columns, and

(ii) rT, _t ^ /"T, with respect to O", 1 < i ̂  c.

Define 'D (k, n) to be the set of all n-admissible tableaux of shape A,.
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The definidon of the associated subsets Ay, By, Cy, D,,, has a certain symmetry.

Note that ]y=Bpr^Cy, and
4=min[Xc[n]-(B3, uCy):|X|=|j^| and X>JJ,
Ay=(By-Iy)+Jy,

C^=(D3, -I^)+Jy.
Thus, if either of the pairs of sets (A,,, D^) or (By, C,p) is known, the onginal column
T can be recovered. Define a column T' to be n-coadmissible if there exists an n-

admissible column T such that '?'= Fn(Bp, C,, ).

Lemma: A column {P ' is n-coadmissible if and only if it is n-strictly increasing, and for

all m, l<m<n, |{x e rP:||x||^ n-m+l}|< m.

Compare this lemma with the definidon of n-admissible columns.

Definition: Define the map Gn: {(X, Y): Fc(X, Y) is coadmissible} -^{admissible
columns} by Gn(By, Cy) := y.

Heurisdcally, it is helpful to think of an n-admissible column 2' as the column

where A is the sub-column of barred entries of rP, and D, the unbarred entries.

D '

A B
SimUarly, think of the spUt columns of T as the pair of columns ^ p. For the maps Fn

and G,, we have F^(A, D) = ^ = G^B, C).

As an example let n = 6, and '£ = , 
then lfP= and ^P=

Now we define the sets of hybrid tableaux ^k(k, n), 1 ^ k^ n.

Definition: Fix positive integers n and k, k^n. Let T be a tableau with entnes from
[[n]] and columns (T^(T^---, (T^. Then T is a k-admissible tableaux if

(i) (I^{TZ, -- ., Tc are a11 k-admissible columns,
(ii) TI < T; <.. -^ rr, with respect to Ok, and
(iii) form the subtableau T^, consisting of those entries less than or equal to k;

require that T^e 2?(fl, k), where 4 is the shape of T^.
Define ^k(A,, n) to be the set of all k-admissible tableaux of shape \.
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In essence, what we are doing here, is using De Concini's definidon for the subtableau

with entries < k, and King's definition for the remainder.

It is clear that T>(\, n) = Mn(\, n) and 3C(X, n) = ^fl(X, n). So, with this

construction, we have reduced the problem of fmding a bijection from T> (k, n) to

?C(X, n), to finding a bijecdon from 5Vfk(^, n) to 5Wk-l(?i, n) for k = n, n-1, -,2. We

can reduce the problem further by using the following easy lemma.

Lemma: (1) Suppose Te ^k(?i, n) and let T^e ^fk(|j., k) be as in the definition.

Ut <T be any element of !M]s-~l(yi, k') and form the tableau fl by replacing T^ with
T within the tableau {T. Then T e ^'k-l(^, n).

(2) Conversely, suppose lt e 5Wk-l(^, n) and (I is the subtabeau of

consisting of those entries less than or equal to k. Then Ty, e 5K'k-l(4> k) where p. u
the shape of T . Let Ty, be any element of 9^^(yi, \i) and form the tableau T by

replacing T with T^ in the tableau T. Then Te l^'k(X, n).

This reduces the problem to fmding a bijection from ^"(^, n) to f\{tl~l(k, n).

The primary difference between the n-admissible tableaux and the (n-l)-admissible

tableaux is the location of the ii 's. If ii 's are present in an n-admissible tableau they

must occur at the extreme left of the top row, while the n 's in an (n-l)-admissible tableau

will occur near the southeast boundary. In the SJDT algorithm the n 's of an n-

admissible tableau are replaced by empty boxes. Just as the jeu de taquin, the SJDT has

sliding operations which specify how the empty boxes are moved to the southeast perimeter

of the tableau. In the SJDT, however, when an entry is slid from one column to another,

the two columns involved must be "recalculated" using the functions Fn and Gn defined

above.

We say a column <P is punctured if it contains a single empty box. The definidons

for n-admissibility and associated subsets apply to punctured columns by ignoring the
empty box. We use the notadon T= Q, + Q^ to mean that the column tP is obtained by

inserting empty box into Q, at the pth position. If ?= Q,+Dp is a punctured n-admissible

column then we defme £?:= /Q, + D^ and T<P:= TQ,+. p - . - . '^- . . -.p

Let T be an n-admissble column with columns (7',, T,, ---, T,. The entries of 1

are indexed matrix style. That is, we write T= {t,, } where tii is Ae top entry of the first
column. For the pth entnes from the top of Tfl and /Tq we use the notation Fp q and
[ , respectively.
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For example if n = 6, let

T= and T^-fP+D,, then fl-,= ' ^=

and the subets associated to T are
A, = {6,5}, B, = {6,4}, C, = {2,4}, D, = {2, 5}.

Suppose ff i has a 2 as its third element: t^^= 2. The SJDT demands that
this element be slid into the empty space. The column Tq would then be recalculated:

T<, :=GJB, +{2}, C<, }=

The column T^, would similarly be recalculated: fTq^:=Fn(A^;-{2}, Dq^)+Q^.

II. The S.TDT-aleorithm

Input: T'={t,j}, an n-admissable tableau of shape X and columns 'T'pT;, ---,^
Output: an (n-l)-admissable tableau of shape \.

All inequalities below are with respect to O".

Set X' := {(i, j): ty<n }.
Denote by {A,, Bj, Cj, D,} the associated subsets of Tj.

Begin

While T has an n in its first row doi,

Remove the right most n from its box and let (p, q) be the position of Ae
resulting empty box.

While (p, q) is not an outer comer of X', do;

Ifi rp. i,q ^ ^q^i or the length of ̂  is less Aat p then
slide tp^, q up into the empty box. Set (p, q) := (p+l, q).

Else

It'2 ;p,q+i = a (a barred element) then
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set B^":=Bq+{a} and replace <2q with Go(B^", Cq).
Set A^i:=Aq^i-{a} and replace ^ wiA Fn(A^p Dq^i)+Dp.

Else (^q+i = a an unbarred element) ,

set D^:=Dq+{a} and replace <2q with F,(Aq, D^).
Set C^:=C^i-{a} and replace ^i with Gn(Bq, i, Cq^)+Dp.

end Ifz.

Set (p,q) := (p, q+l).

end If i.

end doz.

end do i.

Fill any empty box in (T with an n.

Output fr.
End.

Theorem: The SJDT algorithm is a well defined, weight preserving, bijection from
^'"(X, n) to t^(n-l(\, n).

Most of the proof is checking that the algorithm (and its inverse (SJDT)-1) is well
defined. This is a long and tedious process, but not difficult The weight preserving

property follows easily after noting that wt(Fn(A, p, Dy)) = wt(Fn(By, Cy)). Checking that

the algorithm is bijective is an obvious procedure of verifying that (SJDT)-1 reverses the
steps of SJDT.

III. Conclusion

Schutzenberger's onginal jeu de taquin operates on skew-shaped semistandard

tableaux. That is, tableaux which have a subshape of empty boxes m their upper left hand

comer. A powerful aspect of the jeu de taquin is that it produces the same normal shaped

tableau independent of the order in which the empty boxes are removed. In order to apply

the SJDT as defined above to a skew-shaped (n-admissible) tableaux one must first fill in

the empty boxes with large barred entries, say { n+1, n+2, ... }, thus prescribing an
order of removal. However, it is easy to modify the SJDT to operate on skew shaped

tableaux with the boxes left empty. Empirical evidence exists supporting the conjecture that

this modified SJDT also operates independent of box removal order.
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One of the main applications of the jeu de taquin is in giving a bijecdve proof of the
Littlewood-Richardson rule which solves the tensor product problem for (f.d, polynomial)

irreducible gl(n) modules. In 1988, using the algebraic geometdc work ofLaksmibai and
Seshadri, Littelmann [Litl] gave analogues to the Littlewood-Richardson mle for all the

classical Lie algebras. In 1992, he expanded his results to all symmetrizable Kac-Moody
algebras [Lit2]. Again, empirical evidence suggests that the SJDT might be used to
provide a bijecdve combinatorial proof of Littelmann result for sp(2n). If the order
independence of box removal for SJDT was known this would be easier, but one could
probably make do without it.
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