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Abstract. Let G = (V, A) be an antisymmetric directed graph. An oriented A-coloring of G is defined as a mapping
c from V to the set of colors {1, 2,..., A} satisfying («) V (x, y)   A, c(x) + c(y) and (i») V (x, y), (z, () 6 A, c(z) =
c(<) ==^- c(y) ̂ - c(z). The oriented chromatic polynomial of G is then defined as the quantity P(G, A), standing for
the number of oriented A-colorings of G. We show in this paper how this polynonual can be computed and prove
some properties of it.

Resunie. Soit G = (V, A) un graphe oriente antisymetrique. Une A-coloration de G est une application c de V dans
1'ensemble de couleurs {1, 2,..., A} satisfaisant (.') V (x, y) £ A, c(i) ̂  c(y) et (»'») V (x, y), (z, t) G A, c(i) = c(() ==>
c(y) / c(z). Le polynome chromatique de G est alors defini comme la quantite P(G, \), representant Ie nombre de
A-colorations de G. Nous montrons dans cet article comment ce polynome peut etre calcule et prouvons certaines
propnetes.

1 Introduction

For many years, numerous graph coloring problems have been considered in the literature [8]. However very
few of them are concerned with directed graphs. Among these, is the general //-coloring problem, introduced
by Maurer, Salomaa and Wood [7] in both the directed and the undirected case. This problem can be stated
as follows : let G = (V, A) and H = (W, B) be two directed (resp. undirected) graphs ; we will say that
G can be //-colored if there exists a mapping p. from V \, o W satisfying (x, y)   A ==> {p. x, p.y) £ 5 (resp.
{x, y} 6 A ==> {^.c, ^y}   S). In the undirected case, this notion generalizes the usual graph coloring
problem since a graph G is fc-colorable if and only if it can be A"t-colored. Many authors have considered the
complexity of the //-coloring problem, that is the complexity of the question "is a given graph G //-colorable
?" for some families of graphs H. This question has been recently solved in the undirected case by P. Hell
[5] but is still open in the directed case.

The coloring problem we consider in this paper can be viewed as a particular case of the //-coloring
problem, obtained by only considering aniisymmeiric directed graphs ((x, y) and (y, x) cannot both belong
to the set of arcs), also called oriented graphs. We are essentially interested in answering questions of the
type : "Given a family T of oriented graphs, find a graph H with a minimum number of vertices such that
every graph in T is /7-colorable". This question was addressed in the case of planar graphs by Courcelle
[4] which studied graphs and properties of graphs definable by monadic second-order logic formulas. Some
answers to that problem can also be found in [9, 12].

In this paper we begin the investigation of chromatic polynomials of oriented graphs, which generalize
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(a) (b)

Figure 1: The oriented coloring problem.

to the oriented case the well-known notion of chromatic polynomials, introduced by BirkhofF [2] in the
undirected case and studied by many authors (see e.g. [3, 10, 11] for an overview on this subject). In Section
2 we introduce and illustrate the notion of A-colorings and of chromatic polynomials in the oriented case.
In Section 3 a general method for computing the chromatic polynomials is presented. We give in Section 4
some basic properties of these chromatic polynomials leading to some computing shortcuts. In Section 5 we
relate the notions of chromatic polynomials in the oriented and the undirected case and propose in Section
6 some directions for future research. Although some references to the theory of chromatic polynomials in
the undirected case are made along, this paper is self-contained except for the usual basic notions of graph
theory.

2 Definitions

A A-coloring of an undirected graph U = (V, E) is a mapping c from V to the finite set of colors C\ =
{1, 2,..., A} such that any two neighbouring vertices are assigned distinct colors. Let now G= (V, A) be an
oriented graph. An onented X-cotonng of G is a mapping c from V to the set of colors C\ satisfying :

(«. ) V(.r, t/) A, c(a:)^c(y),

(«.) V (z, y), (z, ()   A, c(x) = c(t) => c(y) ̂  c(z).

Note that any oriented A-coloring of G is also a A-coloring of the underlying undirected graph of G and that
the converse is not true.

ExEunple 2. 1 Figure 1. a shows an oriented graph G and an oriented 5-coloring of G. The mapping c depicted
in Figure l. b is not an oriented 5-coloring since we have c(x) = 1 and c(y) = 2 on one hand, and c(() = 1
and c(z) = 2 on the other hand, which contradicts the condition (li) above. Note however that the mapping
c is a 5-coloring of the corresponding underlying undirected graph.

Condition (»') of our definition essentially states that we are able to "encode the orientation of a graph
by means of some labels (the colors) associated with its vertices, provided that we keep in memory what
we call the color-graph, which gives the relations between these labels [12]. The color-graph H corre-
spending to the oriented 5-coloring of the graph G in Figure l. a is for instance given by the set of arcs
{(1, 2), (2, 3), (2, 4), (2, 5), (3, 5), (4, 1), (4, 3)} (using the terminology of the ̂ -coloring problem, we say that

-414-



G has been ^-colored). Such an encoding may be useful whenever we need to represent some "directed"
notion associated with an undirected labelled graph [4, 13].

For any oriented graph G, we define the oriented chromatic number of G as the minimum value of A such
that G has an oriented A-coloring. It has been shown in [9] that any oriented planar graph has an oriented
chromatic number which does not exceed 80 and no better upper bound is known up to now. The oriented
chromatic number of other families of graphs has been studied in [12].

Let us now define P{G, \) as the number of oriented A-coloriags of G. This quantity is called the oriented
chromaiic polynomial of G since we will see in the next section that it can be expressed as a polynomial in
A. If H is a.n undirected graph, the chromatic polynomial of H will be denoted by P(H, \).

Note from our definition of oriented A-colorings that the vertices as well as the colors are distinguishable, as
is the case for undirected graphs. For further clarity we give some examples illustrating the way the oriented
A-colorings of G are counted. First the two following oriented 4-colorings

will be considered as distinct, although they are in some sense equivalent since we can obtain any one of
them from the other by applying an adequate automorphism of G.

Secondly, the two following oriented 4-colorings

will also be considered as distinct, although we can obtain any one of them from the other by simply permuting
the colors 1 and 2. In the sequel, we will speak of oriented A-coloring with color indifference whenever we will
want to consider as equivalent any two oriented colorings which only differ by a permutation of their colors.
Such colorings are then defined as a partition of the set of verfcices V into k subsets l^i,..., 14 (k ^ A) in
such a way that (i) any two vertices belonging to the same V,- are not adjacent and (ii) all the arcs linking
vertices of any two subsets V, and Vj have the same direction.

Let us now illustrate the notion of oriented chromatic polynomials.

Exainple 2. 2 Consider the following graph Gi

X

.-
z

--

We can choose any of the A colors for the vertex y and any of the remaining colors for x, z and (. Hence, we
have :

P(Gi, A) = A(A-l)3
\4 _ 3^3 ^ 3^2 _ ^^

Consider now the following graph G'2 :
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.-
y

.^-
z
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No two vertices in Gz may have the same color. Hence, we have :

P(G^, \) = A(A-1)(A-2)
A3 - 3A2 + 2A.

Similarly, it is easy to check that in the following graph Ga :

all the vertices must have distinct colors and we have :

P(G3, A) = A(A-1)(A-2)(A-3)(A-4)
AS - iQA4 + 35A3 - 50A2 + 24A.

For any oriented graph G = (V, A), we will denote by 6{G) the set of all unoriented pairs of vertices in G
which must be assigned distinct colors in any oriented coloring of G. It is not difficult to see that we have

6(G) = { {x, y} / x, yeV, (x, y)GAoT(y, x}GA
or 3 ^e ^, (x, z), {z, y) GAor 3 z  V, (y, 2), (2, .r)   A }.

Let 7;>2(^) denote the set of all two element subsets of X for any set X. Obviously, any oriented graph
G = (V, A) satisfying 6(G) = ^^(y) has an oriented chromatic polynomial of the form

P(G, A)=A(A-l)(A-2)... (A-n+l),

where n stands for the number ofvertices of G. We will denote by A^") this factorial form. Hence, we obtain :

V G = (V, A} with n = \V\, 6(G} = P-t{V) ==> P(G, \} = A(n).

Note that contrary to the undirected case, the tournaments are not the only graphs having this property (see
examples G"; and Gy above).

Finally, if G is the empty graph on n vertices, that is the graph having n vertices and no arcs, we have :

P(G, A)=A".

In the next section, we will show that for any oriented graph G having n vertices, P{G, X) can be expressed
as a polynomial of degree n in A. When P(G, A) is expressed in terms of the usual monomial basis for
polynomials, we will speak about the usual form of P[G, \). We will also express it as a function of the A^'^'s,
1 ^ ! ^n, and then speak about its facional form.

From now on, we will generally drop the word "oriented" when speaking about coloring, chromatic number
or chromatic polynomial, using it only in the contexts where confusion may arise.

3 Computing the factorial form of P(G, A)

One of the main difTerences between colorings of undirected and of oriented graphs is that in the case of
oriented graphs the coloring constraints are no longer local. In order to decide whether or not a color can be

-416-



assigned to a vertex . c, it is not sufBcient to look at the immediate neighbours of a: : we must consider the
whole graph to check condition (i"i) of the definition.

Consequently, computing the chromatic polynomial of an oriented graph will be slightly more complex
than in the undirected case. In order to deal with this non locality we must use constrained polynomials
defined as follows : [et G = {V, A) be an oriented graph and X be a. subset of P^(V) ; we will denote by
Qx{G, \) the number of A-colorings c of G satisfying

V{z, y}EX, c(x)^c(y).

Intuitively speaking, the set X represents some additionnal constraints on the colorings under consideration.
We will call A-X-colorings those A-colorings of G satisfying the set of constraints X. Note that the chromatic
polynomial of G can then be expressed as

P(G, A) = Q, (G, A).

In order to compute the quantity Qx(G, >), we need the following notation : let G = (V, A) and a, b be any
two vertices in V such that {a, 6} ̂  6(G) ; we will denote by G^ the graph obtained from G by identifying
the vertices a and b. More formally, let fi be the mapping from V to V" \ {6} defined by (»") ,16 = a and (ii)
^x =x, ^ x ^b. Then, G^ is the oriented graph with vertex set V^ =V\{b} and whose arcs are given by
(^ix, p.y)   A^ if and only if (x, y) 6 A. It is not difficult to see that since the pair {a, b} does not belong
to 6(G), the orientation of the graph G°^ thus obtained is still antisymmetric. Similarly, for any subset X
of Vi(V) we will denote by X^ the subset of V-i(V \ {(>}) obtained from X by "renaming" 6 as a (all the
constraints on b are transferred to a) and deleting the pair [a, b] from X if it appears in X. Then we have :

Theorem 3. 1 For any oriented graph G = (V, A) having n verlices and any subset X ofP^V) we have

f A<n) »/XU6(G)=-P2(^),

Qx(G, \)={ Qxu{a. h](G, \) + <?X^(G°a6, A),

V {a, 6}^XU^(G) o(/ierwt5e.

Proof. Let G = (l/, ^4) be an oriented graph and X be any set of constraints. I! X U 6(G) = 'F>2(^/)i that
means that any pair ofvertices in G must be assigned distinct colors and we have Qx(G, \) = \^n\ Suppose
now that {a, 6} ^ X U ^(G) ; then the A-X-colorings of G can be partitionned into two classes : those in
which a and b are assigned distinct colors, called of type 1, and those in which a and 6 are assigned the same
color, called of type 2. It is then not difficult to check that the colorings of type I and 2 are respectively
counted by Qxu{a, b}{G, X) and Qxo^(G^, X), and the result follows. a

Note that by applying inductively the formula of Theorem 3. 1 we finally obtain an expression of P(G, A) =
Qt(G, \) in terms of the A^'^'s, 1 ^ *'^ ". Hence, Theorem 3. 1 allows to compute the factorial form of
P(G, \). Such a computation will be called a chromatic reduction.

Exainple 3. 2 Figure 2 shows how one can compute the chromatic polynomial of an oriented graph in its
factorial form. As usually done, the chromatic polynomial of a graph is denoted by the graph itself. The
pairs of the corresponding sets of constraints are joined by dashed lines (initially, the set of constraints is
empty). For any graph G, the pairs of vertices belonging to 6(G) which are not induced by an arc of G are
joined by dotted lines. The two vertices used in each chromatic reductiou step are denoted by a and b.

By using the formula of Theorem 3. 1, we can then obtain :

Proposition 3.3 For any oriented graph G = (V, A} with n vertzces, we have :
(i) P{G, \) is a polynomial of order n in X,

-417-



I 0
b

s

+

+ +

x <4)+2l<3> = X4. 4X3+5X2-2X

Figure 2: Computing the factorial form of the chromatic polynomial.

(it) the coefficient of A" in P(G, A) is 1,
(tit) P(G, A) has no constant term,
(iv) the coefficieni o/A"-1 tn P(G, A) is -\6(G)\.

As in the undirected case [10] we can interpret the coefficients of the factorial form of P(G, \) as follows :

Theorem 3. 4 The coefficient of \^ in the factorial form of P(G, \) is the number of ways of coloring G
using exactly r colors wtth color indifference.

Proof. Let N(G, r) denote the number of ways of coloring G with exactly r colors, with color indifference.
The number of ways of coloring G with exactly r colors but recognizing the different colors is then r\N(G, r)
since we have to assign a color to each subset. The number of A-colorings of G using exactly r colors among
the A available ones is then (x)r\N(G, r). By summing this quantity over all possible r, we obtain :

P(G, \)=Y^ C)rW(G, r) = ^ ̂ ^(G, r),
r=l r=l

which concludes the proof. a

4 Some shortcuts

In this section, we will give some computationnal tricks, or shortcuts, allowing an easier computation of
chromatic polynomials. These results are based on some special decompositions of the graphs under consid-
eration.

In the undirected case, the chromatic polynomial of a graph can always be expressed as the product of
the chromatic polynomials of its connected components. In the oriented case, this result no longer holds in
general since we have :

Theorena 4. 1 Let G be an oriented graph having k connected components G\, G-i,... , Gk- The following
equality

P(G, A) = P(Gi, A) x P(G2, A) x ... x P(Gt, A)
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holds if and only if at most one of these components contains more than one vertex. In this case, i/Gi 15 ihe
non-singleton component we have :

P(G, \)=\k-1 xP(Gi, A).

Proof. Suppose that any component but G!i contains only one vertex. The k- I vertices ofGs. G^,..., Gt
can be assigned any of the A colors and we have P(G, \) = A*"1 x P(Gi, A). Suppose now that P(G, \) is
expressed as the product of the chromatic polyaomials of its components and that two of them, say G"i and
G2, contain at least two vertices. Then we have at least one arc (.ri, t/i) in GI and one arc (2:2, 1/2) in G'2
and the A-colorings of Gi and G-i are not independent : we cannot have for instance c(zi) = c(y2 ) = 1 and

c(.C2) = c(yi) = 2. In other words the product P(G!i, A) x P(G^, \) counts some A-colorings which are not
valid for G, which leads to a contradiction. D

The following facts allow to express the chromatic polynomial of a graph as a function of the chromatic
polynomials of some of its subgraphs.

Observation 4.2 Let G = (V, A) be an oriented graph and x be a vertex of G such that either (i) V y 6
V\{x}, (x, y)^A or(ii)'rfyeV\{x}, (y, i) A. Then we have

P(G, \)=\xP(G\x, \-l)

where G\x stands for the graph obtained from G by deleting the vertex x as well as all the arcs incident to
X.

Proof. In any A-coloring of G, we must choose one color for the vertex x and use the A - 1 remaining colors
to color the rest of the graph, that is G \ a:. D

Let Pi = Sr=ia«^(l) and P-i = Sr=i^A ^e two chromatic polynomials expressed in their factorial
form. We then define the product P = Pi Q Pz, obtained by treating the factorials as if they were powers,
as

P=P, OP2=S ̂ a, A, A('+^.
1=1 J=l

Then, we have :

Theorem 4.3 Let G = (V, A) be an oriented graph and V^V-z be two non-emply subsets of V such that
Vi\JV-2=V and V r; G V\, V r;   V^, {x\, x-2} G <5(G). Let Gi (resp. G^) denote the subgraph of G induced
by V^ (resp. V^). Then we have

P(G, \}=P(G,, \)QP(Gt, \}.

Proof. The proof of this result is a direct translation of the proof of a similar result in the undirected
case (see e.g. [10]). The main argument is that the vertices in Vi have to be assigned colors which are
distinct from those assigned to vertices in V-i and that this property is preserved by the chromatic reduction
ofTheorem 3.1. 0

Note that the hypothesis ofTheorem 3. 1 amount to saying that every two vertices in G are at (directed)
distance at most 2.

Exainple 4.4 Figure 3 shows a graph G satisfying the conditions ofTheorem 4.3 and the two corresponding
induced subgraphs Gi and G;. By using the technique introduced in the previous section, it is easy to check
that we have

P(Gi, \)=Xm and P(Gt, \) = \w+^w + \w.
Then, by treating these factorials as if they were powers we obtain

P(G, A) == P(Gi, A)QP(G2, A) = A(2) 0 (A(4) + 3A(3) + A<2))
A(6)+3A<5)+A(4).
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(a) the graph G (b) Ae subgraph G^ (c) the subgraph G^

Figure 3: Illustration ofTheorem 4. 3.

5 Expressing P(G, A) by means of chromatic polynomials of undi-
reeled subgraphs of G

In this section we give a formula relating the chromatic polynomial of an oriented graph G to the chromatic
polynomials of some (underlying) undirected subgraphs of G. Let us denote by Und(G) the undirected
underlying graph of any oriented graph G (obtained by "forgetting" the orientation of the arcs of G). With
any oriented graph G = (V, A} we associate the set C(G) defined as :

C(G) = {{(x, y), (z, t)}GA2, (y. z)tA, (z, y)tA, (x, t)iA^d(t, x)iA).

Roughly speaking, C(G) represents the set of pairs of arcs which can contradict the fact that a A-coloring of
Und(G} is a valid A-coloring of G (by means of condition (it) of the definition). Note that any pair of arcs
of the form {(x, y), (y, z)} belongs to C(G).

Now let Z = {{(^i, yi), (^i, <i)},..., {(.Ct, !/t), (^, 4)}} be any subset ofC(G) ; we will denote by /c/(G, Z)
the undirecied graph obtained from Und(G) by identifying the vertices z, and (,, y, and 2,, for any 1 < !^ fc.
Note that such an operation may lead to a graph having some loops, in which case we let its chromalic
polynomial to be 0. Note also that we have Id(G, 9) = Und(G).

Then we obtain :

Theorena 5. 1 For any oriented graph G we have

P(G, A) = ^ (-l)#zxP(/d(G, Z), A).
ZCC(G)

Proof. This result is obtained by using a standard inclusion/exclusion argument. a

Example 5.2 Figure 4 illustrates the above Theorem on an oriented graph G with C(G) =
{{(a, 6), (6, c)}, {(6, c), (c, d)}}. The set of considered pairs of arcs is precised besides each corresponding
undirected graph.

Note that Theorem 5. 1 does not give an efficient way of computing P(G, A) but only relates chromatic
polynomials of oriented and undirected graphs.
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b=d
{(b.c), (c,d)}

+
b==d a==c
.-. {(a,b).(b,c)}{(b. c). (c, d)}

4 3 2 . 3 , _2 _ . ..2
(^ - 3^+3^ - X). 2(X- 2^. +^. )+(X- ^.)

4 32
\ - 5X+8^. -4^

6 Discussion

Figure 4: Illustration ofTheorem 5. 1.

In this paper, we have introduced the notion of chromatic polynomials of oriented graphs and shown how
these polynomials can be computed. Many questions which are solved in the case ofundirected graphs remain
open in the oriented case and give natural directions for future work. For instance, we do not have up to
now any simple mechanism allowing to derive the usual form of the chromatic polynomial, that is allowing
to express the chromatic polynomial of a graph G as a function of the chromatic polynomials of some empty
graphs. In the same vein, we do not have any general interpretation of the coefHcients in the usual form of
P(G, A) (only the first two coefficients are interpreted by Proposition 3.3). Unfortunately, it seems that such
questions are quite difficult in the oriented case, due to the non locality of the coloring requirements. The
property that the coefficients of the chromatic polynomial alternate in sign is for instance no longer satisfied
in the oriented case as shown by the following graph :

^- 4^7 +5^ - X - ^

Similarly, the absolute values of the coefficients no longer have the unimodality property, as shown by the
following graph :

= ^ - 13 X' +66^"- 155 ^+127 ^. '+121 X" - 281^" + 134 ?i

It would also be interesting to study the relation between the chromatic polynomial of an undirected
graph H and the chromatic polynomials of its orientations (i. e. the graphs obtained from H by giving any
orientation to its edges). Note that since any A-coloring of any orientation H of an undirected graph H is
a A-coloring of H itself, we always have P(H, \) <^ P(H, \). A characterization of the undirected graphs
for which one can find one orientation having the same chromatic polynomial remains to be done (it is not
difficult to check that complete multipartite graphs belong to that class).
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The notions of chromatic equivalence and chromatic uniqueness [1, 6] could also be asked in the oriented
case. Two non-isomorphic undirected graphs are said to be chromatically equivalent if they have identical
chromatic polynomials. An undirected graph is said to be chromatically unique if it is not chromatically
equivalent to any other graph. These notions should be slightly modified in the oriented case since any
oriented graph G has the same chromatic polynomial as its "reversed graph" G-l (obtained from G by
reversing the direction of all its arcs). Chromatic uniqueness seems to be "less frequent" in the oriented
case. As mentioaned earlier, unlike complete undirected graphs, oriented tournaments, for instance, are not
chromatically unique : the directed cycle with 5 vertices (see the graph Gs in Section 2) is chromatically
equivalent to any tournament on 5 vertices.
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