A decomposition of 2-weak vertex-packing polytopes

Einar Steingrímsson,¹ Matematiska Institutionen CTH & GU, 412 96 Göteborg, SWEDEN

Abstract

Let G be a graph with d vertices. Let \mathcal{Q} be the polytope which is the subset of the unit d-cube satisfying $x_i + x_j \leq 1$ whenever (i, j) is an edge of G. The dilation by 2 of \mathcal{Q} , denoted \mathcal{P} , is a polytope with integral vertices. We triangulate \mathcal{P} with lattice simplices of minimal volume and label the maximal simplices with elements of the hyperoctahedral group B_d . This labeling gives rise to a shelling of the triangulation $\widehat{\mathcal{P}}$ of \mathcal{P} , and the *h*-vector of $\widehat{\mathcal{P}}$ (and the Ehrhart h^* -vector of \mathcal{P}) can be computed as a descent statistic on a subset of B_d determined by G. Recursive formulas are given for computing the volume of \mathcal{P} and the *h*-vector of $\widehat{\mathcal{P}}$.

Soit G un graphe à d sommets. Soit \mathcal{Q} le polytope, sous-ensemble du cube unité de l'espace à d dimensions, défini par les inégalités $x_i + x_j \leq 1$ pour tout couple (i, j) de sommets adjacents dans G. Les sommets de la dilatation de \mathcal{Q} par multiplication par 2, que l'on appelle \mathcal{P} , ont tous des coordonnées entières. On fait une triangulation $\hat{\mathcal{P}}$ de \mathcal{P} par des simplexes dont les sommets appartiennent au treillis entier dont le volume est minimal. On attache aux simplexes maximaux des étiquettes qui sont des éléments du groupe hyperoctaèdral B_d . Cet étiquetage produit un effeuillage de la triangulation $\hat{\mathcal{P}}$ et le vecteur h de $\hat{\mathcal{P}}$ (ainsi que le vecteur h^* de Erhart associé à \mathcal{P}) peut être calculé en termes du paramètre nombre de descentes sur un sous-ensemble de B_d qui dépend de G. On donne des formules récursives pour le calcul du volume de \mathcal{P} et du vecteur h de $\hat{\mathcal{P}}$.

1 Introduction

Let G be a loopless graph, d the number of vertices in G, and label the vertices of G by the integers $1, 2, \ldots, d$. The extended 2-weak vertex-packing polytope $\mathcal{P}(G)$ of G is defined by

$$0 \le x_i \le 2, \quad 1 \le i \le d,\tag{1}$$

$$x_i + x_j \le 2$$
, if (i, j) is an edge of G. (2)

The polytopes $\mathcal{P}(G)$ are special cases of k-weak vertex-packing polytopes, which in turn are approximations of vertex-packing polytopes, which have been studied from the mathematical programming point of view (see, e.g., [5] and [2]). This paper deals with the combinatorial structure of $\mathcal{P}(G)$. We triangulate $\mathcal{P}(G)$ in a certain systematic way and label the maximal simplices in the triangulation, which we denote by $\hat{\mathcal{P}}$, with elements of the hyperoctahedral group B_d . This labeling allows us to shell $\hat{\mathcal{P}}$ in such a way that we can compute the h-polynomial of $\mathcal{P}(G)$ as a descent statistic on a subset of B_d determined by G. Moreover, the triangulation is such that its h-polynomial equals the Ehrhart h^{*}-polynomial of $\mathcal{P}(G)$. This gives a decomposition of $\hat{\mathcal{P}}$ into maximal simplices, whose intersections with

¹Partially supported by grants from The Icelandic Council of Science and The Royal Swedish Academy of Sciences, respectively.

other maximal simplices we can describe explicitly. A recursive formula for the h-polynomial of $\hat{\mathcal{P}}(G)$ can be also be given. A simplified version of this recursion yields a simple recursive formula for computing the volume of $\mathcal{P}(G)$.

2 Preliminaries

2.1 Ehrhart polynomials

Let \mathcal{P} be a *d*-dimensional polytope (or simplicial complex (see section 2.2)) in \mathbb{R}^n with integral (or lattice) vertices, i.e. $v_i \in \mathbb{Z}^n$ for all vertices v_i of \mathcal{P} . For $k \in \mathbb{N}$ let $k\mathcal{P} = \{kx \mid x \in \mathcal{P}\}$, i.e. $k\mathcal{P}$ is the (lattice) polytope obtained by dilating \mathcal{P} by a factor of k.

For $k \in \mathbb{N}$ define the function $i(\mathcal{P}, k) = \#\{x \in \mathbb{R}^n \mid x \in k\mathcal{P} \cap \mathbb{Z}^n\}$. Thus, $i(\mathcal{P}, k)$ is the number of lattice points contained in $k\mathcal{P}$. By Cor. 4.6.28 in [7], $i(\mathcal{P}, k)$ is a polynomial in k of degree d, called the *Ehrhart polynomial* of \mathcal{P} . Now define the generating function $E(\mathcal{P},t) = \sum_{k\geq 0} i(\mathcal{P},k)t^k$. By Thm. 2.1 in [6], we have $E(\mathcal{P},t) = \frac{h^*(\mathcal{P},t)}{(1-t)^{d+1}}$, where $h^*(\mathcal{P},t)$ is a polynomial of degree at most d with non-negative integer coefficients, called the *Ehrhart* h^* -polynomial of \mathcal{P} .

2.2 Simplicial complexes

An abstract simplicial complex is a nonempty collection K of sets such that if $F \in K$ and $G \subset F$ then $G \in K$. An element of K is called a *face* of K. We will be mostly concerned with the *geometric realization* of simplicial complexes (for definitions and basic properties, see [4]) and we will, by abuse of notation, *not* distinguish between a simplicial complex and its geometric realization.

A simplicial complex K is pure if all its maximal faces have the same dimension $d = \dim(K)$. If K is a pure simplicial complex of dimension d, then a facet of K is a d-face, i.e. a d-dimensional face, of K. When a complex K triangulates a polytope \mathcal{P} , the facets of K are d-dimensional, but the facets of \mathcal{P} have dimension d - 1.

The *h*-vector $h(K) = (h_0, h_1, \ldots, h_d)$ of a simplicial complex K of dimension d-1 is defined as follows: Let $f_i = f_i(K)$ be the number of *i*-dimensional faces in K, where we set $f_{-1} = 1$, and define $h(K) = (h_0, h_1, \ldots, h_d)$ by setting

$$\sum_{i=0}^{d} f_{i-1}(x-1)^{d-i} = \sum_{i=0}^{d} h_i x^{d-i}.$$
(3)

We define the *h*-polynomial h(K,t) of K by $h(K,t) = h_0 + h_1t + \cdots + h_dt^d$.

Let K be a pure simplicial lattice complex of dimension d. If all facets of K have volume 1/d! (see section 2.4) we say that K is *primitively triangulated*. The following theorem is essentially a consequence of Cor. 2.5 in [6], whose conclusion is expressed in greater generality in Thm. 2 in [1].

Theorem 1 Suppose K is a primitively triangulated simplicial lattice complex. Then $h^*(K, t) = h(K, t)$, where $h^*(K, t)$ is the Ehrhart h^* -polynomial of K.

For certain pure simplicial complexes K the coefficients of h(K, t) can be interpreted in a way that partitions the facets of K according to how they intersect other facets.

Definition 2 Let K be a finite pure simplicial complex of dimension d. If F is a face of K, let \overline{F} be the complex consisting of F and all its faces. An ordering F_1, F_2, \ldots, F_n of the facets of K is called a shelling if, for all k with $1 < k \leq n, \overline{F}_k \cap \bigcup_{i=1}^{k-1} \overline{F}_i$ is a pure complex of dimension (d-1). A complex K is said to be shellable if there exists a shelling of K.

As it turns out, the h-vector of a shellable complex can be computed from the shelling. The following theorem is essentially due to McMullen [3].

Theorem 3 Let F_1, F_2, \ldots, F_n be a shelling of a d-dimensional complex K and let c(k) be the number of (d-1)-faces of \overline{F}_k contained in $\bigcup_{i < k} \overline{F}_i$. Then $h(K, t) = \sum_{i=1}^n t^{c(i)}$.

Thus, given a shelling F_1, F_2, \ldots, F_n of a simplicial complex K, we can compute the h-polynomial h(K,t) of K via Theorem 3. That is, the k-th coefficient of h(K,t) equals the number of F_i with c(i) = k.

If K is a simplicial complex and p a vertex not in K, then the cone with apex p over K (or with base K), denoted p * K, is the simplicial complex whose *i*-faces are the *i*-faces of K and $\{p \cup f \mid f \text{ an } (i-1)\text{-face of } K\}$. Geometrically, a cone can be defined as follows. If K is a (d-1)-dimensional simplicial (or polytopal) complex in \mathbb{R}^n and p is a point in \mathbb{R}^n such that each ray emanating from p intersects K in at most one point, then the cone p * K consists of K and p and the new *i*-faces, for $1 \le i \le d$, obtained by taking, for each (i-1)-face f in K, the union of all line segments connecting p to points in f.

Theorem 4 Suppose the simplicial complex K is a cone with apex p over B, i.e. K = p * B. Then h(K,t) = h(B,t).

2.3 The hyperoctahedral group

We represent the elements of the hyperoctahedral group B_d by signed permutation words, i.e. ordinary permutations in which each letter has a sign. To simplify the notation, we write a_i for $+a_i$ and \bar{a}_i for $-a_i$. For example, $B_2 = \{12, 21, \bar{1}2, 2\bar{1}, 1\bar{2}, \bar{2}1, \bar{1}2, \bar{2}1\}$.

We refer to the elements of B_d simply as permutations. We regard the letters in a permutation as integers and order them as such, i.e. $\cdots \overline{3} < \overline{2} < \overline{1} < 0 < 1 < 2 < 3 \cdots$.

Definition 5 A descent in $\pi \in B_d$ is an $i \in [d]$ such that one of the following holds:

1) i < d and $a_i > a_{i+1}$,

2) i = d and $a_d > 0$.

For any subset S of B_d , the descent polynomial of S is $D(S,t) := \sum_{\pi \in S} t^{\operatorname{des}(\pi)}$, where $\operatorname{des}(\pi)$ is the number of descents in π .

For example, the descents of $2\overline{3}\overline{4}1$ are 1,2 and 4, so $des(2\overline{3}\overline{4}1) = 3$. If $S = \{\overline{3}\overline{2}\overline{1}, 1\overline{2}\overline{3}, 213\}$ then $D(S,t) = 1 + 2t^2$.

2.4 Volumes

When we talk about volume in \mathbb{R}^d we mean the usual *d*-dimensional volume, which we denote $\operatorname{vol}_d(\cdot)$. If S is a subset of a *d*-dimensional coordinate subspace of \mathbb{R}^n , then by $\operatorname{vol}_d(S)$ we mean the volume of S in that subspace. If S is a union of such subsets S_i then by $\operatorname{vol}_d(S)$ we mean the sum of the volumes of the S_i . In particular, a polytope \mathcal{P} of dimension less than d has $\operatorname{vol}_d(\mathcal{P}) = 0$. For convenience, we make the following definition.

Definition 6 If \mathcal{P} is a d-dimensional polytope or simplicial complex in \mathbb{R}^n such that $\operatorname{vol}_d(\mathcal{P})$ is defined, then the normalized volume of \mathcal{P} is $\operatorname{Nvol}(\mathcal{P}) := d! \cdot \operatorname{vol}_d(\mathcal{P})$.

Hence, for any polytope (or simplicial complex) \mathcal{P} of positive dimension, $Nvol(\mathcal{P})$ is positive. The rationale behind this definition is that the least volume a lattice *d*-simplex can have is 1/d!. In particular, the normalized volume of a primitively triangulated complex equals its number of maximal simplices.

3 Main Theorems

Proposition 7 Let \mathbf{p} be a point in the polytope \mathcal{P} and let $\mathcal{P}_{\mathbf{p}}$ be the union of those facets of \mathcal{P} which do not contain \mathbf{p} . Then \mathcal{P} is a cone with apex \mathbf{p} over $\mathcal{P}_{\mathbf{p}}$.

Throughout, if G is a graph, $\mathcal{P}(G)$ is the extended 2-weak vertex-packing polytope of G. By definiton, $\mathcal{P}(G)$ is a subset of $2C^d$, the dilation of the unit d-cube by 2.

Theorem 8 Let G be a graph and let $\mathcal{P}'(G) = \mathcal{P}(G) \cap \partial(2C^d)$, i.e. $\mathcal{P}'(G)$ is the union of those facets of $\mathcal{P}(G)$ which lie on the boundary of $2C^d$. Let $\mathbf{p} = (1, 1, \ldots, 1)$. Then $\mathcal{P}(G) = \mathbf{p} * \mathcal{P}'(G)$.

Theorem 9 Let $\mathbf{v} = (v_1, v_2, \dots, v_d)$ be a point in \mathcal{P} with integral coordinates and let $S = \{i \in [d] \mid v_i = 1\}$. Let G_S be the subgraph of G induced by S. Then \mathbf{v} is a vertex of \mathcal{P} iff each connected component of G_S contains an odd cycle (or $S = \emptyset$).

To triangulate $\mathcal{P}(G)$ we first triangulate $2C^d$ in the following way. $2C^d$ is embedded in \mathbb{R}^d so that its vertices are all points each of whose coordinates are either 0 or 2. In particular, its center (of symmetry) is the point $\mathbf{p} = (1, 1, ..., 1)$. We subdivide $2C^d$ into the 2^d unit cubes all of whose vertices are lattice points. Each of these small cubes contains \mathbf{p} and a unique vertex which is a vertex of $2C^d$. We label each small cube by that vertex of $2C^d$ which it contains. As an example, the standard unit *d*-cube is labeled by $\mathbf{0} = (0, 0, ..., 0)$ and denoted c_0 .

Next, we triangulate each of these small cubes. Let c_z be the small cube labeled by z. Then every maximal simplex in the triangulation of c_z contains p and z and is defined as the convex hull of a path along edges of c_z from p to z, as follows.

Let $\mathbf{p}_0 = \mathbf{p}, \mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_d = \mathbf{z}$ be a sequence of vertices of $c_{\mathbf{z}}$ such that $\mathbf{p}_k = \mathbf{p}_{k-1} \pm e_j$ where e_j is the vector $(0, \dots, 0, 1, 0, \dots, 0)$ with a 1 in the *j*-th place and 0's elsewhere. It follows that in the sequence of \mathbf{p}_k 's the *i*-th coordinate must change precisely once, from 1 to z_i , because we start out from $p = (1, 1, \dots, 1)$ and $\mathbf{z} = (z_1, z_2, \dots, z_d)$ is a vertex of $2C^d$, so $z_i \in \{0, 2\}$ for each *i*.

The points p_i are geometrically independent and thus they are the vertices of a ddimensional simplex, namely their convex hull. It is also clear that the intersection of any two maximal simplices is the convex hull of their common vertices, so this is indeed a simplicial complex.

Such a sequence of vertices defining a maximal simplex can be coded by a permutation in the hyperoctahedral group B_d . Namely, we define $\pi = a_1a_2\cdots a_d$ by setting $a_i = k$ if $\mathbf{p}_i - \mathbf{p}_{i-1} = e_k$ and $a_i = -k$ if $\mathbf{p}_i - \mathbf{p}_{i-1} = -e_k$. For example, the sequence (1,1,1), (0,1,1), (0,1,2), (0,0,2) of points in $c_{(0,0,2)}$ corresponds to the permutation $\overline{1}3\overline{2}$. Conversely, every $\pi \in B_d$ determines a unique path from p to a vertex z of $2C^d$ and hence a unique d-simplex, which we denote by σ_{π} , contained in c_z . The number of distinct paths from p to z is d!, and the following lemma is now immediate.

Lemma 10 Let $\{\pi_i \mid 1 \leq i \leq d\}$ be the permutations labeling the maximal simplices in a cube c_z . Then each integer k in [d] appears with the same sign in every π_i . More precisely, the sign of $k \in [d]$ in such a permutation is + or - according as the k-th coordinate of z is 2 or 0. Conversely, if each $k \in [d]$ appears with the same sign in two permutations π and τ , then σ_{π} and σ_{τ} belong to the same cube c_z .

For example, the paths in the cube $c_{(0,2)}$ are $(1,1) \rightarrow (1,2) \rightarrow (0,2)$ and $(1,1) \rightarrow (0,1) \rightarrow (0,2)$, corresponding to the permutations 21 and 12, respectively.

Proposition 11 The collection $\{\sigma_{\pi} \mid \pi \in B_d\}$ covers $2C^d$. Any two of these simplices are isometric, in particular each has volume 1/d! and hence $Nvol(\sigma_{\pi}) = 1$ for each π .

Corollary 12 The triangulation $\widehat{\mathcal{P}}(G)$ is primitive. Thus, $\operatorname{Nvol}(\mathcal{P}(G)) = \#\Pi(G)$.

Thus the collection $\{\sigma_{\pi} \mid \pi \in B_d\}$ triangulates $2C^d$. We denote this triangulation by $\widehat{2C^d}$. We can now give a succinct characterization of the permutations corresponding to the maximal simplices of $\widehat{2C^d}$ contained in \mathcal{P} . First a definition.

Definition 13 Let G be a graph. The set of permissible permutations with respect to G is $\Pi(G) = \{\pi \in B_d \mid \sigma_{\pi} \subset \mathcal{P}(G)\}$. A permutation π is permissible w.r.t. G if $\pi \in \Pi(G)$.

Theorem 14 A permutation $\pi \in B_d$ is permissible w.r.t. G if and only if it satisfies the following condition:

If (i, j) is an edge in G and +i appears in π , then -j must precede +i in π .

Proposition 15 Let σ_{π} be a maximal simplex in c_z . If \mathcal{P} intersects the interior of σ_{π} , then $\sigma_{\pi} \subset \mathcal{P}$. Hence, $\widehat{\mathcal{P}} := \widehat{2C^d} \cap \mathcal{P}$ is a triangulation of \mathcal{P} .

For the remainder of this section, fix a graph G and let \mathcal{P} denote its extended 2-weak vertex-packing polytope and $\hat{\mathcal{P}}$ the triangulation of \mathcal{P} described above.

Our goal is to find a shelling of $\hat{\mathcal{P}}$. To that end, we order the permutations in B_d *lexicographically*, i.e. a permutation $\pi = a_1 a_2 \cdots a_d$ precedes $\tau = b_1 b_2 \cdots b_d$ if $a_i < b_i$ for the first *i* at which π and τ differ. Abusing notation, we use < to denote this ordering of the elements of B_d . For example, $\overline{231} < 3\overline{21}$ and $23\overline{1} < 231$.

We will show that the ordering of maximal simplices in $\hat{\mathcal{P}}$ induced by the lexicographic ordering of their corresponding permutations is a shelling of $\hat{\mathcal{P}}$. Before proving that, we need a definition and a lemma.

Definition 16 Let σ_{π} and σ_{τ} be two maximal simplices in \mathcal{P} , and $d = dim(\mathcal{P})$. We say that σ_{π} and σ_{τ} intersect maximally if they have a (d-1)-face in common.

Lemma 17 Suppose $\sigma_{\pi} \subset c_{\mathbf{Z}} \cap \hat{\mathcal{P}}$, where $\pi = a_1 a_2 \cdots a_d$, and suppose that *i* is a descent in π . If *i* is an internal descent in π , i.e. $a_i > a_{i+1}$, for some $i \leq d-1$, then $\sigma_{\pi'} \subset c_{\mathbf{Z}} \cap \hat{\mathcal{P}}$, where $\pi' = a_1 a_2 \cdots a_{i+1} a_i \cdots a_d$. If i = d, i.e. $a_d > 0$, then $\sigma_{\pi'} \subset \hat{\mathcal{P}}$, where $\pi' = a_1 a_2 \cdots - a_d$. In either case, $\pi' < \pi$ and σ_{π} and $\sigma_{\pi'}$ intersect maximally. Moreover, if two maximal simplices σ_{π} and $\sigma_{\pi'}$ in $\hat{\mathcal{P}}$ intersect maximally, then π and π' either differ only by a single transposition or only by the sign of their last letter.

Theorem 18 Order the maximal simplices in $\hat{\mathcal{P}}$ so that σ_{τ} precedes σ_{π} if $\tau < \pi$. This ordering is a shelling of $\hat{\mathcal{P}}$.

Proof: Let σ_{π} be a maximal simplex in $\hat{\mathcal{P}}$. If π is the (lexicographically) first permutation in $\Pi(G)$ then there is nothing to prove. Otherwise, we must show that $\sigma_{\pi} \cap \bigcup_{\tau < \pi} \sigma_{\tau}$ is a nonempty union of (d-1)-faces of σ_{π} . It suffices to show that if σ_{π} intersects a maximal

simplex $\sigma_{\tau} \subset \hat{\mathcal{P}}$ and σ_{τ} precedes σ_{π} , then $\sigma_{\pi} \cap \sigma_{\tau}$ is contained in some (d-1)-face f of σ_{π} such that $f = \sigma_{\pi} \cap \sigma_{\pi'}$ for some $\sigma_{\pi'} \subset \hat{\mathcal{P}}$ with $\sigma_{\pi'}$ preceding σ_{π} .

Suppose $\sigma_{\pi}, \sigma_{\tau} \subset \widehat{\mathcal{P}}$ and that σ_{τ} precedes σ_{τ} , so $\tau < \pi$. Let *i* be the first place where π and τ differ. If i = d then σ_{π} and σ_{τ} intersect maximally, by Lemma 17, and we are done. Assume therefore that i < d. Let $\pi = a_1 a_2 \cdots a_d$ and $\tau = a_1 a_2 \cdots a_{i-1} b_i \cdots b_d$. Let k be the first descent in π after i - 1. Such a k must exist, because otherwise we would have $a_i < a_{i+1} < \cdots < a_d < 0$ so that π was the first permutation in B_d beginning with $a_1 a_2 \cdots a_{i-1}$, contradicting $\tau < \pi$.

Let $\mathbf{p}_0, \mathbf{p}_1, \ldots, \mathbf{p}_d$ be the sequence of points defining σ_{π} . We claim that $\mathbf{p}_k \notin \sigma_{\tau}$. If σ_{τ} did contain \mathbf{p}_k then we would have $\{a_1, a_2, \ldots, a_k\} = \{b_1, b_2, \ldots, b_k\}$, in particular $\{a_i, a_{i+1}, \ldots, a_k\} = \{b_i, b_{i+1}, \ldots, b_k\}$, so k > i. But then, since k was the first descent in π after i - 1, so that $a_i < a_{i+1} < \cdots < a_k$, we must have $b_i > a_i$, contradicting the assumption $\tau < \pi$, so $\mathbf{p}_k \notin \sigma_{\tau}$.

If k < d, let $\pi' = a_1 \cdots a_{k-1} a_{k+1} a_k \cdots a_d$. Then $\pi' < \pi$ and $\sigma_{\pi} \cap \sigma_{\pi'}$ is the convex hull of $p_0, p_1, \ldots, p_{k-1}, p_{k+1}, \ldots, p_d$. By Lemma 17, σ_{π} and $\sigma_{\pi'}$ intersect maximally and $\sigma_{\pi'} \subset \widehat{\mathcal{P}}$. Moreover, since $p_k \notin \sigma_{\tau}, \sigma_{\pi} \cap \sigma_{\tau} \subset \sigma_{\pi} \cap \sigma_{\pi'}$, as desired.

If k = d, then $a_d > 0$. Let $\pi' = a_1 a_2 \cdots \bar{a}_d$. Then $\pi' < \pi$ and, by Lemma 17, σ_{π} and $\sigma_{\pi'}$ intersect maximally and $\sigma_{\pi'} \subset \hat{\mathcal{P}}$. Since $\mathbf{p}_d \notin \sigma_{\tau}$, we have $\sigma_{\pi} \cap \sigma_{\tau} \subset \sigma_{\pi} \cap \sigma_{\pi'}$, as desired.

Theorem 19 The h-polynomial of $\hat{\mathcal{P}}$ equals the descent polynomial of the set of permissible permutations with respect to G. That is, $h(\hat{\mathcal{P}},t) = D(\Pi(G),t)$ and hence $h^*(\mathcal{P},t) = D(\Pi(G),t)$.

Proof: We need to show that for each descent in $\pi \in \Pi(G)$ there is a unique maximal simplex $\sigma_{\tau} \in \widehat{\mathcal{P}}$ such that σ_{π} and σ_{τ} intersect in a (d-1)-face of each and such that $\tau < \pi$. First suppose that *i* is an internal descent in π , i.e. $1 \leq i \leq d-1$ and let $\pi = a_1 a_2 \cdots a_d$, so $a_i > a_{i+1}$. By Lemma 17, two maximal simplices σ_{π} and σ_{τ} in the same cube c_z intersect maximally if and only if π and τ differ by a single transposition. Let $\tau = a_1 a_2 \cdots a_{i+1} a_i \cdots a_d$. Then τ precedes π , $\sigma_{\tau} \subset \widehat{\mathcal{P}}$ and σ_{π} and σ_{τ} intersect maximally. Conversely, if σ_{π} and σ_{τ} in c_z intersect maximally then they differ by a single transposition and if $\tau < \pi$ then π has a descent at the transposition distinguishing it from τ .

The only other maximal simplices σ_{π} can intersect maximally are those belonging to other cubes than c_z . By Lemma 17, if σ_{τ} is such a simplex and $\pi = a_1 a_2 \cdots a_d$, then $\tau = a_1 a_2 \cdots \bar{a}_d$, so, for τ to precede π , we must have $a_d > 0$, i.e. d is a descent in π . Conversely, if d is a descent in π then $a_d > 0$, so if $\tau = a_1 a_2 \cdots \bar{a}_d$ then $\tau < \pi$, $\sigma_{\tau} \subset \hat{\mathcal{P}}$ and σ_{π} and σ_{τ} intersect maximally.

4 Applications

Definition 20 $\mathcal{B} := \mathcal{P} \cap \partial(2C^d)$ and $\widehat{\mathcal{B}} := \widehat{\mathcal{P}} \cap \partial(2C^d)$.

Theorem 21 $h(\hat{\mathcal{P}},t) = h(\hat{\mathcal{B}},t)$. Hence, $h^*(\mathcal{P},t) = h(\hat{\mathcal{B}},t)$.

Proof: $\hat{\mathcal{P}}$ is a cone over $\hat{\mathcal{B}}$, which yields the equality of *h*-polynomials, by Theorem 4. The equality $h^*(\mathcal{P}, t) = h(\hat{\mathcal{B}}, t)$ is then implied by Theorem 1 and the fact that \mathcal{P} (and hence \mathcal{B}) is primitively triangulated.

Corollary 22 $\operatorname{vol}_d(\mathcal{P}) = \operatorname{vol}_{d-1}(\mathcal{B})$. Equivalently, $\operatorname{Nvol}(\mathcal{P}) = \operatorname{Nvol}(\mathcal{B})$.

Proof: Nvol(\mathcal{P}) equals the number of maximal simplices in $\widehat{\mathcal{P}}$, which in turn equals the number of maximal simplices in $\widehat{\mathcal{B}}$, since $\widehat{\mathcal{P}}$ is a cone over $\widehat{\mathcal{B}}$.

4.1 Volumes

Corollary 22 yields a recursive formula for the volume of \mathcal{P} , because each facet of \mathcal{B} (i.e. a facet of \mathcal{P} contained in \mathcal{P}) is an extended 2-weak vertex-packing polytope. More precisely, the facet of \mathcal{B} obtained by setting $x_i = 0$ (which we denote $\mathcal{B}_{x_i=0}$) is the extended 2-weak vertex-packing polytope of the graph obtained by removing x_i from G. If x_i is an isolated vertex of G then $\mathcal{B}_{x_i=2}$ is isometric to $\mathcal{B}_{x_i=0}$ (since then $\mathcal{P} = \mathcal{P}_{x_i=0} \times [0,2]$), but otherwise $\mathcal{B}_{x_i=2}$ has dimension less than d-1 and thus $\operatorname{vol}_{d-1}(\mathcal{B}_{x_i=2}) = 0$.

If $d = a_1 + \cdots + a_k$, let $\binom{d}{a_1, \dots, a_k} = \frac{d!}{a_1! \cdots a_k!}$. Abusing notation, we will write Nvol(G) instead of $Nvol(\mathcal{P}(G))$, where G is a graph and $\mathcal{P}(G)$ its extended 2-weak vertex-packing polytope.

Theorem 23 Let C_1, C_2, \ldots, C_k be the connected components of G, with $a_i = \#C_i$ for each i, and d = #G. Then $Nvol(G) = \begin{pmatrix} d \\ a_1, a_2, \dots, a_k \end{pmatrix} \prod_{i=1}^k Nvol(C_i)$. In particular, if G has an isolated vertex x and G_x is the graph obtained by removing x from G, then $Nvol(G) = 2 \cdot d \cdot Nvol(G_x)$.

Theorem 24 Let G be a graph without isolated vertex, #G = d, and let G_x denote the graph obtained by removing x from G. Then

$$\operatorname{Nvol}(G) = \sum_{x \in G} \operatorname{Nvol}(G_x).$$

We now give a few examples of how to use the recurrence of Theorems 23 and 24 to compute the volume of extended 2-weak vertex-packing polytopes. To get the recursion off the ground, observe that if G consists of a single vertex, then $\mathcal{P}(G) = [0,2] \subset \mathbf{R}$, so Nvol(G) = 2.

Example 25 Nvol (•••) = $2 \cdot \text{Nvol}(\bullet) + \text{Nvol}(\bullet) = 2 \cdot 2 \cdot \text{Nvol}(\bullet) + \binom{2}{1} \cdot (\text{Nvol}(\bullet))^2 = 8 + 2 \cdot 2^2 = 16.$

Example 26 $\operatorname{Nvol}(4) = 2 \cdot \operatorname{Nvol}(4) = 2 \cdot \operatorname{Nvol}(4) = 2 \cdot 16 + 6 \cdot \operatorname{Nvol}(4) = 32 + 6 \cdot 4 = 56.$

Example 27 Let K_d be the complete graph on d vertices. Then Theorem 24 gives $Nvol(K_d) = d \cdot Nvol(K_{d-1}) = \cdots = d! \cdot Nvol(\bullet) = 2d!$.

Example 28 If G_d is the graph \bullet \bullet \bullet with d vertices, so G_d is the comparability graph of the *fence poset* on elements x_1, \ldots, x_d (with relations $x_1 < x_2 > x_3 < x_4 > \cdots$), then it is well known (see [8]) that the volume of the 2-weak vertex-packing polytope of G_d (of which $\mathcal{P}(G)$ is the dilation by 2) is given by the d-th coefficient of the Taylor series of $\tan x + \sec x$. We can compute the corresponding result for $\mathcal{P}(G_d)$ in the following way. Using Theorems 23 and 24, we get this recurrence for $A_d = \text{Nvol}(G_d)$: For $d \geq 1$, $A_{d+1} = \sum_{i=0}^d {d \choose i} A_i \cdot A_{d-i}$ and hence $\sum_{d\geq 1} A_{d+1} \frac{x^d}{d!} = \left(\sum_{d\geq 0} A_d \frac{x^d}{d!}\right)^2$. Setting $F(x) = \sum_{d\geq 0} A_d \frac{x^d}{d!}$ yields $F'(x) - 1 = (F(x))^2$, which, together with F(0) = 1, has the unique solution $F(x) = \tan(2x) + \sec(2x)$.

This means, by Theorem 3.37 in [9], that $Nvol(G_d)$ equals the number of weakly alternating permutations in B_d , i.e. those permutations for which $i \in \{1, 2, ..., d-1\}$ is a descent if and only if *i* is odd. However, this set of permutations does not coincide with $\Pi(G_d)$. It might be interesting to find a bijection between these two sets of permutations in B_d .

4.2 The *h*-polynomial of $\widehat{\mathcal{P}}$

Example 29 Let K_d be the complete graph on d vertices. Then $\Pi(K_d)$ consists of all permutations $\pi = a_1 a_2 \cdots a_d \in B_d$ such that $a_i < 0$ for all i except, perhaps, for i = d. Let Π_- be the set of permutations in $\Pi(G)$ all of whose letters are negative, and let Π_+ be the set of those permutations in $\Pi(G)$ whose last letter is positive but all others negative. It is easy to see that $D(\Pi_-, t)$ equals the usual descent polynomial of the symmetric group S_d , consisting of all permutations of the letters $\{1, 2, \ldots, d\}$ (no signs involved and never a descent at d). This polynomial is well known and called the d-th Eulerian polynomial (see, e.g. [7]) and often denoted by $A_d(t)$. In fact, $A_d(t)$ equals the h-polynomial of our triangulation of c_0 . As for Π_+ , we see that there is always a descent at d, never a descent at d-1, and the first d-1 letters in a $\pi \in \Pi_+$ behave just like a permutation in S_{d-1} . Hence each permutation in Π_+ corresponds to a permutation in S_{d-1} , but has an extra descent, namely the one at d. There are d possible choices for the last letter of $\pi \in \Pi_+$ and the descent polynomial of Π_+ is thus equal to $d \cdot t A_{d-1}(t)$. Hence, $h(\hat{\mathcal{P}}(K_d), t) = A_d(t) + d \cdot t A_{d-1}(t)$. Moreover, the exponential generating function of $A_d(t)$ is $\sum_{d\geq 0} A_d(t) \frac{x^d}{d!} = \frac{(1-t)e^{x(1-t)}}{1-te^{x(1-t)}}$.

Finally, we give two theorems which provide a recursive algorithm for computing $h(\hat{\mathcal{P}}, t)$.

Definition 30 Let G be a graph with vertex set [d] and \mathcal{P} defined as usual in terms of G. Let $S \subset [d]$. Then $\mathcal{P}_S := \{ \mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathcal{P} \mid x_i = 0 \text{ if } i \in S \}.$

That is, \mathcal{P}_S is isomorphic to $\mathcal{P}(G_S)$, where G_S is the subgraph of G induced by $[d] \setminus S$. We also define $\hat{\mathcal{P}}_S$ similarly, i.e. $\hat{\mathcal{P}}_S := \hat{\mathcal{P}} \cap \mathcal{P}_S$.

Theorem 31 Let G be a graph with vertex set [d] and no isolated vertices. Then $h(\hat{\mathcal{P}}, t) = \sum_{S} h(\hat{\mathcal{P}}_{S}, t)(t-1)^{\#S-1}$, where S ranges over all nonempty subsets of [d].

Theorem 32 Let G be a graph with d-1 vertices and denote by G' the graph obtained by adding to G an isolated vertex. Suppose $h(\hat{\mathcal{P}}(G),t) = a_0 + a_1t + \cdots + a_{d-1}t^d$. Then $h(\hat{\mathcal{P}}(G'),t) = b_0 + b_1t + \cdots + b_dt^d$, where $b_k = (2k+1)a_k + (2d-2k+1)a_{k-1}$.

References

- [1] U. Betke and P. McMullen: Lattice points in lattice polytopes, Monatsh. Math. 99 (1985), 253-265.
- [2] V. Chvátal: On certain polytopes associated with graphs, J. Combin. Theory Ser. B 18 (1975), 138-154.
- [3] P. McMullen: The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179-184.
- [4] J. Munkres: Elements of Algebraic Topology, Addison-Wesley, Menlo Park, California, 1984.
- [5] M. Padberg: On the facial structure of set packing polyhedra, Math. Programming, 5 (1973), 199-215.
- [6] R. Stanley: Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333-342.
- [7] R. Stanley: Enumerative combinatorics, vol. I, Wadsworth & Brooks/Cole, Pacific Grove, California, 1986.
- [8] R. Stanley: Two Poset Polytopes, Discrete Comput. Geom. 1 (1986), 9-23.
- [9] E. Steingrímsson: Permutation statistics of indexed and poset permutations, Ph.d. thesis, Massachusetts Institute of Technology, 1991.