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A decomposition of 2-weak vertex-packing polytopes
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Abstract

Let G be a graph with d vertices. Let Q. be the polytope which is the subset of tlic
unit d-cube satisfying x, + Xj ^ I whenever (i, j) is an edge of G. The dilation by 2 of
Q, denoted 7?, is a polytope with integral vertices. We triangulate P with lattice simplices
of minimal volume and label the mziximal simplices with elements of the hyperoctahedral
group Bd. This labeling gives rise to a shelling of the triangulation P of 'P, and the /i-vector
of P (and the Ehrhart A'-vector of 77) can be computed as a descent statistic on a subset of
Bd determined by G. Recursive formulas are given for computing the volume of P and the
/i-vector of "P.

Soit G un graphe a d sommets. Soit Q. Ie polytope, sous-ensemble du cube unite dc
1'espace a d dimensions, defini par les inegalites i, + xj <, \ pour tout couple (i, j) dc
sommets adjacents dans G. Les sommets de la dilatation de Q. par multiplication par 2,
que 1'on appelle 73, ont tous des coordonnees entieres. On fait unc triangulation T' dc
P par des simplexes dont les sommets appartiennent au treillis entier dont Ie volume est
minimal. On attache aux simplexes maximaux des etiquettes qui sont des elements du
groupe hyperoctaedral Bd. Get etiquetage produit un efTeuillage de la triangulation P et Ie
vecteur h de 7? (eunsi que Ie vecteur h* de Erhart associe a P) peut etre calcule en termes
du parametre noinbre de descentes sur un sous-ensemble de Bd qui depend de G. On donne
des formules recursives pour Ie calcul du volume de 73 et du vecteur h de 73.

1 Introduction

Let C? be a loopless graph, d the number of vertices in G, and label the vertices of G by the
integers 1, 2,..., d. The extended 8-weak vertex-packing polytope P(G) of G is defined by

0^x, <2, l^z<d,

x, + Xj ^ 2, if (t, ;) is an edge of G.

(1)
(2)

The polytopes P(G) are special cases of k-weak vertex-packing polytopes, which in turn
are approximations of vertex-packiag polytopes, which have been studied from the math-
ematical programming point of view (see, e. g., [5] and [2]). This paper deals with the
combinatorial structure of P(G). We triangulate P(G) in a certain systematic way and
label the mciximal simplices in the triangulation, which we denote by 7?, with elements of
the hyperoctahedral group Bd. This labeling allows us to shell P in such a way that we can
compute the h-polynomial of 'P(G') as a descent statistic on a subset of Bd determined by G.
Moreover, the triangulation is such that its /i-polynomial equals the Ehrhart h*-polynomial
of P(G). This gives a decomposition of P into maximal simplices, whose intersections with
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other maximal simplices we can describe explicitly. A recursive formula for the /i-polynomial
of P(G') can be also be given. A simplified version of this recursion yields a simple recursive
formula for computing the volume of P{G).

2 Preliminaries

2. 1 Ehrhart polynomials

Let P be a. J-dimensional polytope (or simplicial complex (see section 2.2)) in R" with
integral (or lattice) vertices, i.e. u,   Zn for all vertices v, of .P. For k   N let fc-P =
{kx]x  '.?}, i.e. kP is the (lattice) polytope obtained by dilating -P by a factor of k.

For fc e N define the function i(P, k) =#{x eRn\x C kP D Z"}. Thus, t(-P, fc) is the
number oflattice points contained'in kP. By Cor. 4. 6. 28 in [7], i(P, k) is a polynomial
in k of degree d, called the Ehrhart polynomial of P. Now define th^ generating function
E{P, t) =i;k>oi(^k)tk By Thm. 2. 1 in [6], we have E{P, t) =_-^^. where/l*(, p'() is,
a poiynomialof degree at most d with non-negative integer coefficients, called the Ehrhari
h'-polynomial of V.

2. 2 Simplicial complexes

An abstract simplicial complex is a nonempty collection K of sets such that if F C K and
G C F then G 6 /<. An element of K is called a face of /<. We will be mostly concerned
with the geometric realization of simplicial complexes (for definitions and basic properties
see [4]) and we will, by abuse of notation, not distinguish between a simplicial complex and
its geometric realization.

A simplicial complex K is pure if all its maximal faces have the same dimcnsioii d =
clim(/<). If K is a pure simplicial complex of dimension d, then 3. facet of A' is a (^-face i.e
a J-dimensional face, of K. When a complex K triangulates a polytope -P, the facets of A
are (/-dimensional, but the facets of V have dimension d-\.

The h-vector h(K) = (/IQ, /II, ..., Ad) of a simplicial complex K of dimension d-\ is
defined as follows: Let/, = /, (/<) be the number of z-dimensional faces in K, where we set
/_i = 1, and define/i(K)=(/io, ^i,..., /id) by setting

^/, _i(x-i)d-=E/l. a: d-1 (3)
i=0 1=0

We define the h-polynomial h(K, t) of K by h(K, t} = ho+hit+... + hdtd.
Let K be a pure simplicial lattice complex of dimension d. If all facets of K have volume

\jd\ (see section 2.4) we say that K is primitively triangulated. The following theorem is
essentially a consequence of Car. 2. 5 in [6], whose conclusion is expressed in greater generality
in Thm. 2 in [1].
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Theorem 1 Suppose K is a primitively triangulated simplicial lattice complex. Then h'(K, t)
= h{K, t}, where k*(K, t) is the Ehrhart h"-polynomial of K. .

For certain pure simplicial complexes K the coefficieats of h(K, t) can be interpreted in
a way that partitions the facets of K according to how they intersect other facets.

Definition 2 Lei K be a finite pure simplicial complex of dimension d. If F is a face of
K, let F be the complex consisting of F and all its faces. An ordering F] , F;,.. -, Fn of ihc

k-1

facets o/K is called a shelling if, for all k with 1 < k ^ n, FkC} [JF, is a pure complex of
1=1

dimension (d-1). A complex K is said to be shellable if there exists a shelling of K.

As it turns out, the A-vector of a shellable complex can be computed from the shelling.
The following theorem is essentially due to McMullen [3].

Theorem 3 Let Fi, F^,..., Fn be a shelling of a d-dimensional complex K and let c(fc) be
n

the number of {d - l)-faces of Fk contained in [^F,. Then h{K, t) = ^<c(t). .
i<k i=l

Thus, given a shelling Fi, F-i, ... , I7n of a simplicial complex K, we can compute the h-
polynomial h(K, t) of K via Theorem 3. That is, the k-th coeflncient of h(K, t) equals the
number of F, with c(i) = k.

If K is a simplicial complex and p a vertex not in /<, then the cone with apex p over K
(or with base K), denoted p * K, is the simplicial complex whose z-faces arc the z'-faces of
K and {pU/ | /an (z- l)-face of K}. Geometrically, a cone can be dcfuied as follows.
If K is a. [d - l)-dimensional simplicial (or polytopal) complex in R" and p is a point in
Rn such that each ray emanating from p intersects K in at most one point, then the cone
p* K consists of K and p and the new z-faces, for 1 ^z ^d, obtained by taking, for each
(i - l)-face / in K, the union of all line segments connecting p to points in /.

Theorem 4 Suppose the simplicial complex K is a cone with apex p over B, i. e. K=p*B.
Thenh{K, t)=h(B,t}. .

2. 3 The hyperoctahedral group

We represent the elements of the hyperoctahedral group Bci by signed permutation words,
i.e. ordinary permutations in which each letter has a sign. To simplify the notation, we
write c, for +a. and a, for -a,. For example, 5; = {12, 21, 12, 21, 12, 21, 12, 21}.

We refer to the elements of Bd simply as permutations. We regard the letters in a
permutation as integers and order them as such, i. e. ... 3<2<1<0<1 <2<3---.
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Definition 5 A descent in TT   B<i 15 an i e [d\ such that one of the following holds:

1) i < d and a, > a,-+i ,
2) i = d and ad > 0.

For any subset S of Bd, the descent polynomial of S is D(S, t} := 'E,^stdes(w), where des(Tr)
i5 the number of descents in TT.

For example, the descents of 23il are 1,2 and 4, so des(2341) =3. If 5' = {321, 123, 213}
then£>(5, <) = 1 + 2f2.

2.4 Volumes

When we talk about volume in Rd we mean the usual d-dimensional volume, which we
denote vold(-). If 5 is a subset of a rf-dimensional coordinate subspace of R", then by
void (5) we mean the volume of S in that subspace. If 5 is a union of such subsets 5, then by
volj(5) we mean the sum of the volumes of the S,. In particular, a polytope P of dimension
less than d has volj('P) = 0. For convenience, we make the following definition.

Definition 6 If V is a d-dimensional polytope or simplicial complex in R" such that vo\d(P)
is defined, then the normalized volume of P is NvolC?) := d\ . vo\d(P).

Hence, for any polytope (or simplicial complex) P of positive dimension, NvolC?) is
positive. The rationale behind this definition is that the least volume a lattice J-simplex
can have is 1/c?!. In particular, the normalized volume of a primitively triangulated complex
equals its number of maximal simplices.

3 Main Theorems

Proposition 7 Let p be a point in the polylopc P and let Pp be the union of those Jaccis
of V which do not contain p. Then P is a cone with apex p over 7:>p. .

Throughout, if G is a graph, 'P(G') is the extended 2-weak vertex-packing polytope of
G. By definiton, 'P(G') is a subset of 2C"i, the dilation of the unit (f-cube by 2.

Theorem 8 Let G be a graph and let P'[G) = 7?(G>) n 9{2Cd), i. e. P'(G) is the union
of those facets of P{G) which he on the boundary of 2Cd. Let p = (1, 1,..., !). Then
P(G)=p*P'{G). .

Theorem 9 Let v = (ui, U2,... , Ud) be a point in V with integral coordinates and let S =
{;   [</] |u; = 1}. Let Gs be the subgraph of G induced by S. Then v 25 a vertex of P iff
each connected component of GS contains an odd cycle (or S = ^).
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To triangulate 'P{G) we first triangulate 2Cd in the following way. 1Cd is embedded in
Rd so that its verfcices are all points each of whose coordinates are either 0 or 2. In particular,
its center (of symmetry) is the point p = (1, 1,..., 1). We subdivide 2Cd into the 2d unit
cubes all of whose vertices aie lattice points. Each of these small cubes contains p and a
unique vertex which is a vertex of 1Cd. We label each small cube by that vertex of 2Cd
which it contains. As an example, the standard unit d-cube is labeled by 0 = (0, 0,... , 0)
and denoted CQ.

Next, we triangulate each of these small cubes. Let Cz be the small cube labeled by z.
Then every mzLximal simplex in the triangulation of Cz contains p and z and is defined as
the convex hull of a path along edges ofcz from p to z, as follows.

Let po = p, pi, p2, ..., pd = z be a sequence of vertices of Cz such that pk = pfc-i ± ej

where £j is the vector (0,... , 0, 1, 0,... , 0) with a 1 in the j-th place and Os elsewhere. It
follows that in the sequence of pfc's the z'-th coordinate must change precisely once, from 1
to z,, because we start out from p = (1, 1,..., 1) and z = (21, 22,. .., 2rf) is a vertex of 2C'd,
so 2; C {0, 2} for each i.

The points p, are geometrically independent and thus they are the vcrtices of a d-
climensional simplex, namely their convex hull. It is also clear that the intersection of
any two maxima! simplices is the convex hull of their common vcrtices, so this is indeed a
slinplicial complex.

Such a sequence of vertices defining a maximal simplex can be coded by a permu-
tation in the hyperoctaiiedral group B^. Namely, we define TT = a^a-i . . . a^ by setting
a; = k if p, - p, _i = ek and a; = -k if p, - p, _i = -e^. For example, the sequence
(1, 1, 1), (0, 1, 1), (0, 1, 2), (0, 0, 2) of points in 0(0, 0,2) corresponds to the permutation 132.
Conversely, every TT 6 B^ determines a unique path from p to a vertex z of 2C and hence
a unique rf-simplex, which we denote by o-^, contained in Cz. The number of distinct paths
from p toz is d!, and the following lemma is now immediate.

Lemma 10 Let {TT; | 1 ^?^ d\} be the permutations labeling the maximal simplices in a
cube Cz. Then each integer k in [d\ appears with the same sign in every TT;. More precisely,
the sign of k E [d\ in such a permutation is + or - according as the k-th coordinate of z is
5 or 0. Conversely, if each k ^ [d\ appears with the same sign in two permutations TT and T,
then a-y and o-r belong to the same cube Cz. B

For example, the paths in the cube C(o, 2) are (1, 1) -^ (1, 2) -^ (0, 2) and (1, 1) -» (0, 1) ^
(0, 2), corresponding to the permutations 21 and 12, respectively.

Proposition 11 The collection [a-n \ ^ ^- B^} covers 1Cd. Any two of these simplices are
isometric, in particular each has volume l/d\ and hence Nvol(o-y) = 1 for each TT. .

Corollary 12 The triangulation P{G) is primitive. Thus, Nvol('P(G')) = #Tl{G).
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Thus the collection {o-» | TT   Bd} triangulates 2Cd. We denote this triangulation by
2Cd. We can now give a succinct characterization of the permutations corresponding to the
maximal simplices of 7. Cd contained in P. First a definition.

Definition 13 Let G be a graph. The set o/permissible permutations with respect to G is
n(G') = {TT  5rf |cr^ C 'P(G)}. A permutation TT is permissible w. r. t. G if TT 0 11(0).

Theorem 14 A permutation v C Bd is permissible w. r. t. G if and only if it satisfies the
following condition:

If(i, j) is an edge in G and +i appears in TT, then -j must precede +i in TT. .

Proposition 15 Let a^ be a maximal simplex in Cz. If P intersects the interior ofcr^, then
a^ CP. Hence, V := 2C'd n 'P is a triangulation of V. .

For the remainder of this section, fix a graph G and let V denote its extended 2-weak
vertex-packing polytope and V the triangulation of V described above.

Our goal is to find a shelling of "P. To that end, we order the permutations in B^
lexicographically, i. e. a permutation TT = aias... 0^ precedes r = 6162 -. . ̂  if a; < &; for the
first i at which TT and r differ. Abusing notation, we use < to denote this ordering of the
elements of B^. For example, 231 < 321 and 231 < 231.

We will show that the ordering of maximal simplices in P induced by the lexicographic
ordering of their corresponding permutations is a shelling of P. Before proving that, we need
a definition and a lemma.

Definition 16 Let a^ and Or be two maxima! simplices in T>, and d = dim(P). We say
that OT, and a^ intersect maximally if they have a {d - \)-face in common.

Lemma 17 Suppose a^ C c^'P .where TT = a^a-i ... ad, and suppose that i is a descent in TV.
If i is an internal descent in TT, i. e. a. > a;+i, for some z ^ ^- 1, then a^ C Cz n P, where
TT/ = aia2---a, +ia;---ad. If i = d, i. e. ad > 0, (/ien a^ C P, where TT' = aia;--- - ad- In
either case, TT' < TV and a^ and a^< intersect maximally. Moreover, if two maximal simplices
o-^ and a^< in P intersect maximally, then v and TT' either differ only by a single transposition
or only by the sign of their last letter.

Theorem 18 Order the maximal simplices in P so that Or precedes cr^ if r < TT. This
ordering is a shelling ofP.

Proof: Let a, be a maximal simplex in P. If TT is the (lexicographically) Hrsl pennulation
in n(G) then there is nothing to prove. Otherwise, we must show that a^ n U.r<x orr is a
nonempty union of [d - l)-faces of CT^. It suffices to show that if (7, intersects a maximal
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simplex o-^ C "P and err precedes o-», then o-^ n 0-^ is contained in some {d - l)-face / of a^
such that / = cr^ n o-»' for some a^< C P with a^' preceding CT».

Suppose cT», CTr C P and that Or precedes Or, so r < TT. Let i be the first place where
7- and r differ. If i = d then o-^ and cr^ intersect maximally, by Lemma 17, and we arc
done. Assume therefore that i < d. Let TT = a^a^ ... 0^ and T = 0102 . . . a, _i&, . . . b^. Let
k be the first descent in TT after i - 1. Such a k must exist, because otherwise we would
have a, < a.+i < ... <fld <0so that T!- was the first permutation in B^ beginning with
a^a-i- . . a,_i, contradicting r <v.

Let po, pi,..., p<i be the sequence of points defining cr». We claim that pk ^ cr^. If
O-T did contain p<: then we would have {01, 02,... , ajt} = {&i, &2,... , ^}, in particular
{a;, a.+i,..., afc} = {fc., fc.+i,..., ^}, so fc > i. But then, since A; was the first descent in
TT after t - 1, so that a, < a,+i < ... < afc, we must have 6. > a,, contradicting the
assumption r <TT, sop<; ^ o'r.

If Jc < d, let TT/ = a, ... afc-iajc+iajk . . . ad. Then TT' < TT and cr» n a^ is the convex hull of
Po, Pi,..., Pfc-i, P*:+i>---<Pd- By Lemma 17, o-» and a^ intersect maximally and a^. C P.
Moreover, since pjc ^ o-^, o-yno-T C o-» n (Ty', as desired.

U k = d, then a^ > 0. Let TT' = aia; . . -ad. Then TT' < TT and, by Lemma 17, a^ and o-^'
intersect maximally and o-»- C "P. Since pd ̂  Or, we have o^Or C cr»n(7^, as desired. .

Theorem 19 The h-polynomial of T equals the descent polynomial of the set of permis-
sible permutations with respect to G. That is, h(P, t) == D(Tl{G), t) and hence h'(P, t) =
D{H{G}, t).

Proof: We need to show that for each descent in TT £ n(G') there is a unique maxima!
simplex cr^   "P such that <T» and a^ intersect in a (c2 - l)-face of each and such that r < ?r.
First suppose that i is an internal descent in TT, i.e. 1 <, i < d-\ and let TT = GIG;... Qd,
so a, > a;+i. By Lemma 17, two maximal simplices a^ and a^ in the same cube Cz intersect
maximally if and only if TT and r differ by a single transposition. Let r = 0102... a. +iai... Cd-

Then r precedes TT, o-r C "P and o-y and 0-7 intersect maximally. Conversely, if o-y and cr-r in
Cz intersect maximally then they differ by a single transposition and if T < TT then TT has a
descent at the transposition distinguishing it from T.

The only other maximal simplices o-^ can intersect maximally are those belonging to other
cubes than Cz. By Lemma 17, if o-r is such a simplex and TT = a^a-i . . . a^ then T = aia;... Qd,
so, for T to precede TT, we must have a^ > 0, i. e. d is a descent in TT. Conversely, if d is a
descent in TT then a^ > 0, so ifr = aia; ... 0. ^ then T < 7T, <7,. C 'P and o-^ and CTT intersect
maximally.
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4 Applications

Definition 20 5 := -Pn 9{2Cd) and B:=Pn 9(2Cd).

Theorem 21 h(P, t} = /i(ff, t). Hence, hv{-P, t) = h(B, t).

Proof: 'P is a cone over B, which yields the equality of /i-polynomials, by Theorem 4. The
equality h*{'P, t) = h(B, f) is then implied by Theorem 1 and the fact that P (and hence 5)
is primitively triangulated.

Corollary 22 vold(-P) = vold-i(jB). Equivalently, Nvol(-P) = Nvol(B).

Proof: NvolCP) equals the number of maxima! simplices^in 'P, which iu turn equals the
number of maximal simplices in 0, since "P is a cone over B. .

4. 1 Volumes

Corollary 22 yields a recursive formula for the volume of 'P, because each facet of B (i. e. a
facet of T> contained in 77) is an extended 2-weak vertex-packing polytope. More precisely,
the facet of B obtained by setting a:. = 0 (which we denote 5r, =o) is the extended 2-weak
vertex-packing polytope of the graph obtained by removing x, from G. If .r, is an isolated
vertex of G then ̂ , =2 is isometric to ̂ . =o (since then P = 'Pr. =o x [0, 2]), but otherwise
Bx. =2 has dimension less than d- 1 and thus vold-i(5i.. =2) = 0.

If(f = ai +... +afc, let (<,,, d,aJ = <,, !<i.':^.. Abusing notation, we will write Nvol(G')
instead of NvolCP(G)), where G is "a graph and 'P(G) its extended 2-weak vertex-packing
polytope.

Theorem 23 Let C'i, CI2,..., Ck be the connected components of G, with a, = #C', /or each i,

and d = #G. Then Nvol(G) = (o, .",''...,<, J \\ki=\ Nvol(C'<). In particular if G has an isolated
vertex x and G^ is the graph obtained by removing x from G, then Nvol(G') = 2-c;-Nvol(G1^

Theorem 24 Let G be a graph without isolated vertex, #G = d, and let G^ denote the
graph obtained by removing x from G. Then

Nvol(G) = ^ Nvol(G,). .
r6G

We now give a few examples of how to use the recurrence of Theorems 23 and 24 to
compute the volume of extended 2-weak vertex-packing polytopes To get the recursion
off the ground, observe that if G consists of a single vertex, then 'P(G) = [0, 2] C R, so
Nvol(G') = 2.
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-«)=2. Nvol(»-«)+Nvol(« . )=Example 25 Nvol(»-
2. 2. Nvol( . )+ g) . (Nvol( . ))2 = 8+2. 22 = 16.

Example 26 Nvol(^I^) = 2 . Nvol(«-.-. ) + 2 - Nvol(«Ai ) =
2 . 16+6 . Nvol( . --) = 32+6. 4 = 56.

Example 27 Let Kd be the complete graph on d vertices. Then Theorem 24 gives Nvol(J<d) =
d . Nvol(^-i) = ... =<f!. Nvol( . ) = 2d\.

-. with d vertices, so Gd is theExample 28 If Gd is the graph <-.- . . - - *.
comparability graph of the fence poset on elements x^,..., Xd (with relations 3:1 < 2:2 >
i3 < X4> .. . ), then it is well known (see [8]) that the volume of the 2-weak vertex-packing
polytope of Gd (of which P{G} is the dilation by 2) is given by the d-th cocfficient of
the Taylor series of tan a- 4- secx. We can compute the corresponding result for T>{Gd) in
the following way. Using Theorems 23 and 24, we get this recurrence for A^ = Nvol(G'd):

For d ^ l, Ad+i = E?=o(f)^. -^d-. and hence Ed>iAd+i^ = (E^o Ad^) . Setting
F(x) = Ed>oAd^ yields F'(x) - 1 = (F(x))\ which, together with F(0) = 1, has the
unique solution F(x) = tan(2z) + sec(2a:).

This means, by Theorem 3. 37 in [9], that Nvol(Gd) equals the number of weakly alternat-
ing permutations in Bd, i.e. those permutations for which z   {l, 2,..., d - 1} is a descent
if and only if i is odd. However, this set of permutations does not coincide with H{Gd)- It
might be interesting to find a bijection between these two sets of permutations in Bd.

4. 2 The /i-polynomial of fP

Example 29 Let Kd be the complete graph on d vertices. Then Tl(Kd) consists of all
permutations TT = aia; . . . ad   B^ such that a, < 0 for all i except, perhaps, for ; = d.
Let H_ be the set of permutations in V. (G) all of whose letters are negative, and let T1+ be
the set of those permutations in H(G') whose last letter is positive but all others negative.
It is easy to see that D(Tl-, t) equals the usua/ descent polynomlal of the symmetric group
Sdi consisting of all permutations of the letters {1, 2,..., d} (no signs involved and never
a descent at d). This polynomial is well known and called the d-th Eulerian polynomial
(see, e.g. [7]) aad often denoted by Ad(f). In fact, Ad(t) equals the /i-polynoinial of our
triangulation of co. As for H+, we see that there is always a descent at d, never a descent at
d - 1, and the first d - 1 letters in BTT   H+ behave just like a permutation in Sd-i. Hence
each permutation in n+ corresponds to a permutation in Sd-i, but hds an extra descent,
namely the one at d. There are d possible choices for the last letter of TT £ H^. and the descent
polynomial of H^ is thus equal to d . tAd-i(t). Hence, h{P{Kd)', t} = Ad(t) + d . tAd-i(t)-
Moreover, the exponential generating function of Ad(t) is I^^^o ̂ d(<)^r = ^Z^(i-Q . Hence,
^>oh{P(K^t)^=(l+xt)^^-

Finally, we give two theorems which provide a recursive algorithm for computing h{P, t).
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Definition 30 Let G be a graph with vertex set [d\ and P defined as usual in terms of G.
LetS C[d\. Then Ps := {x = (2:1, 2:2,... , id)  -P | i, = 0 ifi eS}.

That is, 'Ps is isomorphic to 77(G'5), where Gs is the subgraph of G induced by [d\ \ S.
We also define Ps similarly, i.e. -P^ := -P n Ps.

Theorem 31 Let G be a graph with vertex set [d} and no isolated vertices. Then h{P, t) =
Z5/l('^s, <)(< - l)#s-l> where S ranges over all nonempty subsets of[d\. .

Theorem 32 Let G be a graph with d - 1 vertices and denote by G' the graph obtained
by adding to G an isolated vertex. Suppose h(P(G), t) = ao+ai< + ... + ad-itd. Then
/i(-P(G"), t)=bo+bit+---+ bdtd, where bk = (2A + l)a* + (2d - 2fc + 1)0^-1. .
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