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Abstract

Let G be a graph with d vertices. Let Q be the polytope which is the subset of the
unit d-cube satisfying z; + z; < 1 whenever (z,7) is an edge of G. The dilation by 2 of
Q, denoted P, is a polytope with integral vertices. We triangulate P with lattice simplices
of minimal volume and label the maximal simplices with elements of the hyperoctahedral
group By. This labeling gives rise to a shelling of the triangulation P of P, and the h-vector
of P (and the Ehrhart h*-vector of P) can be computed as a descent statistic on a subset of
B, determined by G. Recursive formulas are given for computing the volume of P and the
h-vector of P.

Soit G un graphe a d sommets. Soit Q le polytope, sous-ensemble du cube unité¢ de
I’espace a d dimensions, défini par les inégalités z; + z; < 1 pour tout couple (z,7) de
sommets adjacents dans G. Les sommets de la dilatation de Q par multiplication par 2,
que 'on appelle P, ont tous des coordonnées entieres. On fait une triangulation P de
P par des simplexes dont les sommets appartiennent au treillis entier dont le volume est
minimal. On attache aux simplexes maximaux des étiquettes qui sont des éléments du
groupe hyperoctaédral B,. Cet étiquetage produit un effeuillage de la triangulation P et le
vecteur h de P (ainsi que le vecteur h* de Erhart associé a P) peut étre calculé en termes
du parameétre nombre de descentes sur un sous-ensemble de By qui dépend de G. On donne
des formules récursives pour le calcul du volume de P et du vecteur h de P.

1 Introduction

Let G be a loopless graph, d the number of vertices in G, and label the vertices of G by the
integers 1,2,...,d. The extended 2-weak vertez-packing polytope P(G) of G is defined by

0<z;<2, 1<:1<4, (1)
z;+z; <2, if(7,7)is an edge of G. (2)

The polytopes P(G) are special cases of k-weak vertez—packing polytopes, which in turn
are approximations of vertex—packing polytopes, which have been studied from the math-
ematical programming point of view (see, e.g., [5] and [2]). This paper deals with the
combinatorial structure of P(G). We triangulate P(G) in a certain systematic way and
label the maximal simplices in the triangulation, which we denote by P, with elements of
the hyperoctahedral group By. This labeling allows us to shell P in such a way that we can
compute the h-polynomial of P(G) as a descent statistic on a subset of By determined by G.
Moreover, the triangulation is such that its A-polynomial equals the Ehrhart h*—polynomial
of P(G). This gives a decomposition of P into maximal simplices, whose intersections with

1Partially supported by grants from The Icelandic Council of Science and The Royal Swedish Academy
of Sciences, respectively.

-423-



other maximal simplices we can describe explicitly. A recursive formula for the h—polynomial
of P(G) can be also be given. A simplified version of this recursion yields a simple recursive
formula for computing the volume of P(G).

2 Preliminaries

2.1 Ehrhart polynomials

Let P be a d-dimensional polytope (or simplicial complex (see section 2.2)) in R" with
integral (or lattice) vertices, i.e. v; € Z" for all vertices v; of P. For k € N let kP =
{kz |z € P}, i.e. kP is the (lattice) polytope obtained by dilating P by a factor of k.

For k € N define the function i(P, k) = #{z € R*|z € kP N Z"}. Thus, i(P,k) is the
number of lattice points contained in ¥P. By Cor. 4.6.28 in [7], ¢(P, k) is a polynomial
in k of degree d, called the Ehrhart polynomial of P. Now define the generating function
E(P,t) = Tk>0i(P, k)t*. By Thm. 2.1 in [6], we have E(P,t) = (i‘—‘_(t%%, where h*(P,t) is
a polynomial of degree at most d with non-negative integer coefficients, called the Ehrhart
h*-polynomial of P.

2.2 Simplicial complexes

An abstract simplicial complez is a nonempty collection K of sets such that if F € K and
G C F then G € K. An element of K is called a face of I{. We will be mostly concerned
with the geometric realization of simplicial complexes (for definitions and basic propertics,
see [4]) and we will, by abuse of notation, not distinguish between a simplicial complex and
its geometric realization.

A simplicial complex K is pure if all its maximal faces have the same dimension d =
dim(K). If K is a pure simplicial complex of dimension d, then a facet of K is a d-face, i.c.
a d—dimensional face, of K. When a complex K triangulates a polytope P, the facets of I
are d—dimensional, but the facets of P have dimension d — 1.

The h-vector h(K) = (ho,hi,...,ha) of a simplicial complex K of dimension d-1 is
defined as follows: Let f; = f;(K) be the number of i-dimensional faces in K, where we set
f-1 =1, and define h(K) = (ho, k1, ..., hq) by setting

d d
3 fimsle — 1) = Y e, (3)
1=0 1=0

We define the h-polynomial h(K,t) of K by h(K, t)=hot+ht+---+ hqtd.

Let K be a pure simplicial lattice complex of dimension d. If all facets of K have volume
1/d! (see section 2.4) we say that K is primitively triangulated. The following theorem is
essentially a consequence of Cor. 2.5 in [6], whose conclusion is expressed in greater generality
in Thm. 2 in [1].

-424-



Theorem 1 Suppose K is a primitively triangulated simplicial lattice complez. Then h*(K,t)
= h(K,t), where h*(K,t) is the Ehrhart h*—polynomial of K. [

For certain pure simplicial complexes K the coefficients of h(K,t) can be interpreted in
a way that partitions the facets of K according to how they intersect other facets.

Definition 2 Let K be a finite pure simplicial compler of dimension d. If F is a face of

K, let F be the compler consisting of F and all its faces. An ordering R, Fy, ..., F, of the
k=1 3

facets of K is called a shelling 4, for all k with 1 < k < n,Fy 0 | JF; is a pure complez of
1=1
dimension (d-1). A complez K is said to be shellable if there ezists a shelling of K.

As it turns out, the h-vector of a shellable complex can be computed from the shelling.
The following theorem is essentially due to McMullen (3].

Theorem 3 Let Fy, Fs, ..., F, be a shelling of a d-dimensional complez K and let c(k) be

n

the number of (d — 1)—faces of Fy contained in UF;. Then h(K,t) = Ztc(i). E

i<k i=1

Thus, given a shelling Fy, Fy, ..., Fa of a simplicial complex K, we can compute the h-
polynomial A(K,t) of K via Theorem 3. That is, the k-th coefficient of h(K,t) equals the
number of F; with ¢(z) = k.

If K is a simplicial complex and p a vertex not in K, then the cone with apez p over I
(or with base K), denoted p * K, is the simplicial complex whose i—faces are the 1—faces of
K and {pU f | f an (i — 1)-face of K}. Geometrically, a cone can be defined as follows.
If K is a (d — 1)-dimensional simplicial (or polytopal) complex in R™ and p is a point in
R™ such that each ray emanating from p intersects K in at most one point, then the cone
p* K consists of K and p and the new i—faces, for 1 < ¢ < d, obtained by taking, for each
(i — 1)-face f in K, the union of all line segments connecting p to points in f.

Theorem 4 Suppose the simplicial complez K 1s a cone with apez p over B, i.e. K = pxB.
Then h(K,t) = h(B,1). E

2.3 The hyperoctahedral group

We represent the elements of the hyperoctahedral group By by signed permutation words,
i.e. ordinary permutations in which each letter has a sign. To sifnglifz the notation, we
write a; for +a; and @; for —a;. For example, By = {12,21,12,21,12,21,12,21}.

We refer to the elements of By simply as permutations. We regard the letters in a
permutation as integers and order them as such,ie ---3<2<1<0<1<2<3--".
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Definition 5 A descent in ™ € By is an ¢ € [d] such that one of the following holds:
1)i< d and a; > aiy1,
2)i=d and aq > 0.

For any subset S of By, the descent polynomial of S is D(S,t) := 3 res tdes(m)  where des()
is the number of descents in .

For example, the descents of 2341 are 1,2 and 4, so des(2341) = 3. If S = {321,123,213})
then D(S,t) = 1 + 2t2.

2.4 Volumes

When we talk about volume in R% we mean the usual d-dimensional volume, which we
denote voly(-). If S is a subset of a d-dimensional coordinate subspace of R", then by
voly(S) we mean the volume of S in that subspace. If S is a union of such subsets S; then by
vols(S) we mean the sum of the volumes of the S;. In particular, a polytope P of dimension
less than d has volg(P) = 0. For convenience, we make the following definition.

Definition 6 IfP is a d—dimensional polytope or simplicial complez in R" such that vola(P)
is defined, then the normalized volume of P is Nvol(P) := d! - vola(P).

Hence, for any polytope (or simplicial complex) P of positive dimension, Nvol(P) is
positive. The rationale behind this definition is that the least volume a lattice d-simplex
can have is 1/d!. In particular, the normalized volume of a primitively triangulated complex
equals its number of maximal simplices.

3 Main Theorems

Proposition 7 Let p be a point in the polytope P and let Pp be the union of thosc [accts
of P which do not contain p. Then P is a cone with apez p over Pp. |

Throughout, if G is a graph, P(G) is the extended 2-weak vertex-packing polytope of
G. By definiton, P(G) is a subset of 2C¢, the dilation of the unit d-cube by 2.

Theorem 8 Let G be a graph and let P'(G) = P(G) N 8(2CY), i.e. P'(G) is the union
of those facets of P(G) which lie on the boundary of 2C*. Let p = (1,1,...,1). Then

P(G) = p * P'(G). E
Theorem 9 Let v = (vy,v2,...,v4) be a point in P with integral coordinates and let S5 =
{i € [d] | vi = 1}. Let Gs be the subgraph of G induced by S. Then v is a vertez of P iff
each connected component of Gs contains an odd cycle (or S =0). |
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To triangulate P(G) we first triangulate 2C¢ in the following way. 2C¢ is embedded in
R so that its vertices are all points each of whose coordinates are either 0 or 2. In particular,
its center (of symmetry) is the point p = (1,1,...,1). We subdivide 2C? into the 2¢ unit
cubes all of whose vertices are lattice points. Each of these small cubes contains p and a
unique vertex which is a vertex of 2C?%. We label each small cube by that vertex of 20
which it contains. As an example, the standard unit d-cube is labeled by 0 = (0,0,...,0)
and denoted cp.

Next, we triangulate each of these small cubes. Let c; be the small cube labeled by z.
Then every maximal simplex in the triangulation of ¢, contains p and z and is defined as
the convex hull of a path along edges of ¢; from p to z, as follows.

Let po = P,P1,P2,---,Pa = Z be a sequence of vertices of c; such that px = px—; L ¢;
where ¢; is the vector (0,...,0,1,0,...,0) with a 1 in the j-th place and 0’s elsewhere. It
follows that in the sequence of pi’s the i-th coordinate must change precisely once, from 1
to z;, because we start out from p = (1,1,...,1) and z = (21, 22,.. ., 24) is a vertex of 204,
so z; € {0,2} for each i.

The points p; are geometrically independent and thus they are the vertices of a d-
dimensional simplex, namely their convex hull. It is also clear that the intersection of
any two maximal simplices is the convex hull of their common vertices, so this is indeed a
simplicial complex.

Such a sequence of vertices defining a maximal simplex can be coded by a permu-
tation in the hyperoctahedral group By. Namely, we define 7 = aja;---aq by setting
a; = k if p; — pic1 = ex and a; = —k if p; — pic1 = —ex. For example, the sequence
(1,1,1),(0,1,1),(0,1,2),(0,0,2) of points in cpoz) corresponds to the permutation 132,
Conversely, every 7 € B, determines a unique path from p to a vertex z of 2C? and hence
a unique d-simplex, which we denote by o, contained in ¢;. The number of distinct paths
from p to z is d!, and the following lemma is now immediate.

Lemma 10 Let {r; | 1 < ¢ < d!} be the permutations labeling the mazimal simplices in a
cube c;. Then each integer k in [d] appears with the same sign in every m;. More precisely,
the sign of k € [d] in such a permutation is + or — according as the k-th coordinate of z is
2 or 0. Conversely, if each k € [d] appears with the same sign in two permutations ® and 7,
then o, and o, belong to the same cube c;. |

For example, the paths in the cube c(2) are (1,1) — (1,2) — (0,2) and (1,1) — (0,1) —
(0,2), corresponding to the permutations 21 and 12, respectively.

Proposition 11 The collection {ox | 7 € Ba} covers 2C?. Any two of these simplices are
isometric, in particular each has volume 1/d! and hence Nvol(o,) =1 for each 7. B

Corollary 12 The triangulation P(G) is primitive. Thus, Nvol(P(G)) = #I1(G). |
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Thus the collection {0, | * € By} triangulates 2C?. We denote this triangulation by
2C¢. We can now give a succinct characterization of the permutations corresponding to the
maximal simplices of 2C¢ contained in P. First a definition.

Definition 13 Let G be a graph. The set of permissible permutations with respect to G is
[I(G) = {r € Ba| ox C P(G)}. A permutation m is permissible w.r.t. G if 7 € II(G).

Theorem 14 A permutation ™ € By is permissible w.r.t. G if and only if it satisfies the
following condition:

If (i,7) is an edge in G and +i appears in m, then —j must precede +1 in . =

Proposition 15 Let o, be a mazimal simplez in c;. If P intersects the interior of ox, then
or C P. Hence, P :=2C? NP is a triangulation of P. &

For the remainder of this section, fix a graph G and let P denote its extended 2-weak
vertex-packing polytope and P the triangulation of P described above.

Our goal is to find a shelling of P. To that end, we order the permutations in By
lezicographically, i.e. a permutation © = aja; - - a4 precedes 7 = byb; - - by if a; < b; for the
first « at which = and 7 differ. Abusing notation, we use < to denote this ordering of the
clements of By. For example, 231 < 321 and 231 < 281.

We will show that the ordering of maximal simplices in P induced by the lexicographic
ordering of their corresponding permutations is a shelling of P. Before proving that, we need
a definition and a lemma.

Definition 16 Let o, and o, be two mazimal simplices in P, and d = dim(P). We say
that o, and o, intersect maximally if they have a (d — 1)-face in common.

Lemma 17 Suppose g, C cz NP, where ™ = aya;y - - - a4, and suppose that 1 is a descenl in .
[fz is an internal descent in m, t.e. a; > ai41, for some1<d—1, then o Ccz N "P where
= ayaz- - aima;i---aq. Ifi =d, i.e. ag > 0, then o C "P where ™ = ajaq--- —aq. In
either case, m' < and o, and o intersect mazzmally Moreover, if two ma:czmal simplices
o, and o, in P intersect mazimally, then ™ and ' either differ only by a single transposition
or only by the sign of their last letter. E

Theorem 18 Order the mazimal simplices in P so that o, precedes o, if T < w. This
ordering is a shelling of P.

Proof: Let o, be a maximal simplex in P. If = is the (lexicographically) first permutation
in [1(G) then there is nothing to prove. Otherwise, we must show that o, NU,c 0, Is a
nonempty union of (d — 1)—faces of . It suffices to show that if o intersects a maximal
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simplex o, C P and o, precedes oy, then o N o, is contained in some (d — 1)-face f of o,
such that f = o, N o for some o, C P with o, preceding o.

Suppose ox,0, C P and that o, precedes o,, so 7 < m. Let ¢ be the first place where
7 and 7 differ. If i = d then o, and o, intersect maximally, by Lemma 17, and we are

done. Assume therefore that i < d. Let @ = ajay---aq and 7 = ajaz---a;_1b;--- bg. Let
k be the first descent in 7 after 7 — 1. Such a k must exist, because otherwise we would
have a; < @i4; < -++ < aqg < 0 so that = was the first permutation in By beginning with

a,ay - --a;_;, contradicting 7 < .

Let po,Pp1,.--,Pa be the sequence of points defining or.We claim that px &€ o,. If

o, did contain pr then we would have {a,,a,,.. .yar} = {bi,by,...,bx}, in particular
{a;, @is1y--. 0k} = {b;, big1,- .. bk}, 50 k > 1. But then, since k was the first descent in
r after 1 — 1, so that a; < aiy1 < --- < a;, we must have b; > a;, contradicting the

assumption 7 < 7, SO Pk é .

If k <d,let ' = ay---ak—1ak418k - -+ aq. Then m' < and o, N oy is the convex hull of
Po, P1y- -+ Pk=1, Pk+1,-+-,Pa- BY Lemma 17, o, and o, intersect maximally and o, C P.
Moreover, since px € 07, Oxr N0y C Ox N Oy, as desired.

If kK =d, then ag > 0. Let 7r = ayag---@q. Then 7' < 7 and, by Lemma 17, o, and o
intersect maximally and o C P. Since py ¢ 0., we have 6,No; C 0xN0og, as desired. [

Theorem 19 The h-polynomial of P equals the descent polynomial of the sct of permis-
sible permutations with respect to G. That 1, h(P,t) = D(II(G),t) and hence h*(P,1) =
D(II(G), ).

Proof: We need to show that for each descent in = € II(G) there is a unique maximal
simplex o, € P such that o, and o, intersect in a (d — 1)-face of each and such that 7 < =.
First suppose that 7 is an internal descent in 7, i.e. 1 <7< d—1andlet 7 = aya;---aq,
so a; > ajy;. By Lemma 17, two maximal simplices o, and o in the same cube c; intersect
maximally if and only if 7 and 7 differ by a single transposition. Let 7 = ajas---@jy10i- - aq.
Then 7 precedes 7, o, C P and o, and o, intersect maximally. Conversely, 1f Ox and o, in
¢, intersect max1mally then they differ by a single transposition and if 7 < 7 then 7 has a
descent at the transposition distinguishing it from 7.

The only other maximal simplices o, can intersect maximally are those belonging to other
cubes than ¢;. By Lemma 17, if o, is such a simplex and 7 = aja; - - - aq4, then 7 = a1a; - - - aq,
so, for T to precede 7, we must have ag > 0, i.e. d is a descent in 7. Conversely, if d is a
descent in 7w then ay > 0, so if 7 = ajay---a4 then 7 < 7, 0, C P and o, and o, Intersect
maximally. |
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4 Applications
Definition 20 B := P Nd(2C?) and B := P N 8(2C*?).
Theorem 21 h(P,t) = h(B,t). Hence, h*(P,t) = h(B,1).

Proof: P is a cone over B, which yields the equality of A—polynomials, by Theorem 4. The
equality A*(P,t) = h(B,t) is then implied by Theorem 1 and the fact that P (and hence B)
is primitively triangulated. B

Corollary 22 voly(P) = vola_1(B). Equivalently, Nvol(P) = Nvol(B).

Proof: Nvol(P) equals the number of maximal simplices in P, which in turn equals the
number of maximal simplices in B, since P is a cone over B. L

4.1 Volumes

Corollary 22 yields a recursive formula for the volume of P, because each facet of B (i.e. a
facet of P contained in P) is an extended 2-weak vertex-packing polytope. More precisely,
the facet of B obtained by setting z; = 0 (which we denote B.;=o) is the extended 2-weak
vertex-packing polytope of the graph obtained by removing z; from G. If z; is an isolated
vertex of G then By, is isometric to Bg=o (since then P = P.—o x [0,2]), but otherwise
B..=» has dimension less than d — 1 and thus voly_1(Bz;=2) = 0.

Ifd=a +--+ax, let (01.-‘-1-"1):) = a_f'd"a—k' Abusing notation, we will write Nvol(G)

instead of Nvol(P(G)), where G is a graph and P(G) its extended 2-weak vertex-packing
polytope.

Theorem 23 Let Cy,Cs,...,Ck be the connected components of G, with a; = #C; for each,
and d = #G. Then Nvol(G) = (al.azd....ak) 1%, Nvol(C;). In particular, if G has an isolated

vertez z and G is the graph obtained by removing z from G, then Nvol(G) = 2-d-Nvol(G;).
|

Theorem 24 Let G be a graph without isolated vertez, #G = d, and let G denote the
graph obtained by removing z from G. Then

Nvol(G) = Y Nvol(G:). B
z€G

We now give a few examples of how to use the recurrence of Theorems 23 and 24 to
compute the volume of extended 2-weak vertex-packing polytopes. To get the recursion
off the ground, observe that if G consists of a single vertex, then P(G) = [0,2] C R, so
Nvol(G) = 2.
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Example 25 Nvol (e—e—e) =2 - Nvol (e—e) + Nvol(e o) =
2-2-Nvol( e )+ (%) - (Nvol('e))?=8+2-22=16.

Example 26 Nvol(c&) =2 - Nvol(e—e—o) + 2 - NVO](A) =
2.16 + 6 - Nvol( e—e) =32+ 6 -4 = 56.

Example 27 Let K, be the complete graph on d vertices. Then Theorem 24 gives Nvol(Ky) =
d-Nvol(Kg4—;) =---=d!-Nvol( e )=2d.

Example 28 If Gy is the graph e——e— ... —e——o with d vertices, so G4 is the
comparability graph of the fence poset on elements z,,...,z4 (with relations z; < z; >
T3 < T4 > ---), then it is well known (see [8]) that the volume of the 2-weak vertex-packing
polytope of Gy (of which P(G) is the dilation by 2) is given by the d-th coefficient of
the Taylor series of tanz + secz. We can compute the corresponding result for P(Gy) in
the following way. Using Theorems 23 and 24, we get this recurrence for Aq = Nvol(Gy):

For d > 1,Aqp1 = S50, ( )A - Ag-i and hence ¥ g5y Aan1 %y d, = (Edao Adi—‘:)z. Setting
Fiz) = ZdZOAd% yields F'(z) — 1 = (F(z))?, which, together with F(0) = 1, has the
unique solution F(z) = tan(2z) + sec(2z).

This means, by Theorem 3.37 in [9], that Nvol(G4) equals the number of weakly alternat-
ing permutations in By, i.e. those permutations for which i € {1,2,...,d — 1} is a descent

if and only if ¢ is odd. However, this set of permutations does not coincide with [1(Gg4). It
might be interesting to find a bijection between these two sets of permutations in By.

4.2 The h—polynomial of P

Example 29 Let K; be the complete graph on d vertices. Then II(Kg4) consists of all
permutations # = aja;---ag € By such that a; < 0 for all 7 except, perhaps, for : = d.
Let TI_ be the set of permutations in II(G) all of whose letters are negative, and let II; be
the set of those permutations in II(G) whose last letter is positive but all others negative.
It is easy to see that D(II_,t) equals the usual descent polynomial of the symmetric group
Sa4, consisting of all permutations of the letters {1,2,...,d} (no signs involved and never
a descent at d). This polynomial is well known and called the d-th FEulerian polynomial
(see, e.g. [7]) and often denoted by A4(t). In fact, A4(t) equals the h-polynomial of our
triangulation of cg. As for II,, we see that there is always a descent at d, never a descent at
d — 1, and the first d — 1 letters in a = € I, behave just like a permutation in Sy—;. Hence
each permutation in II; corresponds to a permutation in Sq_;, but has an extra descent,
namely the one at d. There are d possible choices for the last letter of 7 € II; and the descent
polynomial of Il is thus equal to d - tA4_;(t). Hence, h(P(K4),1 ) Ad(t) +d-tAq-1(2).
Moreover, the exponential generating function of Aa(t) is Zg50 Aa(t i—;—:gf;,—;—) Hence,

Tavo M(P(Ka), )5 = (1 + zt) 4= 20,

Finally, we give two theorems which provide a recursive algorithm for computing h(73, t).
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Definition 30 Let G be a graph with vertez set [d] and P defined as usual in terms of G.
Let S C [d]. Then Ps:= {x = (z1,22,...,2za) E P | 2; =0 if 1 € S}. :

That is, Ps is isomorphic to P(Gs), where Gs is the subgraph of G induced by [d] \ S.

~

We also define 755 similarly, i.e. Ps := PN Ps.

Theorem 31 Let G be a graph with vertez set [d] and no isolated vertices. Then h(P,1)
Y s h(Ps,t)(t — 1)#571, where S ranges over all nonempty subsets of [d].

Theorem 32 Let G be a graph with d — 1 vertices and denote by G' the graph obtained
by adding to G an isolated vertez. Suppose h(P(G),t) = a0+ art +--- + ag_1t. Then
R(P(G'),t)=bo+ byt +---+ bat?, where by = (2k + 1)ax + (2d — 2k + 1)ak-;. ik
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