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SUMMARY. We give sign reversing involution proofs of a pair of two variable PfafTian iden-
tities. Applications to symmetric function theory are given, including identities relating
Pfaffians and Schur functions. As a corollary we are able to compute the plethysm p; o Sk-.

Finally, we discuss some connections to root systems.

SOMMAIRE. On donne des preuves de deux identites de PfafT, par Ie biais d'involutions

changeant Ie signe. Ces identites admettent des applications dans Ie contexte de la theorie
des fonctions symetriques en permettant d'obtenir des identites qui relient les fonctions de
FfafT a celles de Schur. Comme corollaire, on en deduit un calcul du plethysme p; o Sk-. On

conclu par une discussion des liens entre ce travail et les systemes de racines.

1. INTRODUCTION

The main result (Theorem 2. 1) is a two variable generalization of the following pair of identities:

(1. 1)

(1. 2)

pf

pf

Xi - X

. X, + Xj

I, - Xj

1 4- XiX,

L\ - n
l«<j<2n

n.
KX;$2n

X. - X,

Xi + Xj .

Xi - Xj

1 + X.Xj

These identities are interesting in that they are related to the Weyl identities for the classical root
systems. The proof of Theorem 2. 1 uses an adaptation of Gessel's sign reversing involution proof
of the Vandermonde identity and also shows how the Weyl identity for £>" plays a role in (1.2); in
Section 5 we generalize this connection to root systems of types Bn and Cn.

In Sections 3 and 4 we discuss some applications to symmetric function theory, including several
identities which express Schur functions in terms of Pfaffians. In particular, we obtain a Pfaffian
expression for the plethysm p2 0Sf (Corollary 3. 1) for which we are able to give an explicit expansion

into Schur functions (Theorem 4.3).

2. TWO PFAFFIAN IDENTITIES

In this section we state two-variable generalizations of (1.1) and (1.2) (Theorem 2. 1). Much of
our notation is taken from [7].

Definitions. For n an integer let [2n] = {1, 2,... , 2n). Let ̂ n denote the set of perfect matchings
in the complete graph on vertices [2n]. We refer to elements of Ttn as matchings cmd represent
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2 SUNDQUIST

them as sets of ordered pairs of integers; an ordered pair corresponds to an edge in the matching
and by convention the first element of the pair is the smaller vertex. For example

7ro={(l, 2), (3, 4),..., (2n-l, 27i)}

7T^{(l, 27i), (2, 2n-l),..., (n, n+l)}

are matchings in ̂ n. Given TT   JP"2n let e(T) = (-l)<="»s(Ir), where cross(7r) is the crossing number
of TT, which we can take to be the number of intersections when edges of TT are drawn in the upper
half-plane as semicircular arcs between integer points of the i-axis.

If A = (a. j) is a 2n x 2n skew-symmetric matrix then we define the PfafHan of A to be

Pf(A)= ^ e(7r) H a..,.
»6J"3« (>J)6'-

In this way we view the Pfaffian as a weighted generating function for matchings. We often write
Pf(a,, )forPf(A).

In our main result, we express Pfaffians in terms of skew-symmetrizations of certain monomials.
Let x = {a;i, a;2,..., a;2»} and y= {2/1, 2/2,... , !/2n} be two sets of variables and let S^ act on each
by permuting indices. For a and ft compositions of length n define

a^(a-, 2/)= E <^)^(^'yr--^"y"^+r--a:^)-
CTCSln

For example, a^, ^(x, xn) = det(x]n~j) is the usual alternant in x, where <?" = (n - 1,..., 1, 0).

We are now ready to state the main result; (2. 1) is also due to Proctor.

Theorem 2. 1.

(2. 1) Pff^-^) H (^+x, )=(-l)(^a, ^,^(.r, T/)
. Xl + -Cj/ K,^7<2n

(2. 2) "(-J/-^-l n (i+^^)=Ea^. ^"(a:'y)
xlx} / K><7<2n A, »i

where the sum is over pairs of partitions A = (ai,..., Q'p | ai + I,. -- , 0'p + 1) and ̂  = (/?i,.. - , ^ |
/3i 4- I,..., /?, 4- 1) !'" Frobenius notation, with o'i, /?i < n- 1.

Remark 2. 1. Equations (2. 1) and (2. 2) are generalizations of (1. 1) and (1. 2) respectively. Setting
y = a: in (2. 1) gives

pf(?-?) n (^+^)=(-i)(;)E^)^"-1... ^^2... ^)
. xi + x}^ K,<;<2n '

= . -^-).
'<]

Setting y = z in (2.2) we see that

pf(^^) n (i+^)=EE^)-(^+n-.. ^+l^n-1---^)-
'..LJ/ Ki<j<2n A, ^ <7

The inner sum vanishes unless the exponents Ai + n,..., p.n are distinct. Since Ai, /ii < n, the
exponents must be a permutation of {0, 1,..., 2n - 1}. We see immediately that Ai = n-1 and
/Xn = 0. By induction we get A = (n- 1)" and /x = 0, as desired.
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PFAFFIANS AND SYMMETRIC FUNCTIONS 3

Remark 2.2. The shapes A and ,2-which occur in the last sum are those which occur in the expansion
of n(l + x, Xj) into Schur functions. In fact (see [4, pages 46-47])

n (i+x, x, )=^s^)
l<«j<n A

where the sum is over all partitions A = (ai,... , o:p | Q] 4-1,... , o'p + 1) with ai < n- 1. Moreover,
the right hand side of (2. 1) hzis a similar interpretation as a sum of terms a^i,^+s(x, y) where A
aiid p. range over all shapes in the expansion of \\(x, + x,}, namely the single shape 6. The proofs
make this connection clear.

3. PFAFFIANS AND SCHUR FUNCTIONS

In this section we obtain identities expressing Schur functions in terms of certain Pfaffians.
For a a composition of length 2ra let

a^(x)= ^ ({a)a(xa, l... x°^).
<' S,»

The Schur function of shape A is s^(x) = a^s(x)/at(x). In (2. 1) or (2.2), if we replace x and y by
powers of a: and divide both sides by a<(.r) the right hand side is easily expressed in terms of Schur
functions. One case of interest is

Proposition 3. 1.

^pf(ST^)... n. ('M+'M)=±^('l"-"'2n)1
, X) \^X, - + Xj- I i<,^J<2^

where

A^ = {{IMbn + YV) U (2Af^)) - <5^,

the union is the shuffle union, and the sign is (-1)^) times the sign of the shuffle permutation.

Proof. In (2. 1) replace a; by a-M, replace 2, by 2-Ar, and divide both sides by a<(3;). D

The next corollary, originally due to Proctor [6], expresses the plethysm pz o s^" in terms of a
Pfaffian.

Corollary 3. 1.

^(n+t)_^2(n+<:)^ ^^

^f![s-^-)=^('')s^-^
Proof. Set TV =(n+fc) and M = 1/2 in Proposition 3. 1 and replace x by r2. Then A^^^) = kn
and the shuffle permutation is the identity. On the left hand side, the factors Y[(XM + x^)/as(x)
become l/as{x) as desired. D

There is another way to express Schur functions in terms of Pfaffians. More generally any
determinant can be written as a PfafRan [2], [5]. Given an even order matrix A, choose J skew-
symmetric with determinant 1 and set B = AJA1. Then

(3. 1) Pf2(5)=det(5)=det2(A) so Pf(5) = det(A).

For A of odd order let A = A®(1) (matrix direct sum) so that A has even order and det(A) =
det(A).
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4 SUNDQUIST

Thus any Schur function can be written as a quotient of a Pfaffian by a, (a;) in many ways. One
such way is

Proposition 3. 2.

5A^)=^-^P^A(-Z:. '^))'aT(x)
where

2n-l

Ux, y)=^{-l)'x^^6+^-'.
1=0

Proof. Apply (3. 1) to a^s(x) where J has entries (-1)'+1 on the antidiagonal. D

Similarly, we can express a Schur function as a single Pfaffian by applying our method to the
Jacobi-Trudi identity:

Proposition 3.3. Let X be a partition of length at most 2n. For l^i < j ^2n let

S, j = SA. -, +l, A, -j+2 + SA, -i+3, A, -j+4 + .. . + S\, -i+-2n-l. \, -]+2n,

(sums of Schur functions with two parts), and for i > j let s, j = -5j,,. Then s^(x) = Pf(5, j).
Proof. Actually, this is a special case of a theorem of Stembridge [7, Theorem 3. 1], but we can also
obtain it by applying (3. 1) to the Jacobi-Trudi identity with J equal to a block diagonaJ matrix
with blocks (_? ^). D

Usiiig the matrix J with entries -1 on the upper half of the antidiagonal and 1 on the lower half
of the antidiagonal we can show

^(y, -y^n-^
^F^T

Then we have

(3.2) a24n.2<«(.E, 2/)= PC

Proposition 3.4.

. (^). (^). -.0). (^). (<'^^)).
Prvo!. Multiply both sides of (2. 1) by a<^(i) = (-\)^a^_^x, x). Now use (3. 2) to convert
determinants to Pfaffians. D

4. SYMMETR. IC FUNCTION EXPANSIONS

In this section we study how Pfaffians give rise to alternating functions and give a technique for
expanding such PfafRans.

We say that the formal power series f{x^..., x^) is alternating if <T/(a:) = e(cr) f(x) for all
permutations a   S^. We say that the formal power series /(u, v) (in two variables) is skew
symmetric if f(u, v) = -/(u, u). The following lemma foUows immediately from properties of
Pfaffians.

Lemma 4. 1. Let /(u, u) be skew symmetnc and define a, j = f(x^x, ). Then Pf(a,,, ) is alternat-
ing.
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PFAFFIANS AND SYMMETRIC FUNCTIONS 5

Consequently we have

Theorem 4. 1. Let f be a skew symmetnc formal power series in two variables with expansion
A". ")=Er,, c^. xT ys. Then

4-^Pf(/(. E,. 2;;)) = ^Pf(C^).. f.r),
af(x)"^' ' J" ^-

where C,, is the skew symmetric matrix with entries c^, ^^.

For certain alternating functions, the coefficients Pf(CA+<) can be determined explicitly. We give
two such applications of Theorem 4. 1.
Theorem 4. 2.

^{^)-^^a<(;

where the sum is over all shapes with even length rows and even length columns.

We can use (2.2) to get a. different expansion of the previous Pfaffian involving plethysms.
Corollary 4. 1.

^s^x) = B-l)"/'/2^(:r2)Ef (A^)(-l^)+l"/2+"l/25^)(a:)'
T l/ A, /l

where TT has even rows and columns, v has Frobcnius type (o'i,... |o'i+l... ) with Q'] < 2n-l, A and
fi have Frobenius type (ai,... |ai+l... ) with QI < n-1, A(A, /z) = ((X+26n+l)U(p. +'26n))-6^,
and c(A, ^) is the sign of the shuffle pcrmutation that defines A(A, /^).

As a second application, we can expand the Pfaffian in Corollary 3. 1 to get an explicit expansion
of the plethysm pi o s^ into Schur functions. This is also in [6].

Theorem 4.3.

^(^, .. . , ^J = ^(-l)A-+-+An5, (^, . . . , ^n),
A

where the sum is over all self complementary partitions inside the 2n X 2k rectangle, i. e. partitions
satisfying A, + X^+i-i = 2/i; /or i = 1,... , n.

5. REMARKS

Remark 5. 1. Identity (2. 2) corresponds to the root system £>" in the sense that the shapes which
occur in the expansion on the right hand side are those which appear in f[(l - XiXj), the product
half of Weyl's identity for the root system Dn [4, p. 46]. Other identities corresponding to root
systems B^ and (?" can easily be developed. More generally we have

^ pi{{s--s'w-^1-1-^} n (I-^, )=E'?)''?)^.. -.^. »>.
XIXJ ) KK;<2n Aji

where the coefficients c^' are determined by

H (l-x. x, )^[(l-xp, )=^c[p)s, (x).
Kt<j<n i=l A

-439-



6 SUNDQUIST

The cases p = 1, p = 2, and p = oo (where p = oo is interpreted in a limiting formal power series
sense, that is 1 - a:TO means 1) correspond to root systems 5n, C"n, and Dn respectively.

The factors (1 - a;?) and (1 - a;^) can be factored out of the PfafRan in (5. 1) as F[(l - xp, ). This
leads to the identity

(5. 2) F[(l - xp^c[co}c^a^^^y) = ^ c(,p)c^ a^,^^, y).
1=1 \, fl >-,r

We can similarly modify (2. 1) to get

^3) pff^-^)a-In(l-^)) n (.. +^. )=E^)^)^, ^^^)'
x' + x] ) l<i<;$2n Aj.

where the coefficients dw are determined by

n {x, +x, )^[(l-xp, )=^d{^s, {x).
Kt<j<n i=l ^

Remark 5.2. It is easy to modify Theorem 4.2 to obtain other symmetric function expansions. For
example, it is known how to find the coefRcient of s^x) in

1
pf

;w - XNx', ' ~ x]
.^)r^T^F^y

and ail coefficients are -1, 0, or 1 (see [8]). In some cases, the Pfaffian can be computed from (1. 2),
resulting in a Littlewood formula.

Remark 5.3. The two-variable identities may have three-variable generalizations. For instance, it
is known that

pf((y--^^~z^ JJ ^-x, )=a^x, y)a^(x, z).
X, - Xj / [<;^J^2n

This generalizes (2. 1) since the change of variables x^- x1, z^- x yields (2. 1).
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