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We discuss an enumerative technique ca//e<f generating trees which was introduced in the study of
Baxter permutations. We apply the technique to some other classes o/permutations with forbidden
subsequences. We rederive some known results, e. g. 5n(132, 231) = 2" and 5n(123, 132, 213) = Fn,
and add several new ones: 5n(123, 3241), 5n(123, 3214), 5n(123, 2143). Finally, we argue for the
broader use of generating trees in combinatorial enumeration.

Arous presentons la methodologie appellee arbres de generation, introduite pour etudier les per-
mutations Baxter. Nous utilisons cette methodologie pour etudier d'autres classes de permuta-
tions a motifs exclus. Nous retrouvons quelques resultats connus, e. g. 5n(132, 231) = 2" et
5'n(123, 132, 213) = 2-n, et ajoutons quelques resultats nouveaux: 5n(123, 3241), 5n(123, 3214),
5'n(123, 2143). En conclusion, nous suggerons I'application plus generate des arbres de generation
dans la combinatoire enumerative.

A generating tree is a rooted, labelled tree having the property that the labels of the set of
children of each node x can be determined from the label of x itself. Thus, any particular generating
tree may be specified by a recursive definition consisting of

(1) the label of the root
(2) a set of succession rules explaining how to derive, given the label of a parent, the quantity

of children and their labels (there being exactly one rule conforming to each possible parent-label).
Obviously, (2) corresponds to an induction step and (1) to the basis of the induction.
Since every succession-rule must first state the quantity of children as a function of the label of

the parent, at least this much information must be contained in the parent's label. In some sense,
the simplest situation to imagine is one in which there the label contains no further information.
In this case we czin imagine the label simply to be a. record of the number of children. As a first
example:

Example 1. The complete binary tree.

Root: (2)
Rule: (2) -. (2)(2)

We are generally interested in recording how many nodes appear on level n of the tree, and
occasionally interested in knowing their distribution by label. We will call these the level-numbers
and reserve the notation En and (label)n for them. For the complete binary tree, the level-numbers
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^ ^ (2)n = 2". (We estabUsh the convention that the root be considered level 0, although for
many of our combinatorial appUcations, level 1 might be more natural.)

With no extra eflFort we have

Example 2. The complete fc-ary tree.

Root: (k)
Rule: (k) - (k)fc

This tree has level-numbers £" = fc", a popular combinatorial function. (The most trivial
possible example has fc = 1.)

For a less trivial example, take

Example S. The Fibonacci tree.

Root:
Rules:

(1)
(1)-(2)
(2) - (1)(2)

Notice that our decision to use numbers as the labels is somewhat arbitrary, being made purely
to reflect the basic information which is inherent in them. We could have chosen, for instance,
(non-breeding pair) and (breeding pair) in place of (1) and (2).

If we rewrite the succession rules into a transition matrix we wiU find it easy to read offrecurrence
relations for the level-sums. In this case we can read off

n-1
1

0

1

giving us that (l)n = (2)n-i and (2)n = (l)n-i +(2)n-i.
If the transition matrix is A and the root has label lr, the vector giving the n-th level-numbers,

[(/l)n, . . ., (Wr is Aner- For instance if the 0-th level-numbers "e ̂  J and the transition matrix

(^).
as in the Fibonacci example 3, the n-th level-numbers are

(° ̂ )"G)
the solution to which is ( ) where On = ifln-i + fln_2.

an

In our example 2; = 1 so the solution is

(^)-n(;)=(°;yG)=(fc;)-
where Fn is the Fibonacd numbers initialized to Fo= ̂ i = l, and the level numbers En = Fn.
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The transition matrbc contains exactly the same informatiou as the competing notation for the
succession rules. The former is generaUy more revealing but the latter is frequently more compact,
as may be seen in the following

Example 4. The Catalan tree.

Root: (2)
Rule: (k) -. (2)(3) . .. (k+1)

In this case, the trzinsition matrbc would be infinite in extent. This corresponds to the fact
that the recurrence equation for Sn is not of finite order. Nevertheless, there are standard (even
elegant) tricks for solving it, to obtain Sn-i = ^T(2n"), the nth Catalan number.

Example 5. The Schroder tree.

Root: (2)
Rule: (k) -^ (3) ... (k+l)(k+l)

In this case, En is the n-th Schroder number. The generating function for these numbers is
i-x-Vi-§s±sL^ par a more detailed discussion of the previous two examples, see [6].

Of course, two trees might have completely different appearances and identically equal level-
sum-functions En. For a taste:

Example 6. A tree having level-sums 2".

Root: (1)
Rule: (k) - (l)fc-l(k+l)

First note that the number of nodes on level n, Sn, is equal to the sum of the labels on level
n - 1. Then note that whatever the label ( of a node, the sum of all the labels of its children is 2(.
Hence the sum of labels doubles from one level to the next, hence En = 2", the same level-sums as
we saw in example 1.

Generating trees first arose in the study of permutations with excluded subsequences. See [5]
for an excellent introduction to these permutations. We give the basic definitions.

Definition 1. For r 6 Sk, a permutation TT   5'n 15 T-avoiding iff there is not <. 4(i) < 1^(2) <
... < i^(fc) <, n such that 7r(ii) < ^(12) < .. . < ff(tfc). T/»e suAseguence {7r(t'r(j))}?=i " said to have
type r. We write .S'n(r) for the T-avoiding permutations of length n.

In [6], we acknowledged [2] as the origin of the idea of generating trees. This paper deals with
the reduced Baxter permutations, which can be put into the general form of definition 1 subject to
a further modification.

Definition 2. Letf=h, t-i,..., t^..., tk be a permutation r from Sk together with a bar over
one of its elements. We explain what it means for a permutation v ^. Sn to be said to be f-avoiding.
/n general, TT is permitted to contain arbitrarily many subsequences of type r. By taking all but the
r-th element from one of these subsequences, we see that TT may also contain subsequences of type
rx := {h, h,..., tr-i, tr+i,..., tk}- 1' *5 f-avoiding iff it contains no further subsequences of type
rx.

Under this definition, the reduced Baxter permutations are those of 5'n(41352) n 5n(25314).
We will abbreviate multiple restictions of this type on the model of 5'n(41352, 25314). In [2], a
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generating tree appears with the reduced Baxter permutations of length n + 1 being assodated
with the nodes on level n. This tree is constructed according to the rule that a permutation
n- = pi,.. -, pn is made the child of the permutation pi, .. ., pj _i, pj +i,.. ., pn if pj = n.

We have had considerable success using this approach in general, to construct generatmg trees
for various classes of permutations. We remark that not all classes of permutations are hereditary
under the operation of inserting a new largest element, as defined in the previous paragraph. A
class which is not hereditary in this way wUl not give rise to a tree. However, there are remecties.
Most notably, in the case of permutations, the entire class can be rotated under some global trans-
formation. Equivalently, the generating operation could be replaced by inserting a new smallest
element (adjusting the other elements appropriately), or by inserting a new first element or a new
/as( element.

Here is a quick survey of some simple generating trees which arise in the context of permutations
with forbidden subsequences. All of these eaumerative results have previously appeared, though
the binary and Fibonacci cases (both due to [5]) have not been put into this form.

Sn(12): the complete unary tree of example 2; En = 1.

Sn(123): the Catalan tree of example 4; Sn+i = -^Q-
Sn(132): the Catalan tree of example 4.
Sn(132,231): the complete binary tree of example 1; En = 2".
Sn(123,132,213): the Fibonacci tree of example 3, with root labelled (2).

Sn(3142, 2413): the Schroder tree of example 5.

Sn(4132, 4231): the 5'cAroder tree of example 5.

The proof of any of these assertions requires a combinatorial argument. For instance, to see that
Sn( 132,231) is generated by the complete binary tree, notice that given any permutation avoiding
both 132 and 231, a new largest element can be added to either end without creating a forbidden
subsequence, but to no point between any two elements. We say that the first and last sites of
the permutation are active. A similar, but generally more complicated, argument applies in all the
other cases.

For the Fibonacci tree corresponding to Sn(123, 132, 213), the argument is as follows: having
simultaneously to avoid 123 and 213 guarantees that only the first two sites of a permutation can
be active. On the other hand, the first site will always be active, as inserting in the first site could
only introduce a new 3-subsequence of type 312 or 321, both of which are allowed. The second site
in any v 6 5'n(123, 132, 213) will be active only if the first two elements are descending rather than
ascending. Since this can only happen if the previous insertion was into the first site, we know that
the permutation begins with n. Therefore inserting n + 1 into the second site cannot lead to a new
132 and so the second site is active ig the first two elements are descending.

This amounts to a new proof of an enumerative result in [5]. The examples having to do with
the Catalan and Schroder numbers have already appeared in [6].

The remaining examples all produce enumerative results which, to the best of our knowledge,
were not previously known:

Example 7. The (123,3241)-avoiding permutations

Here (for the first time in this paper) the number of children of a node will not be sufficient
information to provide its label. We use letters instead. Another phenomenon which we see for the
first time is that the normal behaviour which persists throughout the tree after level 2 collapses on
the first few levels, simply because the permutations are so short as to be degenerate. Therefore
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we use a special symbol for the root to stress that this type of permutation never recurs in the tree;
it is on the right-hand-side of none of the arrows.

Root: (*)
Rules: (*) ̂  (A)(X)

(X) - (B)(X)(Y)
(Y) - (B)(Y)(Z)
(Z) - (B)(B)(Z)
(A) - (A)(Z)
(B) -. (B)(B)

The combinatorial proof of these rules is somewhat involved and follows an ad hoc argument. Let
a given permutation belong to 5In(123, 3241), (n > 1) and have an initial descending subsequence
of length k. We note immediately that the only possible active sites are the first, second, and k+l-
th. For insertion anywhere to the right of the first incresise forms a forbiden 123, and insertion
elsewhere in the initial descending subsequence forms a 3241.

The salient features of a permutation now depend on exactly three elements: the first two
elements, pi and p2 » 

and the smallest element outside the initial descending subsequence, say pr.

We now distinguish 5 types of permutations in 5'n(123, 3241) according to these elements:

(Z) : Pl > Pr >P2
(Y) : p. > pi >p2

(X) : The all-descending permutation (so that pr does not exist)
(A) : Permutations with an initial ascent (so that p2 does not exist)

in which pr > pi

(B) : Permutations with dn initial ascent in which pr < pi,
and those for which pi > p2 > Pr

A methodical attempt to insert a new element n + 1 into each of the three possible active sites
(two of which may coincide) yields the succession-rules quoted above.

The resulting system of linear equations is particularly easy to solve because it can be trian-
gulariscd. The initial conditions are (X)i = (A)i = 1, (V)i = (Z)i = (5)i = 0 and the system
IS:

(X)n
(Y)n
(A)n
(Z)n
(B)n

Wn-1
(X)n-i + (Y)^-i

(X)n-l +
(Y)n-l
(Y)n-l

+

(A)^-i
(A)^-i +

+

(Z)n-l
2(Z)n-l + 2(B)n-i

We thus have the luxury of solving the first recurrence first and then plugging its solution into
the second one, and so forth. We obtain the solution:

Wn
(Y)n
(A)n
(Z)n
(B)n

1

n-1

^)-
3-2" - (n2 + 2n+ 3)

and so the number of these permutations of length n+1 is En = 3-2"- n2/2 - 3n/2 - 2.

This is the only example examined in detail in this paper in which the number of children does
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not suffice as a label. Other examples recorded elsewhere are 5n(2143) (the vexillary permutations of
algebraic geometry) which has succession-rules involving a two-parameter label [6], aad 5n(35241),
which has a very complex succession rule involving a variable number of parameters [4].

Example 8. The (123, 3214)-avoiding permutations
Consider a permutation of length n avoiding both 123 and 3214. The first three elements wiU

either contain an ascent or be aJl-decrea^ing; in either case insertion in any site to the right of
the third element wffl always be forbidden. Likewise, insertion in the first two sites wiU always be
permitted: a new element can only create a subsequence of type 123 if it is inserted in^the third
site and the first two elements are ascending; it cannot create a subsequence of type 3214 at all,
if inserted in the first 3 sites. So a permutation beginning with an ascent wm have two chUdren,
one'beginning with an ascent and one with a descent. A permutation beginning with a descent wm
have three children, only one beginning with an ascent.

We summarize these rules (after making sure that they hold in the first few levels of the tree,
where degeneracies may occur) as:

Root: (2)
Rules: (2) - (2)(3)

(3) - (2)(3)(3)

Here, indexing the transition matrbc by the labels [(2), (3)], we have
rwn}=(1 1Y(1'
<(3)n;"Vl 2^ '<0,

for the n-th level numbers. Since this transition matrix ̂ s just A2 for our A of example 3, the

result is again a consecutive pair of Fibonacci numbers (^^ ). givin6 E" = F2n. Alternatively,
we could find these succession-rules by skipping a generation and sending inheritances directly to
grandchildren in example 3.

There is an entertaining bijection with another class counted by the same function, the column-
convex directed animals on n ceUs studied by Delest and Dulucq in [3].

An column-convex directed animal is a set A of lattice points in the first quadrant such that

(i) (0, 0) e A
(2) if (r, a), (i, 6)  A and a< y< 6 then (i, y)   A
(3) if (a;, y)   A then (2;, y) may be reached from (0, 0) by a sequence of steps to the north and

cast, always staying in A.
Essentially, condition (2) is the column-convexity condition and condition (3) states that the

animal is directed.

We show that the tree of example 8 is a generating tree for this dass of objects as foUows.
Identify the root of the tree with the animal (0, 0). We wiU grow the animal square by square,
according to one of the following three operations:

(A) add a square to the top of the leftmost column
(B) shift the animal up one square and add a square to the bottom of the leftmost column
(C) shift the animal one square to the right and add a new square at (0, 0).
Evidently operations (A) and (B) commute, so to avoid generating the same animal twice we

will insist that between occurrences of operation (C) aU occurrences of (A) precede aU occurrences
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r of (B). Hence every (C) may be followed by any letter, every (A) may be followed by any letter,
but every (B) must be followed by a (B) or a (C). When the animal has only one column, (A)s and
(B)s have the same effect, so we deem that the root square was added by a (B) operation, so that
only (B)s will foUow until we move to the next column.

Our succession-rides are thus seen to be identical to those for (123,3214)-avoiding permutations:

Root:
Rules:

(B)
(B)
(A)
(C)

(B)(C)
(A)(B)(C)
(A)(B)(C)

Example 9. The (123, 2143)-avoiding permutations
We derive the succession rules: first note that the active sites of a 123,2143-avoiding permutation

with k children must be the leftmost k sites. If a site is inactive because it would lead to a 123,
all sites to the right are immediately inactive as weU. If a site is inactive not for this reason but
because it would lead to a 2143, then all the elements preceding it must be decreasing. Either they
continue to decrease, in which case the sites continue to be made inactive by the same 21 - 3, or
there is an increase in which case the sites are inactive because of a 12-, as before.

Now consider introducing a new largest element into the first site: it extends the initial decreas-
ing sequence, and disturbs nothing, increasing the number of active sites by 1. On the other hand,
consider inserting a new largest element into an active site A; > 1. It cancels all active sites to its
right, by reason of 12-, and it also cancels all active sites to its left after the second element, by
reason of 21 - 3. This is because the first two elements are decreasing (else site k would not have
been active) and smaller than the new element. Hence the succession-rules are:

Root:
Rule:

(2)
(k) (k+l)(2) k-l

This tree can a/so be used to grow the column-convex directed animals seen above, and so
£" = Fsn, as above. To see this, consider growing an animal as follows: let fc - 1 be the number of
cells in its rightmost column, which might then be (r, 6), (r, &+ 1),.. ., (r, fr+fc-2). We add a new
ceU in any of the k positions (r, b+k-l) (i. e. atop the rightmost column) or (r+ 1, <>), (?. + 1, 6+
1)^ _ ^(r 4- 1, 6+ A; - 2) (i.e. in a newly created column one to the right). Each column-convex
directed animal can be grown, column by column, according to these rules in exactly one way.

If an animal has k children, then these children will respectively have fc + 1 children (the
rightmost column being one higher), or 2 children (the rightmost column being newly created with
one cell). We have rederived the succession-rules as above.

Table. The 3, 4-restricted permutations

For completeness, we oflfer the following table, which treats pennutations suffering two restric-
tions, one of length 3 and the other of length 4 (as in the three previous cases). Note that if
the 4-restriction p contains a subsequence of type TT, then p does not remove any permutations
which pass muster with regard to TT, and so Sn(v, p) = Sn(v) = Cn = 1, 2, 5, 14,.... Otherwise the
sequence begins 1, 2, 5, 13,.. ̂  one extra permutation from 5'4 having been removed.

The table omits cases yielding Cn, but represents all other cases. Many cases have the same
enumerative result because of obvious symmetry arguments (e. g. Sn(v, p) = 5'n(7r-l, p-l); see [5]
or [6]) and usually only one representative of each symmetry-class has been given. The exception
is in the classes counted by Fzni here each case conforming to the listed succession-rules is given.
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restrictions | succession-rules formula first terms (1, 2,5, 13,...)
5'n(123, 4321) 0 (n > 7) 25,25,0,...
5n(123, 3421) (S) - (S)

(A) -. (S)(A)
(X) -. (S)(A)(X)
(Y) - (A)(X)(Y)
(Z) - (A)(Y)(Z)
^A)2 = (Y)2 = 2, (Z)2 = 1

(;)+2^+n 30, 61, 112, 190, 303,460....

5^(132, 4321) (S)-"(ST
(A) - (S)(A)
(B) - (A)(B)
(C) - (C)(Y)
(X) - (S)(A)(X)
(Y) -. (B)(X)(Y)
(C)o = 1

(^) + (n:1) + (^) +1 31,66, 127, 225,373,586...

5n(123, 4231) see below (?)+2(;)4-(^)+(^+1 32, 72, 148, 281, 499, 838...

5n(123, 3241) (C) - (A)(X)
(A) - (A)(Z)
(B) - (B)(B)
(X) - (B)(X)(Y)
(Y) -. (B)(Y)(Z)
(Z) - (B)(B)(Z)
(C)o =1

3. 2"-1 - ("^) - 1 32, 74, 163, 347, 722, 1480.

5n(123, 3412) R. P.Stanley 2"+i - (n^) - 2n - 1 33,80,185,411,885,1862...
5n(132, 4231) O.Guibert !+("- 1)2"-2 33, 81, 193, 449, 1025, 2305.

5n(132, 3421) (A) -. (A)(X)
(B) -. (B)(B)
(X) - (B)(X)(X)
(A)o = 1

1+("-1)2n-2 33,81,193,449, 1025,2305.

5"n( 132, 3214) (A) - (A)(X)
(B) - (B)(X)
(C) - (B)(C)
(X) - (C)(X)(X)
(A)o = 1

g. f. = (1-r)3
l-4r+5r^-3. rj

33,82,202, 497, 1224, 3017.

5n(123, 2143)
5n(123, 2413)
5n(132, 2314)
5«(132, 2341)
5'n(312. 2314)

(k) - (2)fc-l(k+l)

(2)o =1

F^n 34, 89, 233, 610, 1597, 4181.

5n(312,
^(312,
5n(123,
5n(312,
^(312,
5n(132,

3241)
3214)
3214)
4321)
3421)
3241)

(2) - (2)(3)
(3) - (2)(3)(3)

(2)o = 1

F2n 34,89,233,610, 1597.4181.

^(132,
5n(312,
^(312.

3412)
1432)
1342)

(k-)-(2)(3)... (k)(k+l-)
(k) - (2)(3)... (k)(k)
(2-)o = I

F2n 34,89,233,610, 1597,4181.
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A few comments are necessary. Firstly, two results have been ascribed to R.Stanley [1] and
O. Guibert (unpublished). Neither of these proofs involved generating trees; we omit them here.
Secondly, the case marked "see below" both requires a two-parameter label and so falls a little
beyond the main purpose of the present paper. Indeed, there are numerous cases requiring more
complicated labelling schemes which we have omitted; except 5'n(123, 4231), however, each is equiv-
alent to one of the listed czises under the "obvious" symmetries. Thirdly, note the appearance of
a third set of succession-rules generating Fsn. These are not terribly complicated; after remarking
that a permutation labelled (k*) is the all-decreasing permutation on A; - 1 elements we leave the
further details to the reader.

Careful inspection of the first 5 sets of succession rules in the table reveals that each appears to
be a "mutated" or "deficieat" variant of the rules we derived for 5'n(123, 3214), exactly as though
some further pruning of the generating-tree has taken place in a controlled fashion. The rules
for 5"n( 123, 3214) are in like manner "mutated" versions of the succession-rules for the Catalan
tree, which send (2) -^ (2)(3) and (3) -^ (2)(3)(4). (Other rules such as (4) -» (2)(3)(4)(5) are
then irrelevant as a (4) is never generated in the mutated version. ) The rules which generate
5n(123, 2143) and 5'n(132, 3412) are also mutated versions of the 5'n(123) rules in a very similar
way. (Although we have not presented them here, each of these rules seems to undergo similar
further mutations to produce those more complicated schemes which we left off the chart.)

The apparently controlled manner of these mutations seems to be evidence that some sort of
general approach could be made to these problems, rather than solving each (as here) in an ad
hoc fashion. (It remains, however, perplexing that no single restriction of length 4, e. g. 5'n(1234),
appears to be susceptible to such successful treatment. The two-parameter succession-rules for that
case are more complicated than anything we have seen here [6].)

Conclusion. We have had considerable success considering classes of permutations as generated
by these trees. This is consistent with the advice of [2], which suggested adapting the technique
to various problems involving permutations. Although in some sense permutations may be the
"natural" objects to grow on trees, we believe the concept is more general still, and introduce
in evidence the directed animals considered above. In [6] we generated some minimal semiorders
with the CataJan tree, and a great many combinatorial objects counted by the Catalan numbers
can be produced in this way. In [4] we use a very complicated set of succession-rules to generate
non-separable planar maps.

Objects we suspect might be amenable to this treatment are those which are in some way linear
or can be made linear. For instance, permutations have their elements ordered from 1 ton in a
straight-forward one-dimensional way, and the maps of [4] while themselves two-dimensional, are
coded using the one-dimensional code of Lehmann and Walsh. We suspect this is necessary for
the succession-rules to apply themselves in a controlled manner: it will be necessary to distinguish
which is the first child created by the operation (e. g. insertion of a new largest element), which the
second, and so forth.

Furthermore, the criterion for membership in the class to be enumerated should be according to
some local criteria, for instance possession of an excluded subsequence, existence of a cut-vertex.
Thus, insertion of a new largest element into a permutation does not disturb any of the existing
subsequences (these can then be regarded as distant from the new element). Furthermore the new
element itself participates (therefore, is local to) each of the new subsequences it creates.

Examples of a less-tractable global criterion might be the cycle index of a permutation or
chromatic number of a graph. Insertion of a new large element into a permutation can drastically
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alter the cyde-index in hard-to-predict ways. For our purposes it is important that the relevant
statistic on each chUd can be obtained from knowing the statistic on the parent, together with what
has changed between generations.

Finally, it is important for this genealogical technique that the class under consideration be
hereditary. This condition is better defined, though perhaps less stringent, than the other con-
ditions (Unear, local). Heredity means precisely that the generating tree must genuinely be a tree;
that is/that there are no sudden appearances of foundlings with no ancestry. However, fixes are
possible; if foundlings appear in a controUed fashion (a given number per level, with known prop-
erties) then they can be factored in (for instance, treated as chUdren of imaginary parents who do
not themselves contribute weight to the tree).

Much work remains to be done. In particular, a general explanation of how succession-rules mu-
tateasnew conditions are appUed is eagerly desired. There may be enough data in the 3, 4-restricted
permutations tabulated (though surely not adequately) here to formulate this explanation. Alter-
natively, we propose 3, 5-restrictions as next on the agenda.
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