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Abstract

We present an algorithm for finding all solutions y (a;) of a linear homogeneous g-difference
equation such that y(qx)/y{x) is a rational function of q and x. The algorithm can also be
used to construct g-hypergeometric series solutions of g-difFerence equations.

Resuine

Nous presentons oil algorithme qui trouve toutes les solutions y(x] des equations lineaires
homogenes aux ^-differences, telles que y(qx)/y(x) est une fonction rationneUe de q et de
x. On peut utiliser cet algorithme aussi pour construire les solutions des equations aux
^-differences ayant la forme d'une serie g-hypergeometrique.

1 Introduction

Let Q be the rational number field, q transcendental over Q, -R" a computable extension of
Q(g), and x trzinscendental over K. Denote by Q the unique automorphism of K[x) which
fixes K and satisfies Qx == qx. Then K(x) together with Q is cin inversive difference field.

Let M be a difference extension ring of K{x). An element a   At is q-polynomial if
a G -R'[a;j, and q-rational if a   A"(a;). An element a   M \ {0} is a q-hypergeometric term if
Qa = ra for some r   -ft'(a;). AU these concepts are relative to the field K.

We aj-e interested in g-hypergeometric solutions y oi Ly =0 where

L=EP^
t=0

is a linear q'-diiFerence operator of order p with coefl&cients p, 6 K{x}, with pp, po 7^ 0. By
clearing denominators in Z.y = 0 we can restrict our attentiou to operators L with p,   K[x}.
An algorithm for this problem is presented in Section 4. It is a g-ajialogue of the algorithm



for finding hypergeometric solutions of difference equations described in [6]. In preparation,
we show how to find ̂ -polynomial solutions of Ly = 0 in Section 2, and give a normal form
for g-rational functions in Section 3. Finally, in Section 5, we describe solution of various
related problems such as solving nonhomogeneous equations, finding solutions in the form
of 9-hypergeometric series, aud deriving g-hypergeometric identities.

We use IN to denote the set of nonnegative integers. By (a; q)n we denote the expression
(l-a)(l-a^)... (l-agn-1).

In our examples we use two algebraic settings which are special cases of the general
framework described above. In one we work with sequences of elements of K, identifying
sequences which agree from some point on. More precisely, we take M = Kv! /J where Kv
is the ring of sequences over K, and J is the ideal of sequences with finitely many uonzero
terms. In paj-ticulaj-, all equcilities among sequences (of the form fln = &n) are meant to
hold for all but finitely many n   IN. Further we take x = (9")^o + ^ an(l define Q as
the unique automorphism of M satisfying Q[a-{- J~) = £'a+^ for all a G Kv. Here £
denotes the shift operator acting on A'1N by Ea^ = Qn+i. Obviously K can be embedded in
M as the subring of constant sequences. To simplify notation, we will henceforth identify
a + J   Kw /J with its representative a   7<'"]N. Note that in this context a sequence On is
g-polynomial if On = p(qn) for some p   A'[a:], ^-rational if an = r($") for some r 6 Ar(a;),
and a ^-hypergeometric term if an+i = r(gn)an for some r 6 A'(a;).

la cuaother settmg we take M = A'[[2;]] (or At = K{(x))), the ring of formal power series
(resp. the field of formal Laurent series) over K. Again, K, K[x], and K{x) are embedded
in M in a natural way. We distinguish between series that are g-hypergeometric terms,
and series whose coefl&cients form a g-hypergeometric sequence. More precisely, a series
f{x) = T^=o ocjxj is a q-hypergeometric term, if f(qx) = r(x)f(x] for some r{x)   K(x), and
a q-hypergeometric series if ocj+i = r[q3 }ctj for some r(z) 6 K[x) and for all large enough
j   IN.

Several times we will need to find the largest n   IN (if any) such that g" is a root of a given
polynomial with coefficients in K. Therefore we assiune that K is a. q-suitable field, meamng
that there exists an algorithm which given p   K[x] fibds all n   IN such that p(g") = 0.
For instdnce, it K = k(q) where q is trajiscendental over k we can proceed ds follows: Let
P{x) == E?=oc»:rt where c,   A;[^]. Compute 5 = mm{i; c, 7^ 0} and t = max{j"; 9-' |ca}.
Then p(qn) = 0 only if n < t, and the set of all such n can be found by testing the values
n=t, t-l,..., 0.

2 9-P°lynonllal solutions

First we show how to find solutions y   K[x] of Ly = Q. Let p, = E^=o cifc;:c;; where c,-fc   fc[g]
and not all c,^ are zero. Assume that y = ^, J-=Q otjx1 where a^ -^- 0. Substituting these
expressions into Ly == 0 and replacing kby 1= j +k yields

^Ci, i-jajqt 3xl
t, 'j

=0



which implies that

mm{l,N} p

^ ^^-, Q, gtJ=0, !or0^l^N+d.
j=max{t-d,0} t'=0

In particular, for I = N +d,

and for / = 0,

E^lN=:o,
t=0

Q:o ̂  c.o = 0.

(1)

(2)

(3)
:=0

From (2) it follows that qN is a root of the polynomial P{x} = E^=o cid^. Let /^o be

the largest n 6 ]N such that P{qn) = 0 (see the last paragraph of Introduction). All

g-polynomial solutions y oiLy = 0 can now be found by the method of undetermined
coefficients. Ultimately, the problem is reduced to a system of linear algebraic equations
over K with Afo + 1 unknowns. - A more efficient method leading to a system with at most
min{2rf, ^Vo +1} unkaowns is described in [2].

3 A normal form for g-rational functions

Theorem 1 Let r   K(x) \ {0}. Then there are z G. K and monic polynomials a, 6, c G K[x]
such that

^t = z^2cw,
r{x)=zb{x) c(x)f

gcd{a{x), b(qnx))=l foraU n   IN, (5)
gcd(a{x), c(x))=l, (6)
gcd(6(3;), c(^))=l, (7)

c(0) ̂  0. (8)

Proof: Write r(.r) = ^ where f, g are relatively prime polynomials. We start by finding
the set <?ofall n   IN such that f(x) and g(qn x) have a nonconstant common factor. To this

end consider the polynomial R(h) = Resvlta, ii.tx(f{x'), g(hx)). By the well-known properties
of polynomial resultants, <?= {n   IN; R(qn ) == 0}.

Assume that S = {ni, n2, ..., "(} where t ~^ 0 and ni <n2 < ... <n<. In addition, let
n(+i = +00. Define polynomials /, and g, inductively by setting

and for z = 1, 2,... , ^,

fo(x)=f(x), go(x)=g{x),

s, {x) = gcd(/. _i(. c), ^-i(gn<3;)),
f, {x) = /, -i(^)/5, (z),
g, {x) = g^(x)/s, {q-ntx).



Now take

z = a/^,
a(z) = /((z)/Qi,
b{x) = g, (x)/f3,

cw = nn^(9-^),
.-=1 j=l

where a; and /3 denote the leading coefficients of fi{x} and gi{x}, respectively. Before proving
(4) - (8) we state a lemma.

Lemma 1 Letn^JN. IfO ̂ l <, i, j ^t andn < n;+i, then gcd(f, {x), gj(qnx)) = 1.

Proof: Assume first that n ^ S. Then R{qn) ^ 0, hence gcd(f(x), g{qnx)) = 1. Since

f, (x)\f{x) and g, (x)\g(x) it follows that gcd(/, (a;), ^, (9nz)) = 1, too.'
To prove the lemma for n G <? we use induction on I.
/ = 0: In this case there is nothing to prove since there is no n G<S such that n <n^.
I > 0: Assume that the lenama holds for all n < n;. It remains to show that it also holds

for n = n;. Since fi(x)\fi(x) and gj(x)\gi{x) it follows that gcd(/,-(a;), ^(^n'a;)) divides
gcd(fi{x), gs{q^x)) = &cd{f^(x)/si{x), g^(qn 'x)/si{x)). By the definition of si{x), the

latter gcd is 1, completing the proof. D

Now we proceed to verify properties (4) - (8).
(4)=

,

a(x)c(qx) {(5 n n ̂ l-la :?
b(x) c(x) ~~ ^(z).-L1^1 s, (q^x)

/o(^) Tl^s, (q-n'x) ^ Si(x) _ f(x)
HLi^) 9o(x) l=\^q-n^)~~9^) = ^).

(5): Let i= j =1= t in Lemma 1. Then gcd(/t(z), ^(g»a;)) == 1 for all n < rat+i = +00.
In other words, gcd(a(a-), b(qn x)) = 1 foralln   IN.

(6): If a(a;) and c(.c) have a non-constant common factor then so do ft (x) aad Si{q~jx),
for some i and j" such that 1 <, i <, t a.ndl <, j <, n;. Since ^._i(g"'--''3;) = gi{qn '~3 x'}s, (q-3 x\
it follows that gi--i{qn i~j x) contains this factor as well. As n, -j < n,, this contradicts

Lemma 1. Hence a(a-) and c(a;) aje relatively prime.
(7): If b(x) and c(qx) have a uon-constant common factor then so do ̂ (a;) and 5,-(g--'a;).

for some i and j such that 1 ^i < f and 1 ^j+1 ̂  n,. Since f^q-'x} = /, (?-Ja;)5;('g--''a;),
it follows that f, -. i{x) and gt{q3 x~) contain this factor as well. As j < n., tius contradicts

Lemma 1. Hence b{x) dnd c(qx) are relatively prime.
(8): It is easy to see that s, (x) divides both f{x) and ̂ (g"'a;). Hence 5,-(0) = 0 would

imply that /(O) = ^(0) = 0, contrary to the assiunption that / and g are relatively prime.
It follows that Si(Q) 7^ 0 for aU z, and consequently c(0) ̂  0. D



Theorem 2 Let a, b, c, A, B, C  : K[x] be polynomials such that c(0) 7^ 0 and
gcd(a(z), c(x)) = gcd(b{x), c(qx)) = gcd(A(r), B{qnx)) = 1, /or a// n C IN. //

a(x) c{qx) A(x) C(qx)
b(x) c(x) ~ B(x) C{x) '

(9)

then c(x) divides C(x}.

Proof: Let

g{x} = gcd(c(z), C(^)),
d(x) = c(x)/g{x),
D{x} = C{x}/g{x}.

Then gcd(d{x), D{x)) = gcd{a{x), d(x)) = gcd{b(x), d(qx)) = 1 and. d(0) + 0. Clear de-
nominators in (9) and cancel g(x)g(qx) on both sides. The result A{x)b(x)d(x)D{qx) =
a{x)B(x>)D(x)d{qx) shows that

d(x) [ B(x)d(qx),
d(qx) | A(x)d(x).

Using these two relations repeatedly we find that

d(x) I B(x)B{qx). -. B(qn -lx)d(qn x),

d(x) | A(q-lx)A(q-2x)---A{q-nx)d{q-nx),

for all n   IN. It is easy to see that since J(0) -^- 0 and q is not a root of unity, rf(a;)
and d{qn x) are relatively prime for all large enough n. It follows that d{x) divides both

B{x)B(qx) . . . B(qn ~lx) and A{q~lx)A(q~2x) . . . A{q~nx) for all large enough n. But these

polynomials are relatively prime by assumption, so d(x) is constant. Hence c{x) \ C(x). D

Corollary 1 The factorization ofr{x) described in Theorem 1 is unique.

Proof: If
^a{x)c(qx) _ ^A{x)_C(qx^
zb(x)~c(x)' " ^B{x) C(x)

are two such factorizations then c(x) \ C(x) and C{x} \ 0(2;), by Theorem 2. Since these
polyaomials are monic, c= C. It follows that z = Z dnd aB = Ab. Hence a [ A and A [ a, so
a = A and b= B. D

Corollary 2 Among all factorizations ofr(x) satisfying (4) and (5) of Theorem 1, the one
satisfying (4) - (8) has c(x) of least degree.



4 9-hypergeometric solutions

After this preparation we turn to the algorithm for finding ̂ -hypergeometric solutions y of
Ly = 0.^ Let ?y = ry where r   ̂ (i), then Q'y = n^r^z^. We look for r(z) in the
normal form described in Theorem 1. After inserting (4) mto~Ly~=0, clearing denominators
and cajicelling y we obtain

where

E^iM^(qt x)=0
t=0

fiW=P^)]^a(q]x)]^b{qjx).
3=0 j=i

(10)

Since aU terms in (10) except for i = 0 are divisible by a(x) it follows that a(x) di-
vides po(x)Tlp^b^x)c{x). Because of (5) and (6), a{x) divides p^x). SimilaTly, all
t!rm/s_^^li°^^e?\f?r 1 = /9 ar.e, _divisibleby'6(Cl a;)' therefore/6(9"-lz) divide's
^Pp(x)Hp^a^x)c(q''x). Because of (5) and (7), 6(^-12-) divides ̂ (.r)/Thus/wehave
a finite choice for a(x) and b(x).

For each choice of a(x) and b(x), equation (10) is a g-diiference equation for the unknown
polynomial c(a;). However, z G AT is also not known yet. Let u, fc denote the coefficient of xk
in /.. Since c(0) ̂  0, we have o-o ̂  0 in (3), hence applying (3) to (10) we obtain

Eu;o^=o.
«=0

(11)

We may assume that not allu, o are zero, or else we start by first cancelling a power of x
from the coefficients of (10). Thus z is a nonzero root of f(z) = Ef=o u.o-z', and is algebraic
over K.

If A- = deg c(x) then by (2),

E«^vw=o,
t'=0

(12)

hence w= zqN is a uonzero root of g(w) = E^=o u.^'. It follows that 9^ is a root of

p^x\ ==. ResuhaxitM[w), g(wx)), thus to obtain an upper bound on N computation in
algebraic extensions of K is not necessary.

In summary, we find the factors of r{x) as follows:

1. a(z) is a monic factor of po(a;),

2. b{x) is a monic factor of pp(ql~px),

3. z is a. root of Eqn. (11),

4. c(a;) is a nouzero ̂ -polynomial solution of (10).

Then r = z(a/b){Qc/c) and Qy = ry.



Example 1 Let us find a g-hypergeometric solution y of Ly =0 where

L=xQ3 - q3 x2Q2 - (x2 + q)Q + qx(x2 + q).

The candidates for a(x) are

and the cdndidates for 6(3;) are

l, x, x^ +q, x(x^ +q},

l, x.

Here we explore only the choice a(x) = x and b(x) = 1. The corresponding equation (10) is,
after cancelling one a;,

z3q3x3c(q3x) - z2q4x3c(q2 x) - z{x2 + q)c(qx) + q(x2 + q)c(x) = 0, (13)

whence f(z) == -qz + q2 with unique root z = g, and g(w) = 93w3 - q4w2 with unique
nonzero root w = q = zqN = qN +l. It follows that Ar = 0 is the only possible degree for

c. Equation (13) is satisfied by c = 1. Thus we have found r = z(a/b)(Qc/c) = qx, and
the corresponding g-hypergeometric solution o! Ly == 0 satisfies Qy = qxy. We can take, for
instance, t/n = x{x/q)(x/q2 ) . . . (x/qn ) = g<. 2 ^.

To find other g-hypergeometric solutions (if any), the remaining combinations for a(z)
zind 6(2;) could be tried; or even better, the order of the equation could be reduced using
the obtained solution, and the algorithm used recursively on the reduced equation. Our
Mathematica implementation of this algorithm (which we call qHyper) shows that up to a
constant factor, there aj-e in fact no other g-hypergeometric solutions:

In[l]:= qHyper[x yCq~3 x] - q~3 x~2 y[q~2 x] -
(x"2 + q) y[q x] + q x (x-2 + q) y[x] == 0, y[x]]

Out [1]= {q x}

Note that qHyper returns a list of quotients Qyly rather than solutions y themselves, n

Example 2 Consider the equation Ly = 0 where L = Q2-(l+q)Q+q(l- qx2). As shown
by qHyper,

In[2]:= qHyperCy[q"2 x] - (1 + q) y[q x] +q (1- q x-2) y[x], yM]

Out [2]= -Cl - Sqrt[q] x, 1 + Sqrt[q] x}

this equation has two linearly independeut g-hypergeometric solutions, {^/q'i q}n and
(-^/^; q)n- Here J^" is the splitting field of 1 - qx2. D

5 Some related problems

5. 1 Nonhoinogeneous equations

Consider the problem of finding g-hypergeometric solutions y of the nonhomogeneous equa-
tion Ly = b where b -^ 0. Let Qy = ry where r 6 K(x). Then Ly = fy where
/ = S«p=op« T\. j=o Q r   K(x). This simple fact has two importajit consequences:



1. b =: fy is 9-hypergeometric,

2. y == &// is a ^-rational multiple of b.

Let Qb = sb where 5   Ar (a;) is given. We look for y in the form y = fb where / G ^'(2;) is

an unknown g-rational function. Substituting this into Ly = b gives

Ep. in^5tQY=L
.=0 \j=0

Now g-rational solutions of this equation can be found using the algorithm given in [1].
In particular, this gives an algorithm for the problem of indefinite q-hypergeometric sum-

motion: Given a g-hypergeometric sequence 6n, decide if yn = S7=<^ ̂  ls ?-hypergeometric,
and if so, express it in closed forin. Obviously yn satisfies yn+i 

~ Vn = ^n- Siuce we are

interested in g-hypergeometric solutions, we can rewrite this as Qy-y = b and use the
technique described above.

Example 3 Let yn = Z^^TQ ^" where &n = 9"(9; 9)n- Then y satisfies the equation

Qy-y=b (14)

where s = Qb/b = g(l - qx). The equation for / is

q(l-qx)Qf-f=l,

with unique ^-rational solution / = -l/(qx). Hence t/n = C-{q; q)n/q where (7 is a constant.
Since yo = 0 it follows that C = 1/q and yn = (1 - (g; q)n)/q. D

The same technique for solving nonhomogeneous equations also works when we look for
9-hypergeometric term solutions in M = A'[[a;]].

Example 4 Let

where

Q2y(x) - (1 - qx)Qy(x) + qy{x) = b(x) (15)

6<x)=5(^'
Here b(qx) = (1 - x)b(x\-as can be ezisily veriiied. Thus 5=1-3; and the equation for / is

(1 - qx)(l - x)Q2f - (1 - ^)(1 - x)Qf +qf=l

with g-rational solution / = 1/g. Hence y(a;) = b(x)/q solves (15). D



5. 2 q-hypergeometric series solutions

Assume that y = E^o cijxj and Ly = b where 6 = E^=o /3j:EJ- As in (1)> we obtain

^ ^c;, ;_, a^tJ=A, for/>0.
j=TD. a.x{l-d, Q} «=0

(16)

We separate the cases Q <l < d and I >^ d. In the former case, (16) yields initial conditions

^a^c.,, _^tJ=A, !or0<l<d,
j=0 «=0

(17)

while in the latter, substitutions m=l-d, s=j -m, aad X = qm transform (16) into the

associated q-difference equation

d

E.
s=0

p

E
»=0

^ a^+, ̂  c,,, -,g"X' = /?^+,, for m > 0, (18)

for the unknown sequence (o'm)^'^- ^e use t^e algorithms of Sections 4 and 5. 1 to find all
solutions of (18) which are linear combinations of g-hypergeometric terms, then select the
constants in these combinations so that conditions (17) are satisfied (if possible).

Example 5 Let us find ̂ -hypergeometric series solutions y of

q2x2Q3y + (1 + q)xQ2 y + (1 - 2;)<3y - y = 0.

The associated equation (18) in this case is

{q2X - l)a^+2 + (q2 (q + l)^2 - ^)"m+i + q2X3a^ = 0

and qHyper finds two solutions:

In[3]:= qHyper[(q-2 X - 1) y[q~2 X] + (q"2 (1 + q) X~2 - q X) y[q X] +
q-2 X~3 y[X] == 0, y[X]]

(19)

(20)

q X
Out [3]= {-X, ---}

1 - qX

Thus the general solution of (20) is a^ = Cqm2/(q; q)m + D(-l)mq^ where^C and D are
arbitrary constants. Equations (17) imply that D = 0. Hence y(l) = E^=o <I xm/{q; q)m is
a g-hypergeometric series solution of (19).

Note that running qHyper on equation (19) itself we obtain another solution y^ =
(_l)"/g(?). a



Example 6 The right-hand side of the equation (15) is both a ^-hypergeometric term and
a ^-hypergeometric series. The associated nonhomogeneous equation

{qX2 -X+ l)^+i + Xa^ = -
r̂, <i)m+-i

can be solved as described in Section 5. 1. Here 5 = 1/(1 - q2 X} and the equation for /

l-X+qX\
l-q2X

-Qf+Xf=\

is satisfied by the ̂ -rational function / = 1 - qX. Thus a^ = (1 - qX}/{q{q;q)m+i} =
l/((?(9;9)m), and we find the same solution y(x) = b(x)/q as in Example 4. D

5. 3 Deriving g-hypergeometric identities

Another important application is definite g-hypergeometric summation. The corresponding
algorithm of [7] will produce a ^-difference equation for the sum, but in general it will not
be of minimal order. Thus it can happen that the equation will be of order 2 or more while
the sum can actually be expressed in closed form. In this case one can use our algorithm to
find the ̂ -hypergeometric solutions of the equation, and then test them to see which linear
combination - if any - gives the initial sum.

In analogy with the ordinary hypergeometric case [4], we also expect our algorithm to
play an important role in the factorization algorithm for linear ̂ -difference operators.
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