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Abstract. A time-stamp system allows to maintain in a distributed way a total order
among a set of objects by assigning them some labels or time-stamps. An elementary oper-
ation consists in moving one of these objects from the ith position to the first one by only
modifying its time-stamp. We introduce the notion of interpolation system, which gener-
alizes the previous notion by allowing the objects to move from any position to any other
position. Time-stamp systems and interpolation systems can be described as directed graphs
(whose vertices stand for time-stamps) satisfying some special properties. We study in this
paper different construction mechanisms leading to such systems.

Résumé. Un systéme d’estampillage permet de gérer de fagon distribuée un ordre total sur
des objets en leur attribuant des étiquettes ou estampilles. Une action élémentaire consiste
a faire passer un objet d’une position ¢ quelconque en position 1 en modifiant uniquement
I'estampille de cet objet. Nous introduisons ici la notion de systéme d’interpolation qui
généralise la notion précédente en permettant de faire passer un objet d’une position 1
quelconque en une position j quelconque. Les systémes d’estampillage et d’interpolation
peuvent étre représentés sous forme de graphes orientés (dont les sommets constituent les
estampilles) satisfaisant certaines propriétés. Nous étudions ici différents mécanismes de
construction permettant d’obtenir de tels systémes.

1 Introduction

One of the frequently addressed problems in distributed computing consists in maintaining
some structure on a set of objects (data, events) by means of some additional informa-
tion, called time-stamp, associated with each of these objects. For instance, a distributed
implementation of a single piece of data, or variable, can be achieved as follows : each pro-
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cess holds a multi-reader-single-writer register [6] associated with this variable. If a process
wants to determine the actual contents of the variable, it scans all the registers and, thanks
to the time-stamps, compute the last modified value. In order to modify the contents of
the variable, a process must be able to compute a new time-stamp such that all processes
will consider that time-stamp as the most recent one. The register then writes the new
value of the variable, as well as the computed time-stamp, in its own register. Depending on
whether overlapping actions of processes are allowed or not, one speaks about concurrent or
sequential systems.

We consider in this paper sequential time-stamp systems and generalize them by intro-
ducing the new concept of interpolation system. The general time-stamping problem can be
illustrated as follows :

THE MAILBOX PROBLEM : A set of users share a common mailboz. At any time, the
mailbor may contain at most one message per user : when a user wants to pul a message in
the mailboz he first removes his old own message, if necessary. Every time a message is put
in the mailboz, it is associated with q time-stamp. The aim of this time-stamping mechanism
is the following : by looking at any two time-stamps currently in the mailboz one must be
able to determine the real-time order of their respective deposit dates.

Such a system allows to maintain a total order (here the temporal order) among a set
of objects (the messages). The time-stamps allow to compare, with respect to that order,
any two messages in the mailbox. We are thus able to retrieve the total order among all
the current messages. A system such that the time-stamps simply allow us to retrieve the
last created message is called a weak time-stamp system [2, 11] (such a system gives us
a solution for the distributed implementation of a variable discussed before). In [9], Saks
and Zaharoglou considered a time-stamp system, which could be called global, allowing to
retrieve the total order among the messages by looking at all the time-stamps at the same
time. This system does not allow to compare any given pair of messages.

Israéli et Li [5] have shown that the time-stamping problem can be solved by using a
finite set of time-stamps when the set of users is bounded. They proposed a combinatorial
solution to that problem by means of a directed antisymmetric graph (whose vertices are
the time-stamps) satisfying some specific property.

Another distinction can be made depending on whether we require the time-stamp to
contain the identity of the user or not. In this case, we speak about signed or unsigned
systems. In the signed case, each user has his own set of time-stamps. In the unsigned case,
each time-stamp may be indifferently used by any of the users. The time-stamping problem
in the signed case has been optimally solved by Zielonka [13].

We introduce here the notion of interpolation system, which allows a user to insert his
new message in any position within the set of current messages. The total order among the
messages thus obtained does no longer necessarily reflect the temporal order of their deposit
dates. Such systems may also be described by means of antisymmetric directed graphs. We
are then interested in several construction mechanisms leading to such graphs for both time-
stamp and interpolation systems. We prove that Zielonka’s solution also provides an optimal
solution for interpolation systems in the signed case. For this reason, we will essentially
consider in the following the unsigned case.

This paper is organized as follows : we introduce in section 2 the main definitions and
properties we will use in the sequel. The following sections are devoted to several construction
mechanisms leading to time-stamp and interpolation systems. All complete proofs can be
found in [1].
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2 Definitions and basic properties

A directed graph G is given as a finite set of vertices V(G) and a set of arcs A(G) C
V(G) x V(G). We will only consider loopless and antisymmetric directed graphs (that is
such that (z,y) € A(G) = (y,z) ¢ A(G)), simply called graphs later on. If (z,y) is an
arc, we say that = is a predecessor of y and that y is a successor of z. We denote by I'&(z)
(resp. I'g(z)) the set of successors (resp. predecessors) of a vertex z in G. The subgraph of
G induced by the successors (resp. predecessors) of z is denoted by G¥ (resp. G).

A sequence of vertices (y1,¥2,-..,Yp) is called an ordered sequence if for any ¢, j with
1 <i<j <p,y;is asuccessor of y;. We will say that a vertex z is a successor (resp.
predecessor) of an ordered sequence (y1,Ya2,...,Yp) if for any 2, 1 < i < p, z is a successor
(resp. predecessor) of y;. By convention, we will consider that any vertex is a successor and
a predecessor of the empty sequence.

Definition 2.1 Let k be a strictly positive integer ; a graph G is a time-stamp system of
order k if the following condition holds :

(Ex) any ordered sequence in G having at most £ — 1 elements has a successor.

Such a graph gives a solution to the above-stated mailbox problem (for & users) as follows :
we use the vertices of G as time-stamps and the precedence relation is given by the set of
arcs. When a user wants to put a new message in the mailbox he chooses as time-stamp a
vertex which is a successor of the vertices currently in the mailbox. It is not difficult to check
that by using this algorithm, the set of time-stamps which are currently in the mailbox is
always an ordered sequence in G. Property (E}) ensures that a successor for such a sequence
will always exist.

Definition 2.2 Let k be a strictly positive integer ; a graph G is an interpolation systém of
order k if the following condition holds :

(It) any ordered sequence (31, S2,...,Sp) in G having at most k — 1 elements is such that :

1<j<i= (s, 4:) € A(G)

isisert wevor/ {15520 ENS

We will say that such a sequence can be interpolated in G. The value 7 is the interpolation
position and y; is said to be inserted in position <.

Note that property (I;) generalizes property (Ex). Hence, any interpolation system is also
a time-stamp system of the same order.

Example 2.3 A graph satisfies the property (E;) (resp. (I2)) if all its vertices have a
successor (resp. a successor and a predecessor). The smallest time-stamp system (resp.
interpolation system) of order 2 is thus the directed cycle C3 on three vertices.

The following properties will be useful in the next sections.

Proposition 2.4 [5] A graph G is a time-stamp system of order k if and only if for any
vertez z in V(G) the subgraph G¥ is a time-stamp system of order k — 1.

This property allows us to establish a lower bound on the number of vertices in a time-stamp
system of order k% :

Corollary 2.5 (2, 5] If G is a time-stamp system of order k, then |V(G)| > 2F — 1.
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This lower bound can be reached for k = 2 (the directed cycle C3) and k = 3 (see the graph
QR in section 5). For k = 4, it can be proved that there is no time-stamp system with
15 vertices. The optimal graph in this case has 16 vertices and is due to Tromp [12] (see
section 6).

A similar property can be derived for interpolation systems :

Proposition 2.6 A graph G is an interpolation system of order k if and only if for any
vertez z in V(G) the subgraphs G¥ and G are both interpolation systems of order k — 1.

Proof. Let us first show that if G is an interpolation system of order & then for any z € V(G),
G7 is an interpolation system of order k—1. Let (y1,¥2,-.-,Yp) be an ordered sequence
in G} having at most k — 2 elements ; then (z,¥1,92,. .. ,Yp) is an ordered sequence in G
having at most k — 1 elements which can be interpolated. For any interpolation position ¢,
2 < i < p+ 1, the inserted vertex belongs to G}. Hence, the sequence (y1,Y2,---,Yp) CAD
be interpolated in G}. In a similar way, it can be shown that G, is also an interpolation

system of order k — 1. Conversely, let (z1,Z2,. - .,%,) be any ordered sequence in G having
at most k — 1 elements. Since G} (resp. G7, ) is an interpolation system of order k£ — 1, this
sequence can be interpolated in any position 7,2 <t < g +1 (resp. 1 <7< g). a

Note that for interpolation systems, we do not have up to now a better lower bound than
for time-stamp systems (2 — 1 vertices).

In the following sections we introduce different construction mechanisms for time-stamp
systems and interpolation systems.

3 The lexicographic product

This method is well-known in graph theory and leads to solutions for time-stamp systems.

Definition 3.1 Let G and H be two graphs : the lezicographic product of G and H, denoted
by G ® H, is the graph whose set of vertices is V(G) x V(H) and whose set of arcs is given
by :

(z,9), (= y)) € A(G® H) <> (z,2) € A(G) or (z =2" and (y,y) € A(H)).

Proposition 3.2 [2, 5] If G and H are two time-stamp systems of respective orders k and
? then G ® H is a time-stamp system of order k + £ — 1.

Example 3.3 Figure 1 depicts the graph C3 ® C5. The double-arrows linking two consec-
utives copies of C3 stand for an arc from any vertex of one copy towards any vertex of the
following copy. The graph Cj satisfies the property (E,), the graph C3® C3 thus satisfies the
property (Es3) : one can easily check that every ordered sequence having at most 2 elements
(that is every vertex and every arc) has a successor.

This construction allows us to obtain time-stamp systems of any order : by applying k& —2
times this construction to the graph Cj, we obtain a time-stamp system of order k having
3k-1 vertices. However, this construction cannot be used for interpolation systems as shown
by the following remark.

Remark 3.4 The graph Cj satisfies the property (I2) but the graph C3 ® C3 does not
satisfy the property (I3). One can see for instance that the ordered sequence (0,1) cannot
be interpolated in position 2 : 0 does not have any successor which is a predecessor of 1.
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4 Zielonka’s construction

This construction has been proposed by Zielonka [13] as a generalization of a construction
initially introduced by Lamport [6], and gives an optimal solution for time-stamp systems in
the signed case. We prove that the graphs thus obtained also give solutions for interpolation
systems. Since every interpolation system is a time-stamp system, those solutions are also
optimal in the signed case.

Definition 4.1 Let k be a strictly positive integer : the Zielonka graph of order k, denoted
by Zk, is given by :

() V(Z) = {(e, 21, .-, zx) € {1,2,...,k} x {0,1}/z = 0}

(e < B and z5 = y,)
(”) ((a, Ty, .,.'I?k), (,3,3/1,- s 8 7yk)) € A(Zk) T or
(a > B and z5 # yo)-

Note that the graph Z, has exactly k x 2¥~! vertices.

Proposition 4.2 The graph Z is an interpolation system of order k.

Proof. Note first that there is no arc between any two vertices having the same first compo-
nent. Thus, any ordered sequence S = (s1,S2,...,S,) in Zk is such that the first components
of its vertices are pairwise distinct. If S has at most £ — 1 elements then there exists a
first component, say «, which does not appear in S. In order to interpolate S in position ¢,
1 <i < p+1, it suffices to insert the vertex z = (e, z1,22,...,%k) given by :

(22) if no element in S has B as first component then z5 = 0,

(Z“’) if 84 = (ﬂ:ylvy%-'-’yk) € S then :
—if j<i,z5 =ys if B <, z5=1—y, otherwise,
—ifj>i,z5=1—y,if B < a, g = y, otherwise. a

5 Rotational tournaments

The notion of time-stamp system is related to a property of tournaments, stronger than
(Ey), initially considered by Schiitte and Erdés (3, 8] : a tournament T satisfies the property
(Si) is every set having at most k — 1 vertices in T has a successor (in case of time-stamp
systems, only ordered sequences are considered). Szekeres and Szekeres [10] have proved that
such a tournament must have at least 2*=2(k + 1) — 1 vertices ; they also gave in their paper
two sample tournaments having 7 and 19 vertices which respectively satisfy the properties
(Ss) and (S4). By using some results from group theory, Graham et Spencer [4] gave a
construction which, for any value of k, leads to a tournament satisfying the property (Sk)-

Every tournament satisfying the property (Si) is obviously a time-stamp system of order k.
However, the converse is not necessarily true : the graph C3® C3® C3 is a tournament which
does not satisfy the property (S4) although it satisfies the property (£4) by construction.

We show in this section that the tournaments introduced by Graham and Spencer are also
interpolation systems.
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Figure 2: The tournament obtained from the
Figure 1: The graph C5® Cs quadratic residues of 7

Definition 5.1 Let p be a prime, congruent to 3 modulo 4. The rotational tournament
QR,, obtained from the quadratic residues of p [7] is defined by :

(Z) V(QRP) = {0’ L...,p— 1};
(i) A(QRp) = {(3,7) / 7 — 1 is a non-zero quadratic residue of p}.

One can check that this construction leads to an antisymmetric directed graph : since p is
congruent to 3 modulo 4, if j — ¢ is a non-zero quadratic residue of p then i — j is not [7].

Example 5.2 The tournament depicted in Figure 2 is QR7. The non-zero quadratic residues
of 7 are 1,2,4. These are the successors of 0. The successors of any vertex are deduced from
the successors of 0 by applying a rotation. It is not difficult to check that the graph QR~
satisfies the property (S3) (and thus (E3)) as well as the property (I3).

In [4] Graham and Spencer proved that for any k, there exists an integer Vi such that
every tournament of QR, type, with p > Ny, satisfies the property (Sk). The proof of this
result can be extended to interpolation systems [1] :

Theorem 5.3 If p is a prime congruent to 3 modulo 4, p > (k — 1)222%=*, then the tourna-
ment QR, is an interpolation system of order k.

Smaller values of p may lead to tournaments which are also interpolation systems : we
have seen that Q Rz = Cj satisfies the property (I3) and that Q Ry satisfies the property (/3).
One can also check for instance that Q Ry¢ satisfies the property (I4), that @Q R47 satisfies the
property (Is) and that @Rz satisfies the property (s).

6 Tromp’s construction

This method was initially proposed by Tromp [12] for building a time-stamp system of order
4. This construction is based on the graph QR7 and leads to a solution with 16 vertices.
This construction can in fact be applied to any graph. We show in this section that this
construction can be used to obtain time-stamp systems and interpolation systems of any
order.

Definition 6.1 Let G be a graph, and G an isomorphic copy of G. The “Tromp’s construc-
tion” applied to G, denoted by Tr(G), is the graph obtained as follows :

() V(Tr(@)) = V(G)UV(G)U {w,w}
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Figure 3: Tromp’s construction

() YV z € V(G), (z,0),(®,2),(w,T), (T, @) € A(Tr(G)),
(i) YV z,y € V(G), (z,9) € A(G) = (2,9),(Z,7),(y,%), (¥, z) € A(Tr(G)).

By construction, the graph T'r(G) satisfies in particular the following property :

Ve V(@) U{w}, Tr(&)f=Tr(G)7 and Tr(G); =Tr(G)f.

If the starting graph G is an interpolation system of order k and if for every vertex z in
Tr(G) the subgraph Tr(G)} is isomorphic to G itself, denoted by Tr(G)f ~ G, then the
graph Tr(G) thus obtained is an interpolation system of order k + 1 (proposition 2.6). It is
then interesting to characterize those graphs G which satisfy such a property. This is namely

the case for the rotational tournaments introduced in the previous section :

Proposition 6.2 Let p be a prime congruent to 3 modulo 4. The graph Tr(QR,) is such
that :
Vo € V(TrQR,)), Tr(@Ry): ~ QR,.

Proof. (sketch of) We first prove that the graph Tr(QR,) is vertex-transitive, that is for
any vertices z and y there exists an automorphism of Tr(QR,) which maps z onto y. It is
then sufficient to prove the desired result for one vertex in Tr(QR,), which is immediate for
the vertex w. O

We then obtain :

Corollary 6.3 Let p be a prime congruent to 3 modulo 4. If QR, is an interpolation system
of order k — 1, then Tr(QR,) is an interpolation system of order k.

This result gives in particular time-stamp systems (and interpolation systems) of orders 5
and 6 which improve the previously known constructions. By using the lexicographic product
this also improves the time-stamp systems upper bounds for the orders from 8 to 11.

7 Concluding remarks

The table in Figure 4 gives the best known results for time-stamp systems and interpolation
systems (in the unsigned case). A minus sign in a given entry indicates that we do not know
in this case any construction achieving a better bound than Zielonka’s one. In particular,
note that for k¥ > 12 we do not know any (unsigned) time-stamp system having less vertices
than the corresponding Zielonka’s graph. For interpolation systems this is true as soon as
k > 6 (the lexicographic product is not a valid construction for interpolation systems) : if
we apply Tromp’s construction to the graph QR7; (which satisfies the property (fs)), we
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Order Time-stamp systems Interpolation systems Zy
k #vertices Graph #vertices | Graph
2 3 C3 3 C3 4
3 7| QRy 7| QR; 12
4 16 | Tr(QR7) 16 | Tr(QR7) 32
5 40 TT(Qng) 40 | Tr(QRy9) 80
6 96 | Tr(QRaz) 96 | Tr(QR47) || 192
7 256 T’I‘(QR7) ® T’I‘(QR'{) & 448
8 640 | Tr(QR19) ® Tr(QR7) - 1024
9 1536 | Tr(QR47) @ Tr(QR7) - 2304
10 3840 | Tr(QR47) ® Tr(QR19) - 5120
11 9216 | Tr(QR47) ® Tr(QR47) - 11264
12 24576 T?‘(QR47) ® TT(QR7) ® TT(QR7) £ 24576
13 - - 53248

Figure 4: Table of best known solutions

obtain a graph having 544 vertices.
Note that up to k& = 6, the best known solutions for time-stamp systems are also solutions

for interpolation systems, although property (I;) is stronger than property (Ex).
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