Incidence Matrices, Combinatorial Bases and Matroids

T.V. Alekseyevskaya and I.M. Gelfand Rutgers University

USA

April 5, 1995

Abstract

Let C and D be two finite sets. Consider a relation (A; C, D), where $A \subset C \times D$. With a relation (A; C, D) and an ordering \overline{C} of Cwe associate a matroid $M(\overline{C})$ on the set D. A relation is called regular if there exists an ordering \overline{C} of C such that for any ordering $\overline{C} \neq \overline{C}$ we have $S(\overline{C}) \leq S(\overline{C})$, where $S(\overline{C})$ is the collection of dependent sets of the matroid $M(\overline{C})$. We consider examples of relations that appear from the point configuration in the affine space and relations constructed for a given matroid. From a given relation we construct new relations. There is a nontrivial example of a regular relation. This work is connected with the papers [AGZ] and [A].

Résumé

Soient C et D deux ensembles finis. Considérons une relation (A; C, D), où $A \subset C \times D$. A une telle relation et à un ordre \overline{C} sur C on associe un matroïde $M(\overline{C})$ sur l'ensemble D. Une relation est dite regulière si il existe un ordre \overline{C} sur C tel que pour tout ordre $\overline{C} \neq \widetilde{C}$ on ait $S(\overline{C}) \leq S(\widetilde{C})$, où $S(\overline{C})$ est la collection des ensembles dependents du matroïde $M(\overline{C})$. On considère des exemples de relations qui proviennent de configurations de points dans un espace affine, et des relations construites à partir d'un matroïde donné. A partir d'une relation donnée nous en construisons de nouvelles. On présente un exemple non trivial de relation regulière. Ce travail est relié aux articles [AGZ] et [A].

1 Construction of a matroid for a relation (A; C, D) and an ordering of C.

1. Let C and D be two finite sets. A relation is a subset A of pairs $(c, d) \in (C \times D)$. We will denote a relation as (A; C, D).

A relation (A; C, D) can be represented by its incidence matrix $\tilde{A} = \parallel a_{c,d} \parallel$, $c \in C$, $d \in D$, where

$$a_{c,d} = 1, \quad if \quad (c,d) \in A, \quad a_{c,d} = 0, \quad if \quad (c,d) \notin A.$$
 (1)

Let (A; C, D) be a relation and \overline{C} be some fixed ordering of C. The ordering \overline{C} corresponds to some ordering of rows of the matrix \widetilde{A} .

Denote by D_k the set of columns of \hat{A} that have "0" in the first k-1 rows and "1" in the k-th row. We have obtained a partition $D = D_1 \cup D_2 \cup \ldots \cup D_p$, where $D_i \cap D_j = \emptyset$, $i \neq j$. Of course, the partition (D_1, D_2, \ldots, D_p) depends on the ordering \bar{C} . Note, that some of the sets D_i can be empty sets.

Consider a subset $B \subset D$ such that for every k the set B contains all elements from D_k except one, i.e.

$$B = \{ (D_1 \setminus d_1) \cup \ldots \cup (D_p \setminus d_p) \}, \text{ where } d_1 \in D_1, \ldots, d_n \in D_n$$
(2)

For any choice of (d_1, \ldots, d_p) , $d_i \in D_i$ we obtain a set B. Let us denote by $\mathcal{B}(\bar{C})$ the set of all these sets B, i.e. $\mathcal{B}(\bar{C}) = \{B\}$.

Theorem 1.1 Let (A; C, D) be a relation with some ordering \overline{C} of C. Then the pair $(D, \mathcal{B}(\overline{C}))$ is a matroid on the set D with the set of bases $\mathcal{B}(\overline{C}) = \{B\}$.

The rank r of this matroid M is equal to

$$r = \sum_{D_i \neq \emptyset} (|D_i| - 1)$$

where $|D_i|$ is the cardinality of D_i .

We see that if all the sets $D_i \neq \emptyset$ then r = |D| - p, where p is the number of subsets D_i in the partition.

Definition 1.2 Let (A; C, D) be a relation. An ordering \overline{C} of the set C is called correct ordering if in the corresponding partition $D = D_1 \cup \ldots \cup D_p$ we have $D_i \neq \emptyset$ for any $i = 1, \ldots, p$.

Definition 1.3 Let \overline{C} be a correct ordering of C and $M(\overline{C})$ be the matroid from Theorem 1.1. The subsets $B \in \mathcal{B}(\overline{C})$ will be called combinatorial bases of a relation (A; C, D) with the ordering \overline{C} .

In general, matroids constructed for different orderings of C can be different matroids. Matroids corresponding to the correct orderings of C have the same rank but can be nevertheless different matroids. Therefore, we have to take into account that combinatorial bases are constructed for a relation with a given ordering of C.

Definition 1.4 A relation (A; C, D) is called regular if there exists an ordering \tilde{C} of C such that for any ordering $\bar{C} \neq \tilde{C}$ we have $S(\bar{C}) \leq S(\tilde{C})$, where $S(\bar{C})$ is the collection of dependent sets of the matroid $M(\bar{C})$.

In section 2 we will consider an example of a regular relation.

Let $B \in \mathcal{B}(\bar{C})$ be a combinatorial basis of a relation (A; C, D) with the ordering \bar{C} of C. Consider the set $R = D \setminus B$. From formula (2) we have $R = (d_1, d_2, \ldots, d_p)$. Denote by $\mathcal{R}(\bar{C})$ the set of all the sets R corresponding to $B \in \mathcal{B}(\bar{C})$.

It is easy to see that the following theorem holds.

Theorem 1.5 The pair $(D, \mathcal{R}(C))$ is a matroid on D with the set of bases $\mathcal{R}(\bar{C})$. This matroid M^* is dual to the matroid $M = (D, \mathcal{B}(\bar{C}))$ and has the rank $r(M^*) = p$, where p is the number of nonempty sets D_i in the partition corresponding to the ordering \bar{C} .

2. A useful technique in the study of matroids $M(\bar{C})$ constructed for a relation (A; C, D) is the notion of a nill-matrix. The connection between the construction of matroids $M(\bar{C})$ and nill-matrices is established in Propositions 1.7 and 1.8.

Definition 1.6 A rectangular $m \times l$, $m \ge l$ incidence matrix $||a_{i,k}||$ is called a nill-matrix if by permutations of its rows and columns it can be transformed to a matrix such that $a_{i,i} = 1$ and $a_{i,k} = 0$ for i < k, i = 1, ..., m. Let (A; C, D) be a relation with some ordering \overline{C} of C and $R \in \mathcal{R}(\overline{C})$ be a set defined in 1. We have $R = (d_1, d_2, \ldots, d_p), d_i \in D$. To each d_i there corresponds a column of the matrix \hat{A} defined by the formula (1). Let us denote by \hat{R} the submatrix of the matrix \hat{A} which consists of the columns enumerated by (d_1, d_2, \ldots, d_p) .

It is easy to see that if \overline{C} is a correct ordering then the matrix \hat{R} has the following property:

 $a_{c_k,d_k} = 1, \ a_{c_i,d_k} = 0, \ for \ i < k.$

This implies the following proposition.

Proposition 1.7 Let (A; C, D) be a relation with a correct ordering \overline{C} of C and let $R \in \mathcal{R}(\overline{C})$. Then the matrix \hat{R} is a nill-matrix.

Let \hat{A} be an incidence matrix of order $m \times n$. Let us introduce some notations:

C is the set of all rows of \hat{A} ;

 \hat{N} is a submatrix of \hat{A} of order $m \times l$, $1 \leq l \leq n$ such that \hat{N} is a nill-matrix;

 $\mathcal{N}(A) = \{\hat{N}\}$ is the set of all nill-matrices of the matrix \hat{A} ;

N is the set of columns of the matrix \hat{N} ;

 $p = max \mid N \mid$, where $\hat{N} \in \mathcal{N}(A)$.

Proposition 1.8 Let $\hat{N} \in \mathcal{N}(A)$ be a nill-matrix of order $m \times p$ (where p is defined above). Then there exists some ordering \bar{C} of the rows of \hat{A} such that there exists $R \in \mathcal{R}(\bar{C})$ for which N = R. This ordering \bar{C} is correct.

The following Propositions 1.9 and 1.10 describe some useful properties of nill-matrices.

Proposition 1.9 Let \hat{N} be a nill-matrix and N be its set of columns. Consider $N' \subset N$. Then the matrix \hat{N}' consisting of the columns N' is a nill-matrix.

Proposition 1.10 Let \hat{N} be a nill-matrix of order $m \times l$ and d be an arbitrary vector-column of length m consisting of "0" and "1". Then there exists a column $d' \in N$ such that the matrix consisting of the columns $(N \setminus d') \cup d$ is a nill-matrix.

Warning: Proposition 1.10 gives an illusion that if \hat{A} is an incidence matrix and $\mathcal{N}_p(A) \subset \mathcal{N}(A)$ is the set of all its nill-matrices of order $m \times p$, (where $p = max \mid N \mid$, $\hat{N} \in \mathcal{N}(A)$) then $\mathcal{N}_p(A)$ satisfies the exchange axiom for bases of a matroid. However, Proposition 1.10 differs from the exchange axiom for bases of a matroid in the following way. Indeed, let $\hat{N}, \hat{N}' \in \mathcal{N}(A)$ and $d \in N' \setminus N$. Then by Proposition 1.10 there exists a column $d' \in N$ such that the matrix consisting of the columns $(N \setminus d') \cup d$ is a nill-matrix. We have not required that $d' \in N \setminus N'$.

2 Incidence matrices for a point configuration

Let $E = (e_1, e_2, \ldots, e_N)$, N > n be a finite set of points in the *n*-dimensional affine space. Let P = conv(E) be the convex hull of E. Let us denote by σ an *n*-dimensional simplex spanned by some n + 1 points from E that are in general position. Denote by $\Sigma = \{\sigma\}$ the set of all such simplices. All simplices σ (as a rule overlapping) cover the polytope P. Simplices σ divide the polytope P into a finite number of chambers γ . Denote by Γ the set of all chambers in P.

One can naturally associate with the obtained two sets (the set Σ of simplices and the set Γ of chambers) the following incidence matrix $A = \| a_{\sigma,\gamma} \|$, $\sigma \in \Sigma$, $\gamma \in \Gamma$, where

$$a_{\sigma,\gamma} = 1, \quad if \quad \gamma \subset \sigma, \quad a_{\sigma,\gamma} = 0, \quad if \quad \gamma \not \subset \sigma$$
(3)

We can now define two linear spaces : the linear space generated by the rows of A ("the linear space of simplices") and the linear space generated by the columns of A ("the linear space of chambers"). The study of bases in these linear spaces see in [AGZ], [A], and [B]. However, such bases are not quite combinatorial objects by the two following reasons: 1) in general case such a basis, for example, a basis in V_{Σ} , consists not only of objects (i.e. simplices) but of their linear combinations. The notion of a linear combination is not quite combinatorial; 2) in order to construct such a basis one has to use linear independency of objects which is again not quite a combinatorial notion. **Remark.** We want to mention that in [A] some class of bases of chambers (i.e. class of bases in V_{Γ}) is introduced; these bases are called there "combinatorial bases of chambers". In order not to make confusion with our definition we will refer to these bases from [A] as to "geometrical bases". Thus, a geometrical basis (of chambers) is a basis in V_{Γ} that has some additional property (see [A] for details).

In section 1 we have defined combinatorial bases for a relation (A; C, D)and some ordering of C. However, combinatorial bases constructed for the incidence matrix \hat{A} defined by the formula (3) do not give us bases in V_{Σ} or in V_{Γ} , (i.e. bases of chambers or bases of simplices).

We will associate with a point configuration other incidence matrices, see formulae (4) and (5). Connections between the combinatorial bases constructed for these incidence matrices and bases in V_{Γ} and in V_{Σ} are established in Theorem 2.1 and Theorem 2.3.

Combinatorial bases of chambers. Consider again a finite set of points $E = (e_1, \ldots, e_N)$ in the *n*-dimensional affine space. Some of the vertices of chambers $\gamma \in \Gamma$ are points from E and some are not. A vertex w of a chamber is called a *new point* if $w \notin E$. Let $W = \{w\}$ be a set of all new points that appear in the point configuration.

Consider the following incidence matrix $\hat{A} = || a_{w,\gamma} ||, w \in W, \gamma \in \Gamma$, where

$$a_{w,\gamma} = 1, \quad if \quad w \in \gamma, \quad a_{w,\gamma} = 0, \quad if \quad w \notin \gamma$$

$$\tag{4}$$

Let B be a geometrical basis of chambers defined in [A] (see Remark above). The existence of geometrical bases of chambers is established in [A] for n = 2 by an explicit construction of such bases.

Theorem 2.1 1. Let B be a geometrical basis of chambers. There exists a correct ordering \overline{W} of W such that B is a combinatorial basis for this ordering, i.e. $B \in \mathcal{B}(\overline{W})$, where $\mathcal{B}(\overline{W})$ is the set of bases of the matroid $M(\overline{W})$ constructed for the matrix \hat{A} and the ordering \overline{W} . (see Theorem 1.1.)

2. For this ordering \overline{W} any $B \in \mathcal{B}(\overline{W})$ defines a geometrical basis of chambers.

It seems that from this theorem it is possible to obtain that the relation defined by formula (4) is regular.

Combinatorial bases of simplices. Let E be a finite set of points in the *n*-dimensional affine space and let $\Sigma = \{\sigma\}$ be the set of all *n*-dimensional simplices with the vertices in E.

Definition 2.2 An extended circuit s is a subset of n+2 points from E such that at least n+1 points from s are in general position.

Let us denote by S the set of all extended circuits in the considered point configuration, i.e. $S = \{s\}$.

We use the terminology of "an extended circuit" for a point configuration since in the next section we will define similarly an extended circuit of a matroid.

Consider a simplex $\sigma \in \Sigma$. Denote by $\bar{\sigma}$ the set of its vertices. Let us define the incidence matrix $\hat{A} = ||a_{s,\bar{\sigma}}||, s \in S, \sigma \in \Sigma$ as follows

$$a_{s,\bar{\sigma}} = 1, \ if \ \bar{\sigma} \subset s, \ a_{s,\bar{\sigma}} = 0, \ if \ \bar{\sigma} \not\subset s$$

$$(5)$$

Remark. Instead of the incidence between s and $\bar{\sigma}$ one can also consider the incidence between conv(s) and σ . It is easy to see that even for the same point configuration the incidence matrices that will arise in each case might be different.

Similarly to the definition of a geometrical basis of chambers (given in [A]) we can define a geometrical basis of simplices, i.e. some basis in V_{Σ} . We will not give this definition here since it will require some additional explanations. However, we will formulate the theorem.

Let \hat{A} be the matrix defined by the formula (5).

Theorem 2.3 1. Let B' be a geometrical basis of simplices. Then there exists an ordering \overline{S} of S such that B' is a combinatorial basis constructed for the matrix \widehat{A} with this ordering, i.e. $B \in \mathcal{B}(\overline{S})$, where $\mathcal{B}(\overline{S})$ is the set of bases of the matroid $M(\overline{S})$ constructed for the matrix \widehat{A} with the ordering \overline{S} .

2. For the ordering \overline{S} any basis $B \in \mathcal{B}(\overline{S})$ is a geometrical basis of simplices.

3 Incidence matrix of a matroid

For a matroid M one can consider different incidence matrices, for example, we can consider the incidence between the elements of M and circuits of M, the incidence between the elements of M and the bases of M, etc.

We will define some other incidence matrix.

Let M = (E, B) be a matroid on the set E, where B is the set of its bases $\{b\}$. Denote by $C = \{c\}$ the set of all circuits of M.

Definition 3.1 A subset $x \subset E$ is an extended circuit of a matroid M if there exists a circuit $c \in C$ such that $x \supseteq c$ and for any $e \in c$, $(x \setminus e) \in B$.

Denote by X the set of all extended circuits of a matroid M, i.e. $X = \{x\}$. It is clear that $X \supseteq C$ and that for any $x \in X$ we have |x| = r + 1, where r is the rank of the matroid M.

Let us define the incidence matrix $\hat{A} = \|a_{x,b}\|$, where $x \in X$ and $b \in B$ as follows

$$a_{x,b} = 1$$
, if $b \subset x$, and $a_{x,b} = 0$, if $b \not\subset x$ (6)

Conjecture: the relation (A; X, B) is regular.

Some properties of the incidence matrix $\hat{A} = ||a_{x,b}||$.

Definition 3.2 We will say that an incidence matrix $\hat{A} = ||a_{i,k}||$ has T-property if it does not have a second order minor consisting only of "1".

Proposition 3.3 Let M be a matroid on E with the set B of bases and let X be the set of all extended circuits of M. Let $\hat{A} = ||a_{x,b}||, x \in X, b \in B$ be the incidence matrix for the matroid M (i.e. defined by the formula (6)).

- 1. The matrix \hat{A} has T-property.
- 2. $\sum_{b} a_{x,b} > 0$, for any $x \in X$
- 3. $\sum_{x} a_{x,b} > 1$, for any $b \in B$.

We will also consider a related geometrical notion to the notion of a T-matrix that will be called a T-graph.

Definition 3.4 Let $V = \{v\}$ be a finite set (a set of vertices) and $\mathcal{F} = \{F\}$ be a set of subsets $F \subset V$. A pair (V, \mathcal{F}) is called a T-graph if the following conditions are satisfied:

1) $| F \cap F' | \leq 1$ for any $F, F' \in \mathcal{F}$ (T-property) 2) $\bigcup_{F \in \mathcal{F}} F = V$ 3) | F | > 1.

The notion of a T-graph generalizes the notion of a graph. Indeed, if |F|=2 for any $F \in \mathcal{F}$, then (V, \mathcal{F}) is a graph.

References.

[AGZ]. T.Alekseyevskaya, I.Gelfand, A.Zelevinsky, Dokladi Academii Nauk SSSR, 1987, vol. 297, 6, 1289–1293.

[A]. T.Alekseyevskaya, DIMACS Technical Report 94-13, 1994, 1-32.

[B]. A.Björner, Algebra universalis, 1982, vol.14, 1, 107–128.