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Abstract

Let C and 25 be two finite sets. Consider a relation (A; C, D),
where ACCxD. With a relation (A; C, D) and an ordering C of C
we associate a matroid Af(C) on the set D. A relation is called regular
if there exists an ordering C oi C such that for any ordering C ^ C
we have <?(C) < <S(C), where S(C) is the coUection of dependent
sets of the matroid M((7). We consider examples of relations that
appear from the point configuration in the affiae space and relations
constructed for a given matroid. From a given relation we construct
new relations. There is a nontrivial example of a regidar relation. This
work is connected with the papers [AGZ] and [A].

Resuine

Soient C et D deux ensembles finls. Considerons une relation

(A; C, 25), ou A C C'x£>. A une telle relation et a un ordre C sur
C on associe un matroi'de M(C') sur 1'ensemble D. Une relation est
dite regnliere si U existe un ordre C sur C tel que pour tout ordre
C ^ C 0-o. w^ S(C) <, <?( '), ou S{C) est la collection des ensem-
bles dependents du matroi'de Af(C'). On considere des exemples de
relations qui proviennent de configTiiations de points dans un espace
affine, et des relations constrmtes a partir d'un matroi'de donne. A
partir d'une relation donnee nous en construisons de nouvelles. On
presente un exemple non trivial de relation reguliere. Ce travail est
relie aux articles [AGZ] et [A].
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1 Construction of a matroid for a relation

(A; Cf, D) and an ordering of C.

1. Let C and D be two finite sets. A relation is a subset A of pairs (c, c?) 6
(C x D). We will denote a relation as (A; C, D).

A relation (A; (7, £)) can be represented by its incidence matrix A =|| a^d ||
, c . C , d G. D, where

a^=l, if (c, d)eA, ac,d=0, if {c, d) ̂  A. (1)

Let (A; Cr, D) be a relation and C be some fixed ordering of C. The
ordering C corre'sponds to some ordering of rows of the matrix A.

Denote by Dk the set of columns of A that have "0" in the first k-\ rows
and "1" in the k-th row. We have obtained a partition D = D^UD-iU.. . U-Dp,
where D{ n Dj =0, i ^- j. Of course, the partition {D^, Di,..., Z5p) depends
on the ordering C. Note, that some of the sets D, can be empty sets.

Consider a subset B C D such that for every k the set B contains all
elements from Dk except one, i.e.

B = {(£>i \rfi) U... U (£>p \ rfp)}, where d^ ^ D^,. .., dp ̂  Dp (2)

For any choice of (c?i,..., <fp), d,   £). we obtain a set B. Let us denote
by B(C) the set of all these sets B, i. e. B{C) = {B}.

Theorem 1. 1 Let (A; C', -0) be a relation with some ordering C of C. Then
the pair (D, B(C)) is a matroid on the set D with the set of bases B(C} =
{B}.
The rank r of this matroid M is equal to

r= EdA-j-1)
D^

where \ jD. | is the cardinality of Di.

We see that if all the sets D, 7^ 0 then r =\ D \ -p, where p is the number
of subsets Di in the partition.
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Definition 1. 2 Let (A; C, D) be a relation. An ordering C of the set C is
called correct ordering if in the corresponding partition D = DiU.. . UDp
have Di ̂  0 for any i = 1,... , p.

we

Definition 1.3 Let C be a correct ordering of C and M((7) be the matroid
from Theorem 1. 1. The subsets B   B{C} will be called combinatorial bases
of a relation (A; C7, D) with the ordering C.

In general, matroids constructed for different orderings of C can be dif-
ferent matroids. Matroids corresponding to the correct orderings of C have
the same rank but can be nevertheless different matroids. Therefore, we have
to take into account that combinatorial bases are constructed for a relation

vith a given ordering of C.

Definition 1. 4 A relation (A;C, D) is called regular if there exists an or-
dering C of C such that for any ordering C ^ C we have S{C) < S{C),
where S{C) is the collection of dependent sets of the matroid M. [C).

In section 2 we will consider an example of a regular relation.

Let B   B{C) be a combinatorial basis of a relation (A; C, D) with the
ordering C oi C . Consider the set R = D\B. From formula (2) we have
R = (dz, c?2, . .., dp). Denote by 'R.(C) the set of all the sets R corresponding
to B   B(C).

It is easy to see that the following theorem holds.

Theorem 1. 5 The pair (D, 7i(C)) is a matroid on D with the set of bases
'R. (C}. This matroid M* is dual to the matroid M = (D, B{C)) and has the
rank r(M*) = p, where p is the number of nonempty sets D, in the partition
corresponding to the ordering C.

2. A useful technique in the study of matroids M(C) constructed for a
relation (A; C', -D) is the notion of a nill-matrix. The connection between the
construction of matroids M{C} and nill-matrices is established in Proposi-
tions 1. 7 and 1. 8.

Definition 1. 6 A rectangularm xl, m>^l incidence matrix \\a, i, k\\ is called
a nill-matrix if by permutations of its rows and columns it can be transformed
to a matrix such that a,-,, = 1 and a,, k = 0 for t'< &, i = l,..., m.
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Let (A; C, £>) be a relation with some ordering C of C and R C Ti{C) be
a set defined in 1. We have A = (c?i, d2,..., Jp), d, e D. To each d, there

corresponds a column of the matrix A defined by the formula (1). Let us
denote by R the submatrix of the matrix A which consists of the columns
enumerated by {di, d'2,... , dp).

It is easy to see that if Cr is a correct ordering then the matrix R has the
following property:

GC^A = 1, ac,, dfc = 0, for i < k.

This implies the following proposition.

Proposition 1. 7 Let (A; C', P) 6e a relation with *a correct ordering C of C
and let R   7?. ((7). Then the matrix R is a nill-matrix.

Let A be an incidence matrix of order m x n. Let us introduce some

uotations:

C is the set of all rows of A;
TV is a submatrix of A of order mx/, 1 < I <^n such that TV is a

nill-matrix;
A^(A) = {TV} is the set of all nill-matrices of the matrix A;
N is the set of columns of the matrix N;
p = max \ N \, where N   A/"(A).

Proposition 1. 8 Let N   ^(A) be a nill-matrix of order m x p (where p
is defined above). Then there exists some ordering C of the rows of A such
that there exists R   'T^(C') for which N = R. This ordering C is correct.

The following Propositions 1.9 and 1. 10 describe some useful properties
of nill-matrices.

Proposition 1.9 Let N be a nill-matrix and N be its set of columns. Con-
sider N C N. Then the matrix N' consisting of the columns N is a nill-
matrix.

Proposition 1. 10 Let N be a nill-matrix of order mx I and d be an arbitrary
vector-column of length m consisting of "0" and "I". Then there exists a
column d' Q. N such that the matrix consisting of the columns {N \df)U d is
a nill-matrix.
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Warning: Proposition 1. 10 gives an illusion that if A is an incidence
matrix and A/p(A) C A^(A) is the set of all its nill-matrices of order mxp ,
( where p = max \N \, N e A^(A)) then A^p(A) satisfies the exchange axiom
for bases of a matroid. However, Proposition 1. 10 differs from the exchange
axiom for bases of a matroid in the following way. Indeed, let N, N'   -V(A)
and d  N'\N. Then by Proposition 1. 10 there exists a columu <f/   N such
that the matrix consisting of the columns (N \d')U d is a, nill-matrix. We
have not required that d'   N\N'.

2 Incidence matrices for a point confiigura-
tion

Let E = (ei, 62,..., e^v), A/- > nbe a finite set of points in the n-dimensioaal
affine space. Let P = conv(E) be the convex hull of E. Let us denote by
<7 an n-dimensional simplex spanned by some n + 1 points from E that are
in general position. Denote by E = {cr} the set of all such simplices. All
simplices o- (as a rule overlapping) cover the polytope P. Simplices a divide
the polytope P into a finite number of chambers 7. Denote by F the set of
all chajnbers in P.

One can naturally associate with the obtained two sets ( the set S of sim-
plices and the set T of chambers ) the following incidence matrix A =|[ a^
, o-   S, 7   F , where

. 0-,'r

a. <7,-)r = 1, if 7 C <7, a^ =0, z/ 7 ^ <7 (3)
We can now define two linear spaces : the linear space generated by the

rows of A ( "the linear space of simplices") and the linear space generated
by the columns of A ( "the linear space of chambers"). The study of bases
in these linear spaces see in [AGZ], [A], and [B]. However, such bases are
not quite combinatorial objects by the two following reasons: 1) in general
case such a basis, for example, a basis in Vs, consists not only of objects
(i.e. simplices) but of their linear combinations. The notion of a linear
combination is not quite combinatorial; 2) in order to construct such a basis
one has to use linear independency of objects which is again not quite a
combinatorictl uotion.
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Remark. We want to mention that in [A] some class of bases of cham-
bers (i. e. class of bases in FT ) is introduced; these bases are called there
'combinatorial bases of chambers". In order not to make confusion with our
definition we will refer to these bases from [A] as to "geometrical bases".
Thus, a geometrical basis (of chambers) is a basis in Vp that has some addi-
tional property (see [A] for details).

In section 1 we have defined combinatorial bases for a relation (A; (7, D)
and some ordering of C. However, combinatorial bases constructed for the
incidence matrix A defined by the formula (3) do uot give us bases in V^ or
in Vr, ( i.e. bases of chambers or bases of simplices).

We will associate with a point configuration other incidence matrices,
see, formulae (4) and (5). Connections between the coriibinatorial bases con-
structed for these incidence matrices and bases in Vp and in V-s are established
in Theorem 2. 1 and Theorem 2. 3.

Combinatorial bases of chambers. Consider again a finite set of
points E = (ei,..., e^r) in the n-dimensional affine space. Some of the ver-
tices of chambers 7   F are points from E and some are not. A vertex w of
a chamber is called a new point liw ̂  E. Let W = {w} be a set of all new
points that appear in the point configuration.

Consider the following incidence matrix A =
where

>tu,-y w ew, 7 e r

aw,^ = 1, if w   7, a-w,-i =0, z/ w ^ 7 (4)
Let B be a geometrical basis of chambers defined in [A] (see Remark

above). The existence of geometrical bases of chambers is established in [A]
for n = 2 by an explicit construction of such bases.

Theorem 2. 1 1. Let B be a geometrical basis of chambers. There exists
a correct ordering W of W such that B is a combinatorial basis for this
ordering, i. e. B   B{W}, where B(W) is the set of bases of the matroid
M(W) constructed for the matrix A and the ordering W. (see Theorem 1. 1.)

2. For this ordering W any B G. B{W) defines a geometrical basis of
chambers.

It seems that from this theorem it is possible to obtain that the relation
defined by formula (4) is regular.
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Combinatorial^bases of simplices. Let E be a. finite set of points in
the n-dimensional affine space and let S == {<r} be the set of all n-dimensionai
simplices with the vertices in E.

Definition 2. 2 An extended circuit s is a subset of n+2 points from E such
that at least n+1 points from s are in general position.

Let us denote by S the set of all extended circuits in the considered point
configuration, i. e. S = {s}.

We use the terminology of "an extended circuit" for a point configuration
since in the next section we will define similarly an extended circuit of a
matroid. - »

Consider a simplex (T £ E. Denote by a the set of its vertices. Let us
define the incidence matrix A = ||a,, ?||, 3   5', <7   S as follows

a,, ? = 1, z/ o- C 5, a,, ^ =0, if a </:s ~ (5)
Remark. Instead of the incidence between s and a one can also consider

the incidence between conv(s) and a. It is easy to see that even for the same
Point configuration the incidence matrices that will arise in each case might
be different.

Similarly to the definition of a geometrical basis of chambers (given in
[A]) we cau defiue a geometrical basis of simplices, i.e. some basis in V^.
We will not give this definition here since it will require some additional
explanations. However, we will formulate the theorem.

Let A be the matrix defined by the formula (5).

Theorem 2. 3 1. Let B' be a geometrical basis of simplices. Then there
exists an ordering S of S such that B' is a combinatorial basis constructed
for the matrix A with this ordering, i. e. B   B{S), where B(S) is the set of
bases of the matroid M(S) constructed for the matrix A with the ordering S.

2. For the ordering S any basis B 6 B{S} is a geometrical basis of
simplices.
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3 Incidence matrix of a matroid

For a matroid M one can consider different incidence matrices, for example,
we can consider the incidence between the elements of M. and circuits of M,
the incidence between the elements of M and the bases of M, etc.

We will define some other incidence matrix.

Let M = (E, B) be a matroid on the set E, where B is the set of its bases
{b}. Denote by C = {c} the set of all circuits of M.

Definition 3. 1 A subset x C E is an extended circuit of a matroid M if
there exists a circuit c   Cf such that x 3 c and for any e   c, (x\e) ^. B.

Denote by X the set of all extended circuits of a matroid At, i.e. X = {x}.
It is clear that X 3C and that for any 3;   X we have | a; |= r+1, where r
is the rank of the matroid M.

Let us define the incidence matrix A = \\a. x, b\\ , where x ^. X and 6   5
as follows

dx. b =1, if bC x, and a^i, =0, if b (f. x

Conjecture: the relation (A; X, B) is regular.

Some properties of the incidence matrix A = ||ar, i]|.

(6)

Definition 3. 2 We will say that an incidence matrix A = ||a,, A;[| has T-
property if it does not have a second order minor consisting only of "1".

Proposition 3.3 Let M be a matroid on E with the set B of bases and let
X be the set of all extended circuits of M. Let A = ||ar,&||; a;   X, b ^ B be
the incidence matrix for the matroid M (i. e. defined by the formula (6) ).

1. The matrix A has T-property.
-8- Ei ̂ ,6 > 0, for any x^X
5. Er^.fc > 1; /OT- any 6   B.

We will also consider a related geometrical notion to the notion of a T-
matrix that will be called a T-graph.
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Definition 3. 4 Let V = {v} be a finite set (a set of vertices) and J7 = {F}
be a set of subsets F C V. A pair {V, ^F) is called a T-graph if the following
conditions are satisfied:

1)\F^F'\<\ for any F, F' ̂  ^ (T-property)
2) \^ F=V

F^F

3}\F\>1.

The notion of a T-graph generalizes the uotion of a graph. Indeed, if
F 1= 2 for any F   J17, then (V, Jt~) is a graph.
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