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Abstract

We consider minimal interval extensions of a partial order which preserve the

height of each vertex. We show that mimmal interval extensions having this property
bijectively correspond to the maximal chains of a sublattice of the lattice of maximal

aiitichains of the given order. We show that they also correspond to the set of
minimal interval extensions of a certain extension of this order.

Resume

Nous considerons les extensions intervaUaires minimales d un ordre qui preser-

vent la hauteur de chaque sommet. Nous montrons que les extensions interval-

laires minimales ayant cette propriete sont ea correspondance bijective avec les
chajnes mziximales d'un sous-treUlis du treUlis des antidiaines maximales de 1'ordre

de depart. Nous montrons qu'eUes correspondent aussi a 1'ensemble des extensions
intervallaires minimales d'une certaine extension de ce meme ordre.

Keywords: Partially ordered sets, lattices, interval orders, minimal interval extensions,

height, lattice of maximal antichains.

1 Introduction

Minimal interval extensions have been introduced in [5] in the context of modelling dis-

tributed executions. They have been characterized as follows in [3, 4]. The set of minimal
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interval extensions of a partial order is in a one-to-one correspondence (in the finite case)
with the set of maximal chains of the lattice of maximal antichains of the given order.
This fact can be seen in close relationship with the one-to-one correspondence between
the set of linear extensions of an ordered set and the set of maximal chains of its lattice

of (not necessarily maximal) antichains [1].

In this paper we present some results on the set of height preserving minimal interval

extensions. Surprisingly, these extensions correspond to an interesting structured object
in order and lattice theory: they can be bijectively related to the maxima! chains of a
certain sublattice of the lattice of maximal antichains.

In Section 2, we present the definitions and notations used in the paper.
In Section 3, we characterize the set of height preserving minimaj interval extensions.

This can be done by associating to an ordered set P an extension of P denoted by Sup(P)

- in some sense it is a "support of P". Then the minimal interval extensions of Sup(P)
are exactly the height preserving minimal interval extensions of P. We also show that

they are in. a one-to-one correspondence with the set of mdximal chains of a sublattice of

the lattice of mdximal an.tichains of the given order.

2 Definitions and notations

2. 1 Ordered sets and related notions

A partially ordered set is a pair P = (X, <p) where X is the ground set and <p an

irreflexive aud transitive binary relation called order relation. We denote by x <p y the

fact that x <p y or x =y. We say that two elements x and y are comparable if x <:p y
or V <:P x. Otherwise x and y are called incomparable, which is denoted by a;||py. A set
containing pairwise comparable (resp. incompaj-able) elements is called a chain or total

order (resp. an antichain). We say that x is covered by y, denoted by x -<p y, if x <p y
dnd fiz x <p z <p y.

For a:   X, we define the set of predecessors (resp. iminediate predecessors, succes-

sors, immediate successors) Predp(x) = {y  X, y <p x} (resp. ImPredp(x) = {y  
^y -<p x}, Succp(x) =-- {y ̂  X, x <p y}, ImSuccp(x) = {y  . X, x -<p y}}. An order
is bipartite if each vertex either has no predecessor or no successor. For P = (X, <p) and
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y C X we denote by P(Y) = (Y, <p(y)) the induced suborder of P on V. A bipartite
order is often denoted by P = (X, Y, <p) where X U V is the ground set and <pC X x Y.

For P = {X, <p), Q = {X, <Q) is an order extension of P, denoted by P < Q, if for
all a-, y G X, x <p y implies x <Q y.

Let 2-   X, the height of a;, denoted by ̂ p(a;) is the size of the longest path ending

at a;, in other words 1-(. p(x) = maXygp^dp(r)(^p(y)) + 1 if Predp(x) ̂  0 and 'Hp^x} = 0
otherwise.

2. 2 The Lattice of Maximal Antichains

Among the set of all dntichains of P we aj-e going to focus on maximal antichains: an
antichain is maximal if it is not strictly contained in another one. Let us denote by

MA(P) the set of maximal antichains of P equipped with the following order relation:
VA, B   MA(P), A ^MA(P) 5 if Va;   A, 3y   B, 2; ^p y; this order is a lattice
(every pair of elements admits a lower and an upper bound) called lattice of maximal
antichains. In this lattice, the lower bound (resp. upper bound) of A and B is the
maxima! antichain denoted by AA B = max? {x ̂  X s. t.\/y   A U B, y ^. p x} (resp.
A V B = ininp {a;   X 5. f.Vy   A U B, x ^p y}).

Note that a maxima! antichain A is covered by another 5 ifffor all a; 6 A\B and for

ally   B\A, a; ^p y.

2.3 Interval Orders and Interval Extensions

An ordered set / = (X, </) is an interval order if and only if we can associate to each
element a;   X an interval [a;i,. r2] where (a;i,. r2)   -R2, such that a; </ y if and only if
a;2 < 2/1. We have the following characterization theorem [2]:
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Theorem 1 For any ordered set I = (X, </) the following statements are equivalent:

1. I is an interval order.

2. I does not contain 2 ® 2 03 suborder i. e. there are not x, y, z, t ^ X with x </

y^z <i t^x \\i t and z \\i y (see Figure 1).

3. The sets of predecessors (resp. successors) in I, are totally ordered by inclusion.

4. The lattice of maximal antichains is a total order.

Figure 1: 2 © 2

Let I = (X, </) and P = (X, <p). I is an interval extension of P if and only if

P -C J and I is as. interval order. The set of interval extensions of P is denoted by 1[P}-

I = (X, </) 6 1{P} is a minimal interval extension of P = (X, <p) if VJ   .Z'(-P) :
P"^. J<^. I=>J=I. The set of minimal interval extensions of P is denoted by A^Z(P).

Minimal interval extensions have been characterized in [3, 4] as being in a one-to-one

correspondance with the maxima! chains of A4A(P). More precisely, /   M. I(P) if aud

only if M. A{I) is a maximal chain of MA{P).

We say that Q = (X, <Q) is a height preserving extension of P = (X, <p) if and

only if P <C <3 and V-r   X : 'H.p(x) = HQ^X). The set of height preserving interval

extensions of P is denoted by HI{P). The set of height preserving minimal interval

extensions of P is denoted by nMI(P). Note that if P = (X, <p) < Q = (X, <<9)

then Vrc 6 X, '^p(. r) ^ ^0(2;). So clearly . KA/(Z(P) + 0 since the order defined on

Xby x ^y if. Hp{x) < 'Hp (y) is obviously an interval order which extends P. Figure

2 illustrates the correspondance between the lattice of maximal antichains and mimmal

interval extansions of an order, in this example, oue extension is height preserving and

the other not.
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Figure 2: An order P, its lattice of maximal antichains, the minimal interval extensions
Ji i /HMI{P} in correspondance with the left chain of MA{P) and ,2   HMI(P) in
correspondance with the right chain of MA{P)

The aim of this paper is to show that this definition of height preserving minimal
interval extension in not artificial in the context of order theory. Moreover, we are going

to see that these results open new perspectives in the context of lattice theory.

3 Characterization of height preserving minimal in-

terval extensions

Let us consider the added comparabilities in a minimal interval extension J of an order
P. Clearly, each a.Tcu l\P breaks a2©2in</\{u}. Proposition 1 shows that u also
breaks a 2®2 in? .

Proposition 1 Let P = (X, <p) be an ordered set and let I 6 MI(P). For all x, y ^ X
we have

x <iy and x \\p y ^3z, teX with x <p z, t \\i z and t <p y

Proof. l!x <iy then the last maxima! antichain A containing y is below the first maxima!
antichain B including y. Furthermore x ^. p y implies the existence of two other antichains
A/ and B' (not necessarily distinct) such that A ^ A' <, B' -< B.

So V2   A'\A, a; -^p z . And \/t B'\B, t ^p y . Since A/ < B', t ^ z which
achieves the proof.
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We now state Theorem 2 which characterizes height preserving minimal interval ex-
tensions by considering some bipartite orders contained in P. The minimal height of

a successor of an element x will be denoted by M'HSp{x^\ it is more formally de-

fined as follows: MHSp{x} = m\Uy^succp(x} (^p(y)) if Succp{x} -^ 0 and M1-iSp[x} =
maXyg^ ('^p(y)) + 1 otherwise. Before stating Theorem 2, let us show the two following
lemmas.

Lemma 1 Let P = (X, <p) be an ordered set and let I = {X, <i)   'HI[P). For all

x^y ^ X we have:

Hp(y) > M-HSp{x) =^x<iy

Predp{y}^^ (1)
Proof. I   7<Z(P) then \/x, y   X, ̂ p(y) > M'HSp^x) ̂  { anrf

Succp(x) 4- 0 (2)
(1) =»3u   X, u <py and ^p(u) = 'Hp[y~) - 1

(2) =^3z^X, x<p z and -Hp{z) = MHSp^x)

As I is an interval order we have u <j zora; </ y. u <j z =^- 7^/(u) < 'Hi{z)

which leads to a contradiction because 'Hp(y) > M. 'HSp{x') =» /Hi{u) ^ 'Hi{z). Therefore

x<iy a.

Lemma 2 Let P = {X, <p) be an ordered set and let I   nMI(P). For all x, y ^ X
we have:

x<iy=^ Hp{y) S MnSp(x)

Proof. Suppose there exist some x, y of. X such that 'Hp{y) < M. 'HSp{x} and x <j y.

"^p(y) < M. 'HSp{x) =^ x \\p y, and thus from proposition 1, we deduce that there exist z

ajidt'm X such that x <p z, t <p y SLadt\\i z. So M'HSp{t) <, Kp{y) < MHSp{x) <

'H. p(z), since I   'H^AT{P>) and Lenuna 1, we have t <[ z which leads to a contradiction.
a.

We are now able to chaj-acterize the height preserving minimal extensions of P among

its minimal interval extensions. For all possible value k of the height of a vertex in P, let

us define the induced bipartite order Bipk{P) = {Xki Yk, <p[x^Yk}) where Xk= {x  . X
such that M1-iSp(x) = k} and Yk= {y ̂ . X such that 'Kp(y) = fc} (see Figure 3).
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h=3

h=2

h=l

h=0

Bip^CP) Bip, (P) Bip, (P)

Figure 3: An ordered set P and the associated Bipi(P) for i = 1, 2, 3.

Theorem 2 LetP = (Z, <p) 6e an ordered set and let I   A/(Z(P). We have

I   HMI{P) if and only if\/k : I{Xk U H)   MI[Bipk{P))

Proof.

=^:

V&, Va;   Xfc, Vy   Yfc, since 7   MI(P), we have from proposition 1: x <i y and

x \\p y => 3(2-, t)   X2 such that x <p z, t <p y and t \\i z. Clearly, we have /Hp{z) >. k

and M. 'HSp(t) <^ k and from f [|/ -z and Lemma 1, we have 'H. p(z) <^ M. 'HSp(t). Then

-hp(z) = Mnspd) = k; so, from proposition 1, I[Xk U Vfc)   MI(Bipk{P))

^=:

For proving that I   'HMI{P), we may show that x <i y and x \\p y ^- 'Hp(y) >

T-Cp{x). This is immediate because if Hp{y) < Hp[x), there exists some z e. X such

that 'Hp(z) = "Hp{y) and z <^i x, so by transitivity z <, i y, and then, I(X-Hp(y) U y^p^))
^ MI(BipH p(y){P)), since a minimal interval extension of a bipartite order is a bipartite

order. This leads to a contradiction. D.

This first chajacterization theorem can be rewritten in. an easier way. Using Lemma 1,

let us define from P the ordered set Sup(P) = (X, <sup(P)) by x <sup(P) V ^==^ x <p y
or Hp{y) > M1~LSp{x}. The following corollary is immediate:
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Corollary 1 For any ordered set P, 'HMI{Sup(P)) = MI{Sup{P}) == HMI(P)

So the height preserving minimal interval extensions of P are exactly the minimal

interval extensions of Sup{P). Using the characterization of M1(P) in term of maximal
chains of MA{P), we deduce from Corollary 1 that the elements of HMI(P) are in a

one-to-one correspondence with the maximal chains of M. A{Sup(P}}. We are now going

to see that M. A(Sup(P)) is strongly related to MA(P).

Let us define Allowed(P) to be the induced suborder of M. A(P) such that VA  

Allowed(P), Va;, y   A, ^(r) ^ MHSp^y}. Allowed(P) is clearly the set of allowed

maximal antichains in any height preserving minimal interval extension of P. We have

the following result describing Allowed(P) (let us recall that a sublattice of a lattice is a

suborder of the lattice which is itself a lattice which preserves upper and lower bounds):

Theorem 3 For any ordered set P, Allowed{P) is isomorphic to M. A{Sup{P)) and is
a sublattice of M. A(P}

Proof. Obviously Allowed(P) C MA{Sup(P)}. Now suppose there exists

A   A^-4(<?up(P)) \ A^owe<Z(P)

then A i MA{P) so3x ^ X\A s. t. AU {x}   A(P). Let k = miiiy^MHS p(y))
and let / = maXygA('^p(y))- by construction of <Sup(P), k > I which implies since x ^ A

(i) (Hp(x) < MKSp(x) < I ^k) or (ii) (MHSp(x) > -Hp(x) > k ^ I). (i) impUes

3y   X s. t. x <py and -M'K<Sp(.r) = "h:p(y) ; furthermore A U {a;}   A{P) ==^ AU {y}  
A(P) and y f. A. By iterating this operation we obtain: ^z ^ X s. t. AU {z} G A(P) with

x <p z^ 'Hp(z) < I < M. 'HSp(z) and 2 ^ A which is impossible. The case (ii) is similar.

Let us now prove the second part of the theorem. Suppose that Allowed(P) is uot
a sublattice of M. A(P), this implies that, 3A, B   Allowed(P), s. t., one of the two
following assertion is right:
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. A^B ^ Allowed(P) then 3.r, y G AA 5 s. t. Hp(x) > M-HSp{y}. Since x  
AA5, 3t   Aand 3u   B s. t. x <p t and x <:p u, so T-Cp{x) ^ Hp(t) and

Kp[x} ^ Hp(u). But V^   AU 5, MKSp{z} > -Hp(t} or MHSp{z} ^ ^p(u)
so MZiSp{z) ^ 'Hp(x). Let w   Succp(y) s. t. Hp{w) = M~HSp{y} (w exists
because Hp{x) > M'HSp{y}}, clearly since Hp{x} > MHSp{y} = ^p(w), we have
'Hp(w) < M'HSp{z')^z   AU B and z ^ip w which leads to a contradiction with
y G. A/\ B. Since y was supposed to be maximal.

. AV B ^ Allowed{P) then 3a;, y   AV B s. t. Up{x} > MKSp[y}. Furthermore,
3f  Aandu   B s. t. t ^p y and u <, p y then MT-iSp{t) < M'HSp{y} < 'Hp[x}

and MHSp{u) ^ MHSp{y) < Hp(x). Sox ̂  Aandx ^ B then 3z e X s. t.
z <p x and Up[z} = 'Kp(a;) - 1. But z ^ AVB and thus 3w   A U 5 5. t.
z <p w which implies 7<p(w) > 7{p(x) but M'HSp(t) < 'Hp(w) ===> u; ^ Aand

M'HSp(u) < 'Hp(w) ===» w ^. B: contradiction. D.

Let us finish with the description of the structure of Allowed(P) and then of MA{Sup{P)).
Let us first define for any k <: TmnxexC^-p^)) the antichain Ak= {x G. X s. t. Hp{x} <,

k and M'HSp(x) > k}.

Proposition 2 1k <, minrexC^p(a;)) we Aave the three following properties (see Figure

5):
1. Ak^ Allowed(P)

2. VA   Allowed{P), A ^M^(P) Afc or Ak ̂ MA(P) A

3. Let Allowedk(P) be the suborder of Allowed(P) defined on the antichains A of
Allowed(P) such that Ak-i <MA(P) A <:MA(P) Afc. is isomorphic to MA(Bipk(P)}.

Proof. 1. czua be proved by a same way cis the proof of the first part of theorem 3

2. VB   A^^(P) 5. ^. Ak\\M^(P)B, we have 3a;, y   A^, 3u, f   B 5.^. a; <p y which
implies 'Kp(u) > k and t <p y which implies M1-tSp(t) <: k. Then B ^ A//owecf(P)
since MnSp(t) < 'Hp(u).

3. Obvious since Ak \ Ak-i = Yk and Afc-i \ Ak = Xk a.

We illustrate this property with a concrete example in Figure 4, and with the general

structure of Allowed{P) in Figure 5.
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Sup(P)

3=Udm

^Ai=defg

'cdef

'acdlpbcde

AO =abcd

Altowed(P) = MA(Sup(P))

Figure 4: An order P, MA(P), Sup(P), Allowed(P)

bch
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A-H(P)

MA(P)

Figure 5: Structure of Allowed(P) (grey regions represent Allowed(P))

4 Perspectives

More than the pdrticular results stated in this paper, this work opens promising new

ways for future research. It was already known that the mdximal chains of the lattice of

maxiinal antichains of a partial order - which are some of its sublattices - represent

interesting objects - the minimal interval extensions of the order. This paper shows that

some other sublattices of such a lattice can represent important objects. So it would be

natural to study the correspondences between other sublattices of this lattice of m.ctximal

antichaius ajid the given order. For example, a natural question could be to characterize

sublattices which induce an extension or a restriction of the original order.
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