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Abstract

A un groupe W (reel, fini) de reflections correspond Ie treillis Lw de toutes les inter-
sections d'hyperplans associes a W. On demontre que Lw est isomorphe au treiUis de tous
les sous-groupes paraboliques de W. Get isomorphisme est ensuite utilise pour caracteriser
les groupes de reflexions (reels et finis) qui possedent ira treillis superresoluble. U existe
une procedure com. binatoire, "la procedure des mains", pour engendrer toutes les bases de
circuits uon brises (NBC) d'un treillis supen-esoluble. On demontre que Ie treiUis L\v est
superresoluble si et seiileinent si toutes ses bases NBC peu vent etre obtenues grace a cette
raethode.

Let L be the lattice consisting of all intersections of hyperplanes in the arrangement
associated with a finite real reflection group W. We show that L is isomorphic to the lattice
consisting of aU parabolic subgroups of the reflection group. This isomorphism is used to
determine aU W for which L is supersolvable. Also, there is a well known corabinatorial
procedure for the generation of all non-broken circuit bases (NBC bases) of a supersolvable
lattice. If the NBC bases of a geometric lattice can be obtained by this procediire, we say
that the NBC bases are "obtainable by hands. " We show that L is supersolvable if and
only if all the NBC bases of L are obtainable by hands.

1. Introduction

By an arrangement A, we mean a finite collection of codimension 1 subspaces of a real
vector space V. Associated to A is a. lattice which consists of aU possible intersections of
elements of «4, ordered by reverse set inclusion. A rich theory has been developed to study
the properties of this lattice (see [7]). However, these lattices are somewhat abstract, and
it can sometimes be useful to have a more concrete realization of them. One example of
such a realization arises within the class of reflection, arrangements. If W is a finite group
generated by a set of reflections acting on Rn, the reflection arrangeinent corresponding to
W is the arrajigement consisting of the reflecting hyperplanes of all possible reflections in
W. We call the intersection lattice corresponding to this arrangement a reflection lattice
(with group W). When W is the symmetric group 5'n, with its usual action by permutation
matrices on R", the corresponding reflection lattice is isomorphic to the partition lattice,
the lattice consisting of all partitions of the set {1,... , n} ordered by refinement.

It is the purpose of this paper to give a generalization of this correspondence which
applies to all reflection lattices, and to illustrate its utility by using it to resolve the question
of which reflection lattices are supersolvable. Also, we are able to use it to characterize

. the reflection, lattices which admit a certain combinatorial procedure for generating aU of
the non-broken circuit bases of the lattice.
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It may not be immediately clear what the generalization of the pzirtition lattice should
be. In fact, it WEIS only in retrospect, after our correspondence theorem was proven, that
it became evident that this theorem gave the correspondence between the reflection lattice
of Sn and the paj-tition lattice as a. special case.

The key idea crucial to the discovery of this theorem came from a seemingly unrelated
result; namely, the fundainental theorem of GeJois theory.

Let £ be a field, and K be a. subfield of E (such that E is Galois over K). The funda-
mental theorem of Galois theory states that there is a bijective correspondence between the
subfields of E which contain K, and the subgroups of the group of all field automorphisms
of E which fix every element of K. For our purposes, we will think of the situation in a
slightly different way.

We first define a more general context in which the Galois correspondence belongs. Let
K be a field, as before, and let V be a finite dimensional vector space over K. Assume that
we are given a sublattice L of the lattice of vector subspaces of V (ordered by reverse set
inclusion). Assume also that we are given a subgroup G of GL{V\ the group ofinvertible
linear transformations of V. Now, for any (7   £, we can define the subgroup Gal{U) of
G by

Gal{U) ={g ^G: g{u) =u forall u   U}.

In addition, define
Gal(L) = {Gal(U) :UeL}.

In this context we can then ask two questions. The first is whether there is some concrete
characterization of Gal{L). The second is whether the mapping Gal : L -+ Gal{L) is a
bijection. If Gal is a bijection, then Gal wiU be an isomorphisin of partially ordered sets
(when Gal{L) is ordered by set inclusion). Hence, Gal(L) wiU be a lattice, and Gal will
be a lattice isomorphisra.

The fundzimental theorem of Galois theory can be viewed as a. resolution of these two
questions for a specific choice of the lattice L and the group G. As before, we start with E
a field containing K (such that E is finite dim. ensional and Galois over K). It is convenient
to define a kind of "forgetful functor" here. Given a field F containing K, define F' to be
a vector space over K as follows. The underlying set of F' is the same as F. Moreover,
the addition in F' is the same as the field addition m F, and scalar muLltiplication in F' is
the natural restriction of field multiplication in F. Now, let V be £", where E is the field
mentioned above, Eind let

L = {F' : F is a field with K cFcE}.

Also, dej&ne G to be the set ofg   GL(V) such that g is a. field autoraorphism. when
considered as a function from E to E. With this choice of L and G, the fundamental
theorem of Galois theory is exactly the statement that Gal{L) is the lattice of aU subgroups
of (?, zuid that Gal is a lattice isomorphism..

In this paper we concentrate on a different choice of L and G. We start with a
reflection group W acting on a vector space V over R. We let K be R, and we let L be
the reflection lattice corresponding to W defined above. Also let G = W. Our main result,
theorem 3. 1, is that in this case Gal{L) is the collection of all parabolic subgroups of W,
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and that the correspondence Gal is indeed a lattice isomorphism. Section 3 is devoted to
developing the machinery needed to prove this result. In section 4, we show that when W
is Sn , there is an explicit natural isomorphism between the lattice of parabolic subgroups
and the partition lattice. In section 5, we use Theorem 3. 1 to characterize supersolvable
reflection lattices. This result is Theorem 5. 1. Finally, in section 6, we give a relationship
between the parabolic subgroups of a reflection group and the non-broken circuit bases
of the corresponding reflection lattice when the atoms of this lattice are given a certain
natural total order. This constitutes Theorem 6. 1.

2. Preliminaries.

First we review a few facts about reflection groups that can be found, for example
in [6]. We are borrowing his notation. Let Rn be the n-dimensional Euclidean space
endowed with a certain positive definite syroinetric bilinear form (u, u) (for u, u £ R"). A
reflection r-a : R" -> R" sends the nonzero vector a to its negative while fixing pointwise
the hyperplane Hy orthogonal to o;. It is easy to check that

2(v, a)
raw =" - ^sy"

and that ra is an orthogonal transforination of order 2. Consider a J&nite set $ ofnon-zero
vectors in R" satisfying the following two conditions, for alia   $:

$n Ra = {0', -cr},

where Ro; is the line spanned by a:, and

ro$ = $.

(m)

(^2)

Define W to be the group generated by all reflections r on a   $. $is said to be a root
system of W, and the elements of $ are caUed roots. In general roots need not be of
iinit length, but hereafter we wiU always choose root systems with roots of length one. It
happens that the reflections r^ are all the reflections in W, and W is said to be a real
(finite) reflection group.

Given a total ordering (compatible with the vector space structure) of R", a subset H
of $ is called a positive system if it consists of all the roots which are positive with respect
to the given order. A subset A of $ is said to be a simple system if A is a vector basis for
the R-span of $ in R", and if each a   $is a linear combination of the elements of A
with coefl&cients edl of the same sign. To a positive system II there corresponds a unique
simple system A, with A C H. Moreover simple (resp. positive) systems are all conjugate
to one another in W ([6, p. 10]). Thus it makes sense to define the rank r(W) of a reflection
group W to be the number of elements in a simple system A; that is, r(W) = |A|.

Each element w ^W can be expressed in the form:

w =r^r^ ...rOk )
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where a,   H, forz = 1,..., fc. The smallest value of k in any such expression for w is
denoted aJ(w), and is called the absolute length of w. An expression T-ai^az . . . roik ls sald
to be totally reduced if fc = al^ra ... ra^)

Given a simple system of roots A for W, the subgroups of W generated by subsets
I C A are of fundamental importajace to our work.

Definition 2. 1. W/ C W is a. parabolic subgroup of W if there exists a simple system
of roots A for W with a subset 7 C A such that Wj- is generated by the set {ra, \ oii ̂  I}.

There is a very nice presentation for W in terms of the simple roots of W that is also
of importance to us. For any roots a, /3   $, let m(a, ^) denote the order of the product
ra^ in W.

Proposition 2. 1 [6, p. 16]). Fix a simple system A is $. T2iec IV is generated by the set
5'={5a]cr A}, subject only to the relations

(^^)m(a^=l (a, ^GA).

This presentation of W shows that W is determined up to isomorphism by the set of
integers m(o;, ^), (for oc, 0  . A). Coxeter (see [5]) encoded this information in a labelled
graph F constructed as follows: Let F be a graph whose vertex set is indexed by the
elements of A; two distinct vertices a, ̂  are joined by an edge, labelled m(a, /3), whenever
m{a, ̂ ) > 3. A pair of vertices not joined by an edge implicitly meajis that m(o!, ̂ ) = 2.
This graph is called the Coxeter graph of W and iiniquely determines (up to isomorphism)
W. Note that since simple systems are conjugate, F does not depend on the choice of A.

Later on we wiU need the notion of exponent together with that of degree for finite
reflection groups. Let A be a simple system for W with corresponding simple reflections
^tti , ^02) . . . r0

n ; tlle product R = rai ^az . . . i~oi^ is said to be a Coxeter element. The fact

that all Coxeter elements are conjugate in W ([6, p. 74]) insures that all Coxeter elements
have the sajne order as well as the same characteristic polynomial and eigenvalues. Thus
if h is the order of R and if we let e = exp{2Tri/h^ then the eigenvalues of J? are of the
form

. mi . mi
, £'

The m, so deJ&ned are caUed the exponents of W, and we see that they do not depend on the
particular product R. Next we turn to the definition of degrees of W. Let R[a;i ,... , a;n], be
the polynomial ring in n variables over the field of real numbers (where n is the rank of W).
Since W is a group of orthogonal trEinsformations of R" it acts natiiraUy on R[a;i,... , Xn}.
The set of polynomials fixed imder the action of W forms a (invariant) ring I(W) which is
generated by n algebraicaUy independent homogenous polynomials: /i, ,2, ... , fn - 

Such

an independent set is not unique, but the corresponding sequence rfi, c?2, ... , dn of degrees
is unique. Moreover the d^s are related to the exponents by the following identity

m, == d, - 1.
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We now turn to the definition of the lattice Lw- Let the orthogonal complement of
any subset X 6 R" be denoted by

X±={v Rn\(v, x)=0^x^X}.

Let A be the set of all reflecting hyperplanes associated with W; that is,

A={a±\aG^}={H^\ae^},

ajid let Lyy denote the poset of all possible intersections of hyperplanes in A ordered by
reverse set inclusion. Denote the partial order of LW by <:(X <:Y if ajid only if V C X).
It is a kaown fact [I, p. 23] that Lvy is a geometric lattice, with rank function given by
r(X) = codim(X) for any X   -^w. Thus, all the reflecting hyperplanes Ha have rank
one and are called the atoms of LW- Moreover, for any two elements X and Y of Lw the
meet of X and V is given by:

x^Y = Q{Z   Lw\x u r c z},

while if X nY ̂ 0, the join of X and Y is defined to be:

X\/Y=XC\Y.

We also need to review the notions of independent set and basis for geometric lattices. Let
Z. be a geometric lattice. The elements of L of rank one are called the atoms of Z/, and
the set of aU atoms will be denoted by A. A subset B = {&i,... , &m} c A is said to be
independent if the rank of the join of its elements V5 = &iV- . -Vfrm satisfies, r(v5) = \B\.
Otherwise, B is said to be dependent. A subset B C A is said to be a base for an element
X ^. L if and only if B is independent and if VB = X. A circuit is a dependent set B C A
such that all its proper subsets C' C B are independent. Given a total order -< on the set
of atoms A, we say that B = {5i,..., &fc} C A is a broken circuit, denoted BC, if there is
an atom a 6 A such that a -< 6, for all? = 1,... , fc and B U {a} is a circuit. In other words,
the broken circuits are obtained from the circuits by removing the smallest atom. A non-
broken-circuit, NBC, is a set of atoms that does not contain any broken circuit. It can be
shown that NEC sets are independent sets of atoms. There is a fundamental link between
the NBC bases oi Lw and the elements of W. Indeed the first author together with A.
Goupil and A. Garsia established in [2] the following correspondence. Let {Ha^,..., Ha,,}
be an NBC base where a, < dj if z" < j. Let this NEC base correspond to w defiined by

w = r<a'l Otk- (2. 1)

It turns out that equation (2. 1) is a totally reduced expression for w, and this corre-
spondence is a bijection between W and the set of all NBC basis of Lw- Moreover, the
enumerating polynomial for all the NBC bases oi LW

E tlsl
SeNBC(W)

(2. 2)
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has a factorization that involves the exponents of W (see [2]):

^ ^i=n(i+^).
S^NBC(W) i

We shall return to this factorization in section 4.

3. The lattice Pw of parabolic subgroups of W.

Definition 3. 1. Let P\v be the poset of all the parabolic subgroups of W, ordered by
set inclusion.

Fixing a simple system and taJcing all the parabolic subgroups with respect to this
simple system gives rise to a Boolean lattice [6, p. 24]. But, here we do not fix the simple
system a priori, we consider the set of aU parabolic subgroups with respect to any simple
system. A word of caution is needed here. For the time being Piy is simply a poset. Thus
there is no extra structure (like a rank function) nor property (such as being a geometric
lattice, etc... ) associated with Pw- These structiires and properties wiU be obtained
gratmtously once we show there is an isomorphism between LW and 'PW- Hence, when
speaking of the rank of a parabolic subgroup Wi (with simple system of roots given by 7)
we are simply referring to the cardinality of I. We wiU see later on, that indeed this notion
of rank is an appropriated rank function on P-w- We now define two correspondences that
wiU enable us to go from the lattice Lyy to the lattice Pvy and vice-versa. Let W be a finite
reflection group acting on R", and for any given subset SofW let {S} be the subgroup of
W generated by the elements of 5'.
Definition 3.2

(i) Let G C Wbe any subgroup of W. The fixpoint space of G is

Fix(G) = {u   R"|^u = u, for all^   G},

(ii) Let X C Rn. Define Gal{X~) by

GaI(X) = {w   W\wx =a; foraU 2;   JC}.

For example, consider the subgroup of W generated by a single reflection r^. Then
clearly Fix({rcc}) = 5'ai which indeed belongs to LW- K tiirns out that if G is a reflection
subgroup of W then the fixpoint space of G belongs to LW- More precisely, if G is generated
by a given set {r^^ ,... , 7'a,, } of reflections then its fi-xpoint space Fix{G} corresponds to
the intersection of the reflecting hyperplanes {5'ai >. . . i Hoik }'i ^^la^ ls>

Proposition 3. 1. I£G CW is a refiection group, then Fix(G) belongs to Lvy- In partic-
ular, if G   PW then Fix(G) 6 £w.

As an immediate consequence of this lemma we see that:
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Corollary 3. 1. IfbotbT= {ai,..., a^} C $, and5'= {^i,... /3m} C ^^enerateGC W
then

^v... v^=^v... v^^.
We now claim that for any element V of LW, Gal(V) is indeed a parabolic subgroup

of W. Being an element of Lw means that V is the intersection of certain reflecting hy-
perplajies of W: V == C\i=i -^a. - It W1U not be difi&cult to prove that indeed Gal^V) is a
reflection subgroup of W. Unfortunately, in general there are reflection subgroups of W
that are not necessarily parabolic subgroups of W. For example the dihedral group Da of
order a is a reflection subgroup of any dihedral group D & of order b provided that a divides
b. On the other hand Da is certainly not a parabolic subgroup of D &, since each of these
groups have rank 2. Thus we will zdso have to show that there exists a simple system of
roots for W that generates Gal(V).

Proposition 3. 2. If V   Lw then Gal(V) belongs to Pw- Moreover, the root system $'
for Gal{V) is:

$'=$ny^.

Before we can show that the posets LW and Pw are isomorphic we need to show one
more property.

Proposition 3.3. Let Fix : Pw 1-+ Lw- and Gal : L\v *-> Pw be the two correspondences
defined earlier. Both Fix and Gal are order and ran Jc preserving correspondences.

We are finally ready to state our main theorem.

Theorem 3. 1. The (ranked) partially ordered sets Lw- and Pw are isomorpbic. Gal is
an isomorpiusm wit2i inverse F'ia;.

Corollary 3.2. The poset Pw is a geometric lattice. Moreover, its raak function is given
by: r(Wi) = \I\.

Before showing the importance of this isom.orphism we give an example.

4. Example: T>s^-
Let Sn be the symmetric group. It can be thought of as a subgroup of the group

0(n, R) ofn x n orthogonal matrices; that is, we can think ofo- G 5'n as a permutation
matrix. A permutation a acts on Rn by pennuting the elements e, (for i = 1,... , n) of the
standard basis: o-e, = e<r(i)- A trzinsposition {ij) acts as a reflectiou, by sending the vector
e, - ej to its negative and by fixing pointwise the orthogonal complement (i. e. : all vectors
in Rn whose ith eind j'th coordinates are equal). Since 5'n is generated by transpositions,
it is a finite reflection group. Indeed, the set $ = {e, - ej}i<i<j<n is a root system, and
the usual lexicographical order on R" yields A = {e, - et+i}i<, <n-i as its corresponding
simple root system. Since aU simple systems are conjugate to one another we have that
any other simple system is of the form.

A' = o-A, for some permutation (T   5'n.
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This means that any system of simple reflections for Sn will be of the form

<r{(12), (23),... (n - ln)}a-1 = {{a,a^, (02(73),... (<7n-i<7n)} (3. 1)

The lattice of parabolic subgroups of Sn is naturally isomorphic to the partition lattice
Tin, that is, the lattice whose elements are partitions of the set [n] = {1, 2,..., n} ordered by
refinement. In order to avoid czunbersome notation, we will not give a formal proof of this
isomorphism. Rather we wiU illustrate how the isomorphism works in a special case. This
should enable the reader to produce the general isomorphism without difliculty. Indeed,
given any subset Si of a simple system of reflections S = {((TI^), (^o-s),... (cT-n-io-n)} we
associate a partition of [n] in the following manner. {1,.. ., n} is partitioned by the classes
of the equivalence relation generated by the set of ordered pairs Si. For example let n = 7
and let Si = {(12), (23), (45)} then the equivalence classes are

{1, 2, 3}, {4, 5}, {6}, {7}.

Conversely given a partition TT of {!,... , 7} how can we recover a simple system of
roots whose equivalence classes would be the blocks of TT. For example let

TT= {{1, 3, 4, 7}, {2, 5}, {6}}

be a partition of [7j. First we realize that the set of all reflections corresponding to TT can
only be

Ri = {(13), (14), (17), (34), (37), (47), (25)},

thus yielding the reflection group W/ = (Ri}. Now, how can we choose a subset of Ri that
is a simple system for Wj? Since we know that such a subset must be of the form given by
equation 3. 1 we realize that certain subsets Uke {(13), (14), (17), (25)} are not good oues.
On the other hand Si = {(13), (34), (47), (25)} would be a good choice. In fact we claim
that Si is a simple system for Wi when we take

^A= {(13), (34), (47), (72), (25), (56)}

for simple system of 87. We only need to show that there is a pennutation a ^ 87 such
that S^. = cr{(12), (23), ..., (67)}<7-1. Clearly this permutation (in two lines notation )is

a =
1234567
1347256

From this example we see that this correspondence between ̂  and D:n is a bijection.
A moment's thought reveals that it is also a rank preserving bijection. Thus we have
that Psr, and Hn are isomorphic lattices. We now use this correspondence to relate the

lattice isomorphism Gal to the known correspondence between the intersection lattice of
the reflecting hyperplanes of Sn and Tin ([7]). This bijection is obtained as follows. Let
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V e -^Sni a^id denote the reflecting hyperplane corresponding to a reflection (zj) by H, j.
Also let R" =-&,,, for all i   [n]. Define an equivalence relation ~y on [n] by z ~y j if and
only if V C Hij. Let Try be the partition of [n] define by ~y . The map TT : £5^ -». Hn
given by 7r(V) = Try is a lattice isomorphism. Hence, while Theorem 3. 1 ensures us of
a direct correspondence between V and Ga/(V), the correspondence going through Hn
edlows us to explicitly find simple systems for Gal^V).

5. Supersolvable lattices.
One of the main problems concerning the lattices Lyy is to determine if they are

supersolvable. We will not give details here, but let us say that if L\v is a supersolvable
lattice then there is a combinatorial way of determining its characteristic polynomial. For
an. overview ajid references of this subject see [3]. As we inentioned in the introduction
it is not easy in general to deterraine if a lattice is supersolvable. When the reflection
group is either Sn, Bn (the group of signed permutations), or Dn (the dihedral group),
it is known that the corresponding lattices are supersolvable. But for the other reflection
groups there is no complete list in the literatiu-e answering this question. Through personal
com-caunications with G. Ziegler and H. Terao it was suggested that none of the others were
supersolvable. In this section, we give an elegant corabinatorial proof (using the lattice
of parabolic subgroups), of the fact that the only supersolvable lattices LW are the ones
corresponding to either D n or the reflection groups of type An and Bn- Let us first recaU
the definition of supersolvability. Let £ be a finite geometric lattice of rank r(£) = n. An
element m   £ is called modular [8] if

r(m) + r(m') = r(m V m ) + r(m A m )
for every m'   Z. Let 0 be the mimmal element of L and 1 be its maxima! element. A
geoinetric lattice L is said to be supersolvable [9] if it has a maxiraal chain.

0=mo <mi < ... < mn = 1

of modular elements, (called an M-chain of L}. Let A be the set of atoms of £, and let ~
be an equivalence relation on A.

Definition 5. 1.

Define p(~) to be

p(~) == {S\S C A and 5' contains at most one element

from each equivaleuce class of ~}.

Note that when ~ is equality, then p(~) = p(A), the power set of A.
Let -<; be a total order on A. We say that the NBC bases of Z, NBC(L), with respect
to ^ are obtainable by the hands of ~ if

NBC{L~) = p(~).
In the next theorera we use the classification of all the real finite reflection groups,

together with their Coxeter diagrams and lists of degrees. See for example [6, p. 32 and
p. 59].

By aualogy to previous work of the first author, the equivalence classes of .
the hands of ~ .

are caUed
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Theorem 5. 1. Let W be an irreducible real finite reflection group, A be the coHection
of all its reSecting hyperplanes, and Lw its corresponding lattice. The following are
equivalent:

(a) L\v is supersolvable.
(b) There is a total order -; and an equivalence relation ~ on A, so that the NBC{Lw}

bases with respect to -<; are obtainable from the hands of ~ .
??? ?ere is a label of the coxeter diagram of W (other than 2) which is a degree of W.
(d) W is either of type An, Bn or is D^.

6. Non-Broken Circuit Bases.

As we saw earlier on the NEC bases play a fundamental role in many aspects of
the theory of reflection groups, and moreover the elements of NBC(LW') are in one to
one correspondence with the elements of W. So now if we consider the lattice of parabolic
subgroups Pw what can be said about its NBC bases? Are they easy to characterize?
La this section we identify some of the NBC bases of Pw and show that when translated
into the Lw lattice they remain NEC bases. Unfortunately this characterization does not
yield all NBC basis. For this entire section we fix a total order on R". Let Hy be an
atc)m of LW. Then there will be a unique positive root a   H^. Thus, the total ordering
on R" when restricted to the roots of W, gives rise to a total ordering on the atoms of
L\v Using this total ordering one can define NBC bases for Lw Also, for any reflection
subgroup WT C TV, we may use this total ordering of R" to induce a total ordering on the
root space of Wi. This ordering defines a unique system of simple roots for W/, denoted
byAj.

Theorem 6. 1. Let Wi be a parabolic subgroup of W. Then

NBCw, ^ {a-L|a   A^}

is an NBC basis for Lw-
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