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Abstract. In this paper, we illustrate a method for enumerating subdasses of plane trees, caUed
first order dzisses. By means of the plane trees' traversals, which satisfy two particular conditions, we
give some recursive descriptions of these subclasses. We use these descriptions to deduce the functional
equations verified by the trees' generatmg functions. We illustrate two applications of the method to
the whole dass of plane trees and to right-leafed trees and establish both their generating functions
according to the number of their mteraal nodes, the number of their leaves, theu' right branch length
and their mtemal path length.

Resume. Dans cet article nous presentons une methode pour 1 enumeration des sous-classes
des arbres planaires que nous appelons dasses du premier ordre. Nous coasiderons les algorithmes
d'exploration des arbres planaires qui satisfont deux conditions particulieres et nous defimssons des
descriptions recursives pour les classes considerees. En utilisajit ces descriptions, nous deduisons des
equations fonctioimeUes qui sont verifiees par la fonction generatrice de ces dasses. Nous decrivons
1'application de cette methode a, la dasse de tous les arbres planaires et a, celle des arbres feuillus a.
droite. Pour ces dasses nous trouvons la fonctioa generatrice selon Ie aombre de sommets, Ie nombre
de feuiUes, la longueur de la branche droite et la longueur du chemin mterieur.

1 Introduction

Tree emuneration is widely practised in combinatorics and in the analysis of algorithms. Many
different tools and tricks have been used in approaching this problem in the various classes of
trees. A survey of the results and methods concerning this subject caji be found in books by
Comtet [4], and Goulden and Jackson [8]. In. this paper, we present a construction for enu-
merating plane trees' subclctsses, called first order clcisses. These subcldsses have the following
property: each. tree belonging to a subclass and having n nodes can be obtained from at ledst
one tree having n - 1 nodes and a new leaf added to it. The construction is determined by
means of some plane trees' traversals able to satisfy two particulcir conditious. If <? is a first
order class, and H is one of these traversaJs, we obtain a recursive description of 5's plane trees
that allows us to deduce a functional equation verified by S's generating function. Different
equations correspond to different traverszils. By solving these functional equations, we obtain
the plane tree generating functions according to various parcimeters. A siinilar method was
used in [3, 6, 7]. Section 2 of this paper contains some definitions regarding plane trees. In
Section 3, we determine a partition of the first order classes by means of some traversals. From
this partition, we deduce a method for constructing <?'s trees having n nodes by starting out
from <?'s trees with n - 1 nodes. In Section 4, we examine the set of all the plcme trees and
we perform the constructions obtained by preorder cmd level traversal. We establish the plane
trees' generating function according to the number of their internal nodes, the number of their
leaves, their right branch, length and their interned path length. la Section 5, the construc-
tion obtained by preorder traversal is applied to a class of plane trees studied by Douaghey
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and Shapiro [5] and related to Motzkin numbers. We call these trees right-leafed trees. We
determine their generating function according to the same parameters used in section 4.

2 Notations and Definitions

Let A be a finite set. A plane tree is an ordered partition {{a}; Ai; Az;... ; A^} of A, such
that a £ A and each A, is a plane tree. A's elements are called internal nodes (or nodes') and
node a is called the root of the plane tree. A plane tree is an unlabelled tree (i. e., its nodes are
indistinguishable). The sets Ai, A2,..., An are the subtrees of the root. Each node of a plane
tree can be the root of some subtrees contained in the tree. The number of a node's subtrees
is called the degree of the node. An internal node of degree zero is called a leaf. Each root is
said to be the father of its subtrees' roots, which, in turn, are called sons of their father. The
sons of the same father are referred to as brothers. The level of a node is defined as follows: the
root's level is 0, and all the other nodes' level is one unit higher than their father's. A plane
tree's k-th level is the set of its nodes at level k. Let 5 be a subclass of plane trees and let
<?n be the set of the plctne trees of S having n internal nodes. A subclass <S of plane trees is a
first order class if each P 6 <S'n cau be produced from at least oue P   <S'n-i by adding a new
leaf to P. The set of all the plane trees is a first order class. Let us extend each plane tree of
S by attaching a special son to any of its internal nodes. These new nodes are called external
nodes. If P G <5n-i, then we obtain a plane tree P   <Sn by replacing any of P's external nodes
with an internal one. In fig. 1, a 1-2 tree (i. e., a plane tree in which each node has degree
Ocr 1 or2) is illustrated. A traversal of a plane tree is a linear arrangement of its internal
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Figure 1: A 1-2 Tree

and external nodes. When each node precedes its sons, a traversal is said to be hierarchical.
Preorder traversal is a hierarchical traversed.

3 The Construction

Let 5 be a first order class and let H be a, hierarchical traversal. Let a;((P) be P's last internal
node in H, where P   <?n. Then a;;(P) is a leaf of P since H is hierarclucal. Let us denote by
^(P) the set obtained from P by deleting P's subtree having S{(-P) as its root. The tree ̂ (P)
is a plane tree having n - 1 internal nodes, but, in general, ^(P) ^ <Sn-i. We denote:

. F{P} as the set of P's external nodes that follow a;;(P) m H;
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. G{P) as the set of the plane trees obtained from P by replacing a node of ̂ "(P) with an
internal node.

For example, if H is the preorder traversal, we obtain the set G(P) shown in fig. 2.

Q a

G(P)

Figure 2: The set G^P) of a plane tree obtained by means of preorder traversal

Theorein 1 Let S be a first order class and let H be a hierarchical traversal that satisfies the
following conditions:

1. ifPe 5n, then ̂ {P)   <?n-i an<f P 6 GWP}),

2. if P 6 G{P}, then the internal node x added to P in order to obtain P is the last internal
node of P in H {i. e., x = a;;(P )).

Then the following family of sets: J='n= {£ CSn: £ = G{P) VP 6 <Sn_i}, is a partition of Sn.

Proof. Let ̂  = (J ^(P). From the definitions of internaJ. node and G{P), it follows that
P65n_i

if P 6 Sn-i, then ^(P) C <?n- Hence ff C <?". Vice versa, from condition 1, it follows that if
P 6 Sn, then (^(P) G <Sn-i and P   ^(^(-P)), and so <?" C 5. We assume that ^1, ^2 G ^"n
and ^i n ^2 + 0. Therefore, P^P-s, 6 <?n-i exist such that ^i = ^(Pi), ^2 = Q{P-i) and
GW^GW¥:^- ^P 6 (7(Pi) n^Pz), then P= Pi U{a;i} and P=P2U{a;2}, where zi and
a;2 are the internal nodes added to Pi and Ps, respectively, in order to obtain P. But, condition
2 implies that x-i (resp. sz) is the last internal node of P in Jf, and so a;i =3:2. Consequently,
PI = Pa- Hence ̂ n is a partition of <?n. D
If <? is a first order subclass zmd H is a. hierarchical traversed which satisfies conditions 1 and

2, then Theorem 1 allows as to construct Sn from <Sn-i. For every P 6 <?n-i, we constnict
Q{P} and obtain all of Sn's plane trees. Moreover, every P 6 <?n is obtained by one and
only one P   <S'n-i- Therefore, this construction allows us to obtain Sn by starting from <Sn-i;
since this construction is determined by medns of the hierarchical traversed H, it is denoted as
CH. The construction CH is a- recursive description of <? that aUows us to deduce a functional
equation verified by S's generating function. The same approach has been recently used in [3]
to enumerate various classes of column-convex polyominoes. hi the foUowing sections, we use
this construction for enuinerating two classes of pldne trees according to various parameters.

4 Plane trees

The set of all the plane trees is a first order class. Let us denote this set by P. The rightmost son
of each node of a pldne tree P   "Pis an exteraal node (see fig. 4). Let us now examine preorder
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traversaU^level traversal{i. e., visiting the root and then the other nodes on increasing levels
from left to right). It is easy to prove the following:
Proposition 2 Preorder traversal and level traversal on the class -P satisfy conditions 1 and
2 of Theorem 1.

By using one of these traversals, we can construct -Pn from ̂ _i. For example, if H is the
preorder traversal, we can construct Pg from V^ as shown in fig/3. The two'traversals yield

=>

fTr-rr^RTr
a

Figure 3: Construction CH

two different recursive descriptions of plane trees. Each of them allows us to deduce a functional
equation verified by the plane trees' generating function.

4. 1 Constructing by means ofpreorder traversal

Let H be the preorder traversal. We begin by translating coustruction CH into an equation.
Let PeP. If a and a are nodes of P, we say that {ai, 03,. .., an} is a pa</i of length n from a
to a ifa=ai, a = a^ and ajk is the father of ak+t forO < fe <n. The internal path length of
P is the sum (evaluated over all the internal nodes) of the lengths of the paths from the root
to each internal node. The right branch length of P is the length of the path from its root to
its rightmost internal node (the last one in the preorder traversal). We denote (see fig. 4):
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. r(P), P's right branch length,

. n(P), P's interned nodes number,

. 1{P), P's leaves number,

. i(P), P's internal path length.

d
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Figure 4: Parameters r(P), n(P), ;(P) and z(P) of a plane tree

Ps generating function according to the above-listed four parameters is the following:

A{s, x, y, q)=^srW^WP\
P£7>

We often denote A(a, a;, y, q) by A(^). P's right branch length is equal to the number of ̂ ~(P)'s
nodes (i. e., |-F(P)| = r(P)). Furthermore, for each k   [l.. r(P)], there is e 6 .F(P), such that
e'slevel is k (see fig. 4). Let J?~(P) ={61, 62,..., Cr(p)}, where e^ is the node at level k. We now
perform the construction CH on P; that is, we determine ^(P). Each tree of ̂ (P) is obtdined
from P by replacing a node of F{P} with an internal node (see fig. 5).

. If we replace e^, with A G [l.. r(P)-l], then we obtain P' G G{P) such that: r(P') = k+1,
n(P') = n(P) + 1, /(?') = J(P) + 1 and i{P') = z(P) + A + 1,

. if we replace e^p), then we obtain P'   ^(P) such that: r(P') = r(P) + 1, n(P') =
n(P) + 1, l(P') =1{P} and i(P') = i(P) + r(P) + 1.

Therefore, the trzinslation of this construction into the generating function A{s, x, y, q'), gives
us:

r(P)-l
^ ^ 3fc+ia;"(^)+iy'(^)+ig*(^)+fc+i + ^ 3r(P)+-ix^P)+iylWqi(P)+r(P)+l ^

PG.T k=l P^-P

:(^A(1, x, y, q) - A{sq, x, y, g)) + sxqA^sq, x, y, q).
- 3<^

Construction C'ff, applied to the set P gives all the plane trees P such that n(P) > 1, and so:

Proposition 3 The plane trees' generating function A{s, x, y, q} verifies the following func-
tional equation:

^)=^+^A(1)+^:^^A(, <). (1)
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Figure 5: The construction according to preorder traversal

4. 1. 1 Solving equations

Let us now solve the functional equation 1 by using the following Lemma [3]:
Lemma 4 Let U= ]R[[s x q}} be the algebra of the formal power series in variables s, x and
q with real coefficients and let A be a sub-algebra ofR. such that the series converge for s = 1.
Let X{s, x, q) be a formal power series in A. Let assume that:

X(s) = xe{3~) + xWX(l) + xg{3}XM,

where e{3'), f{s} and g{s) are some given power series in A. Then:

(, ) ^ E^+E^F^-E^FW
1-^(1)'

where

EW = ^ xn+lg{s)gM . .. g{3qn -l)e{sqn),
n>0

and

FW = ^ a;n+l^(. )^(3g) . .. g{3qn -l)f[3qn).
n>0

By means of Lemma 4 and Proposition 3, we get the following:

Theorem 5 The generating function A(a, x, y, q) is given by:

.

(3. X. V. ̂  = ./l(s)J°(1) - ^(l)^(^) + ^l(l)[a, x, y, q) = -----/;^ --,
/ol,

with

W = I - 3^, ' s ̂ - n-(i -, - "*«),
n>0 \-:SViV}n+l k=l

and
cnsnnni^sl "=1

J, (s) = ^g S a;'^^2 'ff(1 - v - ^A+l)-
n>0 ^Vl 1)n k=0
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1-1

where vie denote (a; g)n = H (1 - a? ).

Let us now take generating function A{l, x, y, q) into consideration. We denote the functions
A(l, a;, y, g), Ji(l, a;, y, g) and Jo(l, a:, y, g) as A(x, y, q), J^x, y, q) and Jo{x, y, q) for brevity's
sake. By means of some computations, we obtain:

Lemina 6 The functions Jo{x, y, g) and J\{x, y, q) satisfy the follovnng equations:

xq Jo(xq, y, q) = xq{l - y] Jo(x, y, q) + Ji{x, y, q},

xq J^xq, y, g) = Ji(s, y, q) - xyq Jo{x, y, q}.

Let us now use this lemma to prove that:

Proposition 7 The plane trees' generating fiinction A{x, y, q) satisfies:

A(^, <)=^J^=-: ̂ IA-
Jo{^y, l) l+^2^_y)_ xq'

-xq(l-y).

l+^3(l-y)- xq-

l+xq\l-y)-x3l

Proof. From Lemma 6, we deduce that:

xq J^xq, y, q) _ J^x, y, q) - xyq Jo{x, y, q)
?I y'9; = sg Jo(xq, y, q} = xq{l - y) Jo{x, y, q) + J'i(s, y, g)'

cirid so we obtain:

A(a;, y, g) = 2:2/9 + sg(l - y)A(a;^, y, q) + A{x, y, q)A{xq, y, q).

If A(s, y, g) = xq{l - y} + A{x, y, q), then
xq

.{x'y-q)=l+xq\l-y)-A^q, y, qy
so the proposition follows.
Proposition 3 cind equation 2 give us:

Corollary 8 The generating ftinction A{s, x, y, l} satisfies:

sxy

A(,,., y, l) = ^ _ ^ _ ^^ ̂ ^(l-. +, A(l, x, y, l)),
where:

A(l, a:, y, l)=
1 - s+zy- v/l - 2a;+ 2a;y +s2 - 2s2y 4- s2y2

(2)

Remark 9 The generating function A{l, x, y, 1) is given in [8, pag. 385]. Note that if y = 1,
we find the sajne results as in [I], that is, the generating function A(as, l, ^) is Ramanujan's
continued fraction and the average internal path length of the plane trees with n internal nodes
IS:

'7T s

Jn = ^-nt + o(n).
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4. 2 Constructing by means of level traversal

In this section, we use construction CH obtained by level traversal. Given a plane tree P, let
a:;(P) be P's last internal node in H. From the definition of ̂ ~(P), it follows that ^~(P) is the
set of P's external nodes following X{{P) in H. In. this case, if a;   ̂~(-P)> then x belongs either
to the highest level or to the highest minus one level of P and it is on the right of a;;(P) (see
fig. 6). We call right fringe length of P the number of Jr(P)'s nodes (i. e., |^~(-P)|). We denote:
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Figure 6: The set ^~(P) of a plane tree P obtcdned by level traversaJ.

. /(P), P's right fringe length,

. 1{P), P's leaves number,

. n(P), P's internal nodes number.

The plane trees' generating function according to the above-listed three parajneters is the
following:

A,{t^y)=^tfWylWxnW.
Pev

Let ̂ '(P) = {ei, 63,..., e^(p}}, where for each A £ [l. -/(p)], efc follows efc+i in H. If we perforaa
the construction CH on P (i. e., we determine G{P)), then each tree of S^P) is obtained from
P by replacing a node of JF(P) with an internal node (see fig. 7).

. If we replace e^ with 1 < k <. /(?)-!, then we obtain P' G ^(P) such that: /(?') = Jfe+1,
n(P') = n(P) + 1, 1{P') = W;

. if we replace C/(P), then we obtain P' £ Q{P} such that: /(?') = /(P) + 1, n(P') =
n(P)+l, ^(P')=W+l.

By proceeding as in the previous section, we obtain:

Proposition 10 The generating function At(t, x, y, l} satisfies:
t2X

(^y-A(l, a:, y, l))).A^t,., y, 1) = txy - i_^^_~^+^ (
From Corollary 8, A(s, s, 1, 1) = Ai(f, s, 1, 1), and so:
Proposition 11 The number pn, k of plane trees with n internal nodes and right branch length k
is equal to the number of plane trees with n internal nodes and right fringe length k. Moreover,

<2n- A; - l^ k-1

n-1 J2n-k-l
P",A =
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Figure 7: The construction according to level traversal

5 Right-leafed trees

In this section, we examine a particular subclass of plane trees studied by Donaghey and Shapiro
[5] ajid related to Motzkin numbers.
A right-leafed tree is a plane tree in which each node is the father of one leaf at most and the
leaf must be its rightmost son. Each internal node of degree 1 of a right-leafed tree is not the
father of any external node (see fig.8(a)). The set of the right-leafed trees is a first order class.
Let us denote this set by C. It is easy to prove that preorder traversal on the class C satis-
fies conditions 1 and 2 of Theorem 1, while level traversal does not satisfy condition 1 (see fig. 8).

Remark 12 By using level traversal on £, it is possible to obtain a construction of Cn from
jCn-i and jCn-2 (not illustrated in this paper).

150 160 D 17

(a) W

Figure 8: A right-leafed tree not satisfying Theorem 1 conditions

5. 1 Constructing by means of preorder traversal
Let H be the preorder traversal. The right-leafed trees' generating function according to the
number of their internal nodes, the number of their leaves, their right branch length and their
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internal path length is the following formal power series:

L^x, y, q)=^sr^xnWyWqW.
Per

The right branch length of? 6 /; is equal to the number of ̂ ~(P)'s nodes plus one (i. e.,
r(P) = |jc-(P)| + 1). Furthermore, for each A £ {1, 2,... , r(P) - 2, r(P)}, there is e G ^(P),
such that e's level is k. Let ^'(P) = {ei, 63,..., e^p)_2, e^p}}, where ejk is the node at level
k. We now perform the construction CH on P (see fig. 9). Each tree P G r is such that

=>

r<P)-2

r(P)

;k+l

Figure 9: The coustruction according to preorder traversal

n(P) ^ 2, therefore the construction CH applied to the set C gives aU plane trees P ^ C such
that n(P) > 2. By proceeding as for class 7?, we have:

Proposition 13 The right-leafed trees' generating function L(^3, x, y, q') satisfies:

- . 2^2,., 3 ^ 52sy92 m ^ , a;(59 - ^292 - y)
[s) = s'x'yq" + -,-'-L{1) + -- - - - ̂ -L{sq}.

I - sq 1 - sq (3)

5. 1. 1 Solving equations

By means of Lemma 4 and Proposition 13, we obtain the foUowing:

Theorein 14 The generating function L{a, x, y, q} is given by:

^Jx(3)Jo(l)-Jl(l)Jo(3)+Jl(l)
^3fx, y, i) = -----777^----,

'0\

with

and

Jo(. ) = l - . ^z/g2 E 7-^- 'IK^A+1 - .2g2<fc+l) - y),
n>0 \a1' 1}n+l k=0

J, (3) = 32a:W E 7r£T-'ff(^+l - ^2(k+l) - VY
n>0 \. -"li1Jn k=Q
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We denote the functions L{l, x, y, q), J-i{l, x, y, q) and Jo(l, x, y, q) as L(x, y, q), J-i{x, y, q) and
Jo(x, y, q) for brevity's sake. After some computations, we prove that:

Lemma 15 The functions Jo{x, y, q} and J-i{x, y, q] satisfy the equations:

xq Jo{xq, y, q] = xq Jo{x, y, q) + J^x, y, q),

xq Ji(xq, y, q) = -x2yq3 Jo(x, y, q) + Jz{x, y, q).

By using this lemma, we obtain:

Proposition 16 The generating function L{x, y, q] satisfies:

Ji{x, y, q) xq{l+xyq2)
^x, y, q)=

J^y, q) i+^2_ a;g2(l + xyq3} - xq.

i ^ ^3_ sg3(l 4- a;yg4)"
l+xq^T^SS^yS

Proof. From Lemma 16, we deduce that:

xqJi(xq, y, q) 
_ 

J^x, y, q) - x2yq3 Jo{xq, y, q)
l'yf q) = 

xqJo{xq, y, q} 
= 

xq Jo{x, y, q) + J^x, y, q) '

and so obtain:

L{x, y, q} = x2yq3 + xqL(xq, y, g) + L[x, y, q)L[xq, y, g).

If L{x, y, q)=xq+ L{x, y, g), then

sg(l + xyq2}
£(a;-!''''=l+^-'£(;,, ',,, ).

Hence, the proposition is proven.
From Proposition 13 and equation 4, it follows that:

Corollary 17 The generating function L(^s, x, y, l) satisfies:

L^X-^'l^y-^. )+^I-xs+L(l'x'y-l))-
where:

L(l, x, y, l)=
1 -z-V^l - 2z +2:2 - 4a;2y

(4)

D

L

Remark 18 From corollary 17, we have:

L{x, l, l)=
l-x-Vl-2x-3x2

Hence, we obtain the sajne result as Donaghey and Shapiro [5]. That is, the number of right-
leafed trees with n internal nodes is equal to (n - 2) - th Motzkin niunber:

M^, i, i)^-,. E^(n;, 2)(T).
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Remark 19 Ify = 1, we have:

where:

and

L(x'l-q)=^MV,0^, 1,1

jo(., i,, ) = E(-i)n xnfn.
- 

(-f'?3)n,.

o^,., y;=^-x; ^^^^ -^^ ,

^(a:, l, g)=^(-l)"^V"+3(^3;93)^
(g2; ?2)nn>0

Let us now determine the average internal path length Jn of a right-leafed tree with n internal
nodes:

[a;n]^z(^l^)l^
'n- [^ , 1, 1) .

From equation 4, we obtain:

QL{x, l, q)
Qq = 3.2/+£(.,, 1,, ) f. + M(^>) +("+£(,, i,, ), f,M(^i. ») ̂  a^t. i. ri^

[xq) ' Qq j

By setting W{x) - ^L(x, 1, q)^, we find:

W{x)=
3s3

+
3x2

Hence:
2v/l-2z^s2 ' 2(1-3s)'

3n-17^= °^n-2 ]
2mn_2 ' 277ln_2'

where /3n is the central trinomial coefficient (i. e., /?" = [a;"](l -2s -3a:2)-1/2). In [2], it is shown
that:

}n-l

mn-2 fl+
2n-lV7 m ^ 

' 

16(n-2)^
^. 2"_lfi +_3_
m, -2 ~ 6 ^ ' 4(n-2jy'

thus:

Theorem 20 The average internal path length of right-leafed trees with n internal nodes is:
ITT S

z"=^3-"?+o(n).

6 Conclusions

We illustrated a construction for enumerating classes of plane trees. We described two appli-
cations of this metliod, namely to the whole class of plane trees and to the class of right-leafed
trees, but the method can be applied to many other classes such as 1-2 trees, binary aud m-ary
trees, and so on. For instance, the 1-2 trees' generating function defined according to the num-
ber of their internal nodes, the number of their leaves, their right fringe length and obtained
by meajns of level traversal, is:

2tey(l + ts)(l - f) + t2(l +xy)(l-x- ̂ l-2x+xs- 4xsy')
''"'^~ 2(1 -t+ te + ̂ ya;2) ^-

Moreover, this method can be extended to other classes of combinatorial objects, namely lattice
paths dnd directed ajiiinals.
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