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Abstract

For a hypermap of genus g > 1, we give the bounds on the order
of commutative and nilpotent automorphisms group depending on the
smaUest divisor of its order. These bounds are sharp and reached for
mfinitely many g.

Resume

L'ordre d'un groupe commutatif ou mlpotent d'automorpliismes
d'une hypercarte de genre g >1 pent etre borne en fonction du plus
petit diviseur de cet ordre. Ces bornes sont atteintes pour une in&ut^
de g.

1 Introduction

On a compact Riemann surface of genus g > 1 the maximal order for a
commutative automorphism group is 4:(g + 1). This result was first proved
in 1965 by C. Mac Lachlan (see [McL]). An improvement was obtained by
R. Zomorrodian in 1988. He shows in [Zo] that if p is the smaUest divisor
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of a nilpotent automorphism group G then | C? |^ 'lp{g - l)/(p - 3) if
p^ 2orp ^ 3 and that this bouud is reached for at least one g when
p is fixed. Ifp=3, | G |^ 9(^ -1) and iflfp = 2, | G \<, 16(^ - 1).
In this paper we show that these results can be seen as a generalization
of results concerning a restricted type of surfaces: the so-called p-elliptic
surfaces - these can be viewed as p-sheeted coverings of the sphere, where p
is a prime- see below, or [Be2]. Our approach is combinatorial in nature; we
represent a surface with a pair of permutations (cf, cr) such that the group
they generate is transitive; such a pair is called a hypermap. Then Aut(S)
becomes Aut(a, a) the centralizer of the two permutations. As in the classical
case, Machi in [Ma] proved that, for g >. 2^ \ Aut(a, cr) \<, 84(g - 1) where
g is the genus of the hypermap (see section 2). We proved in [Be5] that
on a hypermap of genus g > 1, the bounds on the order of automorphisms
group depend on the smallest divisor of its order. More precisely, usiug
Machi's technique, we proved that if p is the smallest di visor of the order of
Aut{a, a), \Aut(a, a)\<2p{g-l)/{p-3) for p ^ 5, \Aut{a, a)\^15(g - 1)
for p = 3 and, if p = 2, the Hurwitz bound 84(^r - 1) cannot be iinproved.

We give here bounds for a commutative or nilpotent group of automor-
phisms stiU depending on the smallest divisor of its order. The order of a
commutative group of automorphisms is boTinded by p(2 + 2g/(p - 1)) and
this bound is sharp ajad reached for infinitely many g.

The order of a nilpotent group of automorphisms follows other laws.
Namely, for p > 3, the bound is 1p{g - l)/(p - 3); if p = 3, the bound
is 9(g - 1) and 16{g - 1) ifp= 2.

If we compare p(2 + 2^/(p - 1)) and 1p(g - l)/(p - 3), we find that
p(2+2g/{p-l)) <, 2p(g - l)/(p - 3) and that they happen to be equal for
j? = (3 + v/Sg+T)/2; in which case, the automorphism group is of order p2,
thus commutative.

.a*

2 Hypermaps, automorphisins and induced
automorphisms

For a general introductiou to the theory of hypermaps see [CoMa]. In this
section we recall a few definitions ajid results that will be needed in the
sequel.
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Definition 2. 1 A hypermap is a pair of permutations {a, a} on B (the set
ofbims) such that the group they generate is transitive on B. When a is
a fixed point free involution, (a, o-) is a map. The cycles of a, a and a~l a
are called edges, vertices and faces, respectively; but if there specification in
termes of edges, vertices or faces is not needed, we will refer to them as
points.

Euler's formula gives the relationship between the numbers of cycles of
these three permutations:

z{a) + z(a) + z{a~la) =n+2-2g

where n =. card(B), g is a. non-uegative integer, called the genus ot (o;, o-),
and where for any permutation 0, z(6} denotes the number of its cycles (cycles
of length 1 are included) (see [CoMa], p.422). li g = 0, then {a, a) is planar.

Definition 2. 2 An automorphism <1) of a hypermap (cr, o-) is a permutation
commuting with both a and a:

a<f> = <f>Ct and a'<f) = <f>cr .

Thus, the full automorphism group of (Q:, cr), denoted by Au<(a, o-), is
the centralizer in Sym{n) of the group generated by a and cr. A subgroup
G of Aut(a, a} is an automorphism group of (o'. o-); the transltivity of (a, (r)
implies that Aut(a, cr) is semi-regT ilar. Recall here that a semi-regular group

is defined by the fact that all its orbits are of the same length namely | G ].
We denote by xe{<f>) the niunber of cycles of a permutation 0 fixed by an

automorphism <^ and by x{(f>) the total number of cycles of a, a, and a~la-
fixed by (f>; o{(f>) will be the order of ̂ >. If (o;, o-) is planar (^ =0) then
X(^) =2 for all non trivial automorphisms (f>. MOTeoye r' AUA(a'<T)lsone of

'C'n (cycUc), Dn (dihedral), A4, S^ and As (see [CoMa] p.464). We shaU need
this result later.

We now define an equivalence relation R on the set B.

Definition 2. 3 Let G be an automorphism group of the hypennap (o:, o-).
Two brins &i and b^ are equivalent, 61^62, if they belong to the same orbit
of G.
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This leads to the following definition.

Definition 2. 4 The quotient hypermap (a, or) of (a, a} with respect to an
automorphism group G, is a pair of permutations {'a, cr) acting on the set B,
where B = B R and a, a are ^e permutations induced by a and a on B.

The following Riemann-Hurwitz formula relates the genus 7 of (a', a) to
the genus g of (Q;, cr) (see [Ma]):

(RH1) 2g-2=card(G){2^-2)+ ^ xW .
^G-{id}

It follows that "i <: g. In case Gr is a cyclic group, G =< <f> >, {RH1) becomes

(RH2)
o(^)-l

2^-2=car<G)(27-2)+ ^ ^')
t=l

As mentioned above one Cdn prove that for g >2 \ Aut(a, a) |^ 84(^ - 1).
If ̂  is an automorphism of order m, then, for all integers i, ̂ (^») ^ x{<f))i

and when m and i are coprime ^({<f>) = x{(f))-
Let (o:, a) be a hypermap, G an automorphism group of (o:, o-) and let

(a, a) be the quotient hypermap of (o:, cr) with respect to G. The proof of the
following results can be found in [Be3]. For any element ̂  in the normalizer of
G in Au<(a, cr), the permutation ^, defined as ij) = i^/G, is an automorphism
of (a, or). The two following operations on (a, cr) are equivalent:

(i) quotienting (o:, cr) first by G dnd then by ^
(ii) quotienting (o:, o-) by < G', ^ >.

Definition 2. 5 The permutation ^ is called the induced automorphism of
i/} on (a, a). We also say ij) induces ^ on (a, o:).

We now give the theorem that counts the fixed cycles of an induced
automorphism. (see [Be3])

Theorem 2. 6 Let (a, <r) be a hypermap admitting an automorphism ^ and
an automorphism group G such that G is normal in < G, i/} >. Then:
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I G | xW = E X(^)
4'^G

where ^ is the permutation induced by ̂  on the quotient hypermap of
{a, a) with respect to G.

When G = Cp, we have simpler formulas (see [Be2]). G is now generated
by an automorphism (f> of prime order p and ̂  is an element of Aut(ot, a).
Then there are two cases.

Proposition 2. 7 Let ̂  commute with if>.
i) If ̂  is of order m where p and m are coprime, then

x(^)p = xW +{p- i)x(^)-

ii) If ̂  is of order pn, p and n coprime, and (f> belong to <^ >, then
x[^)p=xW+{p-^xW-

iii) If ̂  is of order pmn, m > 1, p and n coprime, and (f) belong to <t^>,

then
xW = xW-

iv) If '0 is of order pm, m being any integer, and <f) does not belong to
< i/> >, then

and

xWp-Y^xW)
«=0

^(^)=0(mod p).

Proposition 2. 8 If^ does not commute with <f), then

xW = xW-

In the classical theory of Riemann surfaces, a hypereUiptic surface 5 is a
surface admitting an involution which is central in Aut(S) and fixes 2+2g
points. This notion applies to hypermaps [CoMa]. In the next defaution we
consider automorphisms of prime order p to generalize the idea of hyperel-
lipicity.
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Definition 2. 9 A hypermap (o', o') of genus g > 1 is said to be j>-elliptic if
it admits an automorphism (f> of prime order p such that:

(1) the quotient hypermap (a, a) with respect to <f> is planar,
(2) < <p > is normal in Aut(a, cr).

Remark 2. 10 This definition is equivalent to that given in section 1

Since an automorphism on the sphere fixes exactly 2 points, an automor-
phism ?/? on a p-elliptic hypermap of genus g fixes ̂ (^) = 0, 1, 2, p, p + 1, 2p
or 2 + ̂ gl{p - 1) points. It is a consequence of Proposition 2. 7 together with
the fact that a planar automorphism fixes exactly 2 points (see [Be4]).

Proposition 2. 11 Let (0, 0') be a hypermap and G an automorphism group;
let N(G) be the normalizer of G in Aut{a^cr') and t > 0 the number of points
fixed by non trivial elements of G. Then there exists a homomorphism h from
N(G) to St and whose kernel is a cyclic group.

We remark that when G =< <1> >, then the image of h is contained in
sxW-

For complete proofs of these results see [Be3].

Theorem 2. 12 Let (o', o") be a p-elliptic hypermap. Then Aut(ot, a) is either
Cpn (cy die) where n is a divisor of 1 + 2g/(p - 1); Cpn or Dpn (dihedral)
where n is a divisor of 2g/{p - 1); a semi-direct product of either Cn or a.
lifting of Dn by Cp, where n is a divisor of 2 + 2g/(p - 1); or Aut(a, cr) is of
order 12p, 24p or 60p (liftings of A^, 84, As respectively).

Theorem 2. 13 Let (a, <7) be a hypermap of genus g >^ 2, p the smallest
prime dividing the order ofAut(a, a), where Aut(a, a) is nilpotent. Let ̂  be
an automorphism of order p such that x{. 4>} = 2 + '^9 I (f - 1). Then (a, <r) is
p-elliptic for the automorphism (f>.

By the Riemaim-Hurwitz formula , we know that if a hypermap (a, a)
of genus g > 1 admits as. automorphism group G such that the quotient
hypermap with respect toitis 7 > 1, then \G \<. g -I;

We uow give a bound when 7=1.
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Theorem 2. 14 Let (a, cr) be a hypermap of genus g > 1 and G an automor-
phism group such that the quotient hypermap with respect to it is of genus
7=1 then:

] C? |^ ^(. 9 ~~ 1) where p is the smallest prime that divides the order of
Aut{a, cr).

The next theorem shows that if Aut{a, o-) is of odd order, then in the
Hurwitz bound 84(^ - 1), 84 cdn be replaced by 15 if | Aut{a, <r) | is dividable

3 and -^ if its smallest divisor p > 5.
p - J *. -

Theorem 2. 15 Let {ot^a} be a hypermap of genus g >1, G an automor-
phism group such that the quotient hypermap with respect to it is of genus
7=0 and p the smallest prime that divides the order ofAut^a^cr). Then:

Ifp^5\G\^-^(g-l)
If p= 3, | G|< 15(5-1)
Ifp = 2, t/ie Hurwitz bound \ G \<, 84(5 - 1) cannot be improved.

We now give a technical lemma which wiU help for the sequel:

Lemma 2. 16 Let {a, a-} be a hypermap of genus g >^2, G an automorphism
group such that p is the smallest divisor of its order, <f> an automorphism of
order p, normal in G and fixing two points. Then either G = Cn or G = Dn
with n < ^pgl{p - 1) .

For the proofs of these results see [Be5]

Finally, we give two results about automorphisms of the torus.

Proposition 2. 17 Let (o'lO") be a hypermap of genus 1 and tf; an automor-
phism; then only two cases can happen:

i) either ^ fixes nothing and neither does any non trival power of if^.
ii) or ip fixes at least one point and then tf; is of order 2, 3, 4, 6 with 4, 3, 2,1

fixed points respectively.

For a proof see [Be5].

Theorem 2. 18 Let {ot^cr} be a hypermap of genus 1 then Aut(a, cr) is iso-
morphical to a semi-direct product of an abelien group H with a cyclic group
Cm where m = 1, 2, 3, 4, 6 and all automorphisms of H fix no points.

For a combinatorial proof see [Ca].
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3 The commutative case

let us begin this section with an important remark.

Remark 3. 1 Let (0, 0-) be a hypermap of genus g^2. We know by Theorem
2. 15 that an automorphim group G whose smallest divisor of the order is
p > 5 satisfies \ G \^ 2p{g - l)/(p - 3). Let \ G \= pK with K+\. Then,
p<K < 2(^-l)/(p-3). Thus, p(p-3] < 2(5-1) that isp2 -3p+2g-2 ^ 0;

it implies that p < (3 + \/Sg + 1)/2. This remark can be summed up in the
following way: either \G \=p andp <2g+1 or | G? |>p then p belongs to
{5,. -., (3+^~FT)/2}.

Theorem 3. 2 Let (cr, o-) be a hypermap of genus g >2, G a commutative
automorphism group and p its smallest prime divisor, then:

IG'|^p(2+2g/(p-l))

Proof. We suppose that the quotient hypermap with respect to G is of
genus 70 = 0 otherwise by Theorem 2. 14 \ G \^ 2p(g -l)/(p - 1). Let us
consider, <^ an automorphism of prime order p central in the p-Sylow (we take
the one fixing the most points in the center). Let 7 be the genus of {a, a)
the quotient hypermap with respect to < (f> >. Since G is coinmutative,
< <f>> is central in G and therefore all automorphisms of G are induced on
the quotient w. r. t. < <f> >.

Let 7=0, then the hypermap is p-elliptic and the maximal order of G is
p(2 + 2^/(p - 1)) (Theorem 2. 12).

Let 7 = 1- Let ̂  be an automorphism of prime order. Because it equals
the quotient hypermap of (a, cr) w. r. t. G, the quotient hypermap of (a, ?)
w.r. t. < ^> is of genus 0. Thus, ^ fixes points on the torus (immediate
application of {RH)). Now, by Proposition 2. 17, o(^) = 2^ or 3;

If p = 3, o(<^) = 3, x(<^) =ff-J- »W == 3 and xW = 3- since the
quotient hypermap with respect to ̂  is a commutative subgroup of 53 of
odd order, it is either the identity or Ca; thus, G/ < (j)>=  3,  '3 x C'3. Thus
I G |<27^ 3(^+2) for^ ̂  5. K^ ̂ 4 then xW ̂  3 thus \G/ <^>\^3
i.e. | G |^9 ̂ 3(^+2).

If p = 2, oW = 2, x(^) = 2g-2, oW = 2 and x(^) ^4 or o(^) = 3 and
^(^) = 3. Thus, the quotient hypermap with respect to ̂  is a commutative
subgroup of 83 or 84. Hence, \G/ «1>>\^S or G/ < (f> >=  3 x Cs. Thus,

90



G [^ 18 ̂  4(5+1) for g>2. 1ig=2 and | G |= 18, then an automorphism
of order 3 fixes 4 points (it can not fix only one point) and thus the other
automorphism group of order 3 would have a fixed point in common with it
which is impossible. If^=2 and ] G |= 16, then an automorphism of order
2 fixes either 2 or 6 points that is | G |^4or the hypermap is hyperellliptic
and then \G\^12.

Let 7^2.
If ̂ (^) = 0, then all automorphisms of order a multiple of p fix no point.

Now by (RH), we know that E^eG-. d =2^-2+2 | G | but E^eG-.d =
"L^H-id =2^-2+2 | 5' ] where H is the product of the g-Sylows subgroups
of (9 where q is a. prime strictly greater than p; hence the contradiction.

If ̂ (<^) = 2, then by Lemma 2. 16, \ G \< 2pg/{p - 1).
If 2 < xW < P' then evTY element of G fixes all the points fixed by <f>.

Thus, G is cyclic and by (EJf2), we have | G |^ 2^+1.
If p ^ ^(^) < 2p, let g be a di visor oi\h(G)\ the image of G in S^y, q is

greater then p and divides (2p-1)!. Since no prime greater then p is repeated
twice in (2p-1)!, g is square-free. If q-i ^ qi are two different primes dividing

9, then, since h{G) is commutative, there exists a cyclic subgroup of order 91^2
in h{G); but q-^q-t >:p2 > 2p a contradiction. Thus, h{G) is a commutative

group of order q, where q is a. prime such that p ^ q < 2p. By (-R-ff)i
]kerh\^l+2g/{q-2)i. e. \ G \^ q(l+2g/(q-2)). Now, g(l + 2^/(g-2))
is a decreasing function on the intervaUe {5, ---, (3 + v/8^ + 1)/2}. Thus,

G \<, p(l + 25/(p - 2)) and | G |^ p(2 + 2^/(p - 1)).
K xW ̂  2P we have by ̂ RH}that 2^ - 2 ^ p(27 - 2) +2p(p - 1). Thus,

after computation, 2+2^/(p-l) > p(2+27/(p-l)). Now, \G\lp =| G/ <
4> >|^ ?(2+27/(p-l)) by induction on 7. Hence, | G |^ p(2+25r/(p-!)). <>

Example 3. 3 Let g = 2, (Q, o-) 15 defined on 12 ftn'ns w^A 6 edges, 2 vertices
and 2 faces:

<7=(1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 12)
a=(l, 2)(3, 4)(5, 6)(7, 8)(9, 10)(ll, 12)
a<r=(l, 4, 5, 8, 9, 12)(2, 3, 6, 7, 10, ll)
Aut(a, a) =C'2 x Ce.

In Figure 1 the cuts have been made along the edges. Edges bearing
the same number are actually identified. The hyperelliptic involution is a
rotation around an axis perpendicular to the figure going through the edge
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Figure 1: The double hexagon

(1, 2) and exchanging the two faces. The automorphism of order 6 can. be
viewed as a rotation around as. axis going through the midpoints of the two
faces. It fixes both faces while its square also fixes the vertices A and B.

Now, we show that this bound is sharp, since for infinitly mdny g > I [i
can be found a coiiimutative group of order p(2 + cigl{p - 1)) as the following
proposition shows:

Proposition 3.4 For all prime p and for all g >, 2 such that p - 1 divides
2g and p divides 2 + 2g/{p - 1), that is g = (kp - 2)(p - 1)/2 k being any
integer, there exists a p-elliptic map such that its automorphism group is
exactly Cp x C'2+23/(p-i).

Proof Let ^ > 1 beaji integer and (a, cr) the following hypermap on
p(2 + 2^r/(p - 1)) brins with 2 + 2^/(p - 1) edges, p vertices and p faces:

(T = (l, p+l, 2p+l,.. . , p(l+2^/(p-l))+l) -. . (p, 2p,... , p(2+2^/(p-l)))
a=(l, 2, 3... p).. -(p(l+2^/(p-l))+l), ---, p(2+25/(p-l)))
Since ocr = era, cr-l<7 is of order 2 + 2^r/(p - 1) (it has p cycles) and

Aut(a, cr) =< a, cr >. Thus, Aut{a, a) = Cp x Ct+2g/(p-i)- <0>.

Reinark 3. 5 Note that when p = 3, the condition on g is reduced to g =
1 mod 3 and when p = 2 no condition at all is required so that for all
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g > 2 it can be found a hyperelliptic hypermap of automorphism group equal
fO = C'2 X C'23+2-

Corollary 3. 6 Let (a, cr) be a hypermap of genus g>2 andG a commuta-
five automorphism group then \ G \< 4(^ + 1)

Proof Immediate since the function /(p) = p(2+2g/(p-l)) is decreasing
and reaches its maximum for p = 2. <>

4 The nilpotent case

Let us also begin this section with an important remajk.

Remark 4. 1 The bound 2p(g - l)/(p - 3) of Theorem 2. 15 follows imme-
diately from the Riemann-Hurwitz formula and can also be found in [Zo].
The bound p(2 + 2g/(p - 1)) of Theorem 3. 2 is new. The two bounds are
equal if and only if p = (3 + ^/Sg + 1)/2 in w/iic^ case 2p(g - l)/(p - 3) =
y(2 + 25/(p - 1)) = p2. 5o f/iaf | G |= p2 and G is abelien. Thus the two

'bounds meet, so that 2p{g-l)/{p-3) is a bound reached for even commutative
groups and therefore for nilpotent groups.

Here is an example where the bound 1p{g - l)/(p -3) is reached.

Example 4. 2 Consider (a', 0-) is defined on 25 6rms wzf/i 5 edges, 5 vortices
and 5 faces:

a =(1, 6, 11, 16, 21)(2, 7, 12, 17, 22)(3, 8, 13, 18, 23)
(4, 9, 14, 19, 24)(5, 10, 15, 20, 25),

a =(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)... (21, 22, 23, 24, 25),
a<r=(l, 10, 14, 18, 22)(2, 6, 15, 19, 23)

(3, 7, 11, 20, 24)(4, 8, 12, 16, 25)(5, 9, 13, 17, 21).
Then g =6 and Aut(a, cr) = C'5 x C's.
Here, the two bounds are reached.
52 =2. 5(6 - 1)/(5 -3) = 5(2 +2. 6/(5 - 1)

When p is either 2 or 3 the bounds don't derive from a general formula
as the two following theorems show.
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Theorem 4. 3 Let (o;, a) be a hypermap of genus g >2, G a nilpotent auto-
morphism group and 3 its smallest prime divisor then

I G 1^9(^-1)

Proof Let us consider, <j> an automorphism of prime order 3 such that
it is in the center of the 3-sylow subgroup of G. Let 7 be the genus of the
quotient hypermap (a, or) with respect to < <f> >. Since G is nilpotent, all
automorphisms are induced on the quotient. We consider that the quotient
hypermap with respect to G is of genus 0 otherwise | G \<^ 8(5 - 1).

If -y = 0, then the hypermap is hyperelliptic. Thus, G is of maxima! order
3(^+2) (Theorem 2. 12).

Let 7=1, then ̂ (<^>) =1g -2. There exists an automorphism ^ of prime
order fixing points on the torus (because the quotient by G is of genus 0).
By Proposition 2. 17, 2. 18, we know that G/ < </)> is the semi direct product
of H a, group regular on 2g -2 points (since all automorphisms fix nothing)
and a Cm where m = 1, 2, 3, 4, 6. Thus, \G/ < <f> >\<, 3{g - 1) because the
smallest divisor is 3. Hence, | G \<, 9{g - 1).

Let 7^2, then we may procceed by induction on 7. (RH) gives that
1g-2^ 8(27 - 2). Thus, ^-1 ^ 8(7 - 1). Now, | (? | /p^9(7- 1). Hence,
\G\^9(g-l).

Let us now give the last bound on nilpotent hypermaps:

Theorem 4. 4 Let (cr, a) be a hypermap of genus g >. 2 and G a nilpotent
automorphism group then \G \<^ 16(5' - 1)

Proof. Let us consider, ip an automorphism of prime order 2 such that
it is in the center of the 2-sylow subgroup of G. Let 7 be the genus of the
quotient hypermap (a, a) with respect to < <f> >. Since G is mlpotent, all
automorphisms are induced on the quotient. We consider that the quotient
hypermap with respect to G is of genus 0 otherwise | G \<: 4(^r - 1).

If 7 = 0, then the hypermap is hyperelliptic. Thus, G is of maximal order
8(g + l)(Theorem 2. 12).

Let 7=1, then ^(<^) =2^-2. There exists an automorphism ^ of
prime order fixing points on the torus (because the quotient by G is of genus
0). By Proposition 2. 17 and Theorem 2. 18, we know that G/ < <f>> \s
the semi direct product of H a. group regular os. 2g - 2 points (since all
automorphisms fix nothing) and a Cm where m = 1, 2, 3, 4, 6. In the case ^
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m = 6, we have G' is a semi direct product otC = Cgby H, where H is
normal in G. Let us show that H is reduced to the identity. The elements of
H of order prime to 3 commute with the  '3 contained in C; therefore they
are induced on the quotient of (a, o-) w. r. t. C's which is of genus 0. Now,
each of these induced automorphisms fix two points on the sphere; This is
not possible by Proposition 2. 17. Hence, H is a 3-group. The element r of
order 2 in C commutes with all elements of H and since the quotient w. r. t.

r is planar, the elements induced on this quotient by the elements of H must
fix two points. As before this is not possible. Thus, G = Ce. If m < 4, then

GI «p >|^ 4(2^ - 2) and [< (j> >|< 2 implies ] G |^ 16(^ - 1).
Let 7^2, then we may procceed by induction on 7. (RH) gives that

2g-1^ p(27 - 2). Thus, g-\ > p{-{ - 1). Now, \G \ Ip < 16(7 - 1).
Hence, \ G \< 16{g - 1). 0

Corollary 4. 5 Let (o;, o") 6e a hypermap of genus g >. 2 and G a nilpotent
automorphism group then | G> |< 16(5 - 1)

Proof Immediate since the function /(p) = 2p(^-l)/(p-3) is decreasing
and reaches its maximum for p = 5 where /(5) = 5(g - 1). Thus, the result
is smaller than 16(^-1) 0
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