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Abstract. We list several open problems concerning the enumeration of directed animals on two-
dimensional lattices. We show that all these problems are special cases of two central problepis: calculating
the position-generating function and the perimeter and area generating function of square lattice animals.

We propose a possible direction for solving these two problems: we extend Dhar's correspondence
between hard particle gas models and enumeration of animals according to the area, and show that each
of the main two generating functions is, essentially, the density of a gas model given by the stationary
distribution of a probabilistic transition.

We are able to compute the density of certain distributions. We thus obtain new bivariate generating
functions for directed animals on the square lattice and on the triangular lattice respectively. We derive
from these two results the generating functions of animals on decorated square and triangular lattices, as
well as the average number of loops in directed animals as conjectured by A. R. Conway.

Resume. Nous commensons par recenser les problemes ouverts concemant 1'^num^ration des animaux
diriges sur reseaux de dimension 2. Nous montrons qu'il existe deux questions centrales, auxquelles se
ramenent les autres problemes : 1'une d'elles est relative a la position des ceUules d'un animal sur reseau
carre, 1'autre a son perimetre de site.

Pour tenter de repondre a ces deux questions, nous etendons Ie lien decrit par Dhar entre les modeles de
gaz a particules dures et 1'enumeration suivant 1'aire des animaux diriges : nous demontrous que chacune
des series generatrices principales s'exprime simplement en fonction de la densite d'un modele de gaz donn^
par la distribution stationnaire d'une transition probabiliste.

Dans certains cas, cette densite se calcule fadlement. Nous obtenons ainsi une nouvelle serie g^n^ratrice
bi-variee pour les animaux diriges, sur reseaux carre et triangulaire. Nous deduisons de ces d.evx resultats
les series generatrices des animaux sur reseaux decores, ainsi que Ie nombre moyen de boucles dans un
mmal de taiUe fixee, qui avait ete conjecture par A. R. Conway.

1 Introduction

An animal on a graph G! is a finite connected set of vertices. In other words, auy two vertices of an
animal A are connected through a path of G having all its vertices in A (Figure 1). On a periodic
infinite graph, animals aj-e usually defined up to a translation. These simple combinatorial objects
are of interest in statistical physics. For instance, they are the main ingredient of cell growth
models. Moreover, enumerating aiiimals according to the perimeter and the area permits to solve
the (site) percolation model on the underlying graph G [6].

*LaBRI, Uaiversite Bordeaux 1, 351 cours de la Liberation, 33405 Talence Cedex, FRANCE.
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Figure 1: An animal on the square lattice.

Enumerating these animals seems to be a very difficult problem. To our knowledge, the most
precise result is the following [14]: there exists a constcint K such that, if a^ denotes the number
of square lattice animals having n vertices, then a^n tends to K when n tends to infinity. Finding
lower and upper bounds for K is difficult, and not even the first digit of K is known:

3, 87 < K <4:, 65.

The enuineration of certain directed animals is more tractable. Let G be an oriented graph
having a distinguished vertex 0, called the origin. If an edge goes from v to w, then v is said to
be a father of w. A directed animal on G! is a finite set of vertices A, containing 0, such that any
vertex of A can be reached from 0 through an oriented path of G haviug aU its vertices in A. The
origin 0 is the source of A. The vertices of A are called ce/fe, and the number of cells is the area
of the animal. The neighbours of A are the vertices that do not belong to A but have a father in
A. The (site) perimeter of A is its number of neighbours. This definitiou generalizes the notion of
(undirected) animals given above since iiaoriented graphs can be seen as a special kind of oriented
graphs, by replacing each unoriented edge by a pair of oriented edges. From now on, we only deal
with directed animals, dnd the word directed will be often omitted.

We study in this paper directed animals on the square, triangular and honey comb lattices.
Examples are given in Figure 2. The edges are oriented upwards in aU lattices. The leftmost
animal has area 12 dnd perimeter 10.

0

Figure 2: Directed animals on two-dimensional lattices.

Directed animals are related to directed (site) percolation niodels. Moreover, as shown by Dhar
[II], enumerating directed animals according to area on certain graphs is equivalent to solving a
hard particle gas model on other graphs. A hard particle gas model is a statistical lattice model in
which two adjacent vertices cannot be simultdneoiisly occupied by molecules of gas. A combinatorial
proof of this equivalence has also been given using the notion of heaps of pieces [4, 15].
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Actually, the correspondence between directed animals and gds models is not only a motivation
for studying animals. It is also a very efficient way of enumerating them according to the area: the
few exact known results can be obtained by solving the corresponding gas model. The main two
results are the area generating functions of directed animals on the square lattice and on the three-
dimensional next-nearest neighbour lattice drawn in Figure 3 (a) [11]. For square lattice animals,
there exists, besides the gas model argument, a very simple and nice combinatorial proof based
on the notion of heaps of pieces [4, 15]. However, this combinatorial method has not (yet) been
extended to animals in three dimensions, for which the very difficult solution of the corresponding
gas model, called the hard hexagon model, remains the unique enumeration technique [2].

Proposition 1. 1 [10, 11, 13] - The area generating function of directed animals on the square
lattice is

s°<i'=i((l-i^) -1/2

(a) (b) (c)

Fignre 3: Three-dimensional oriented lattices.

Looking upon dnimals as heaps of pieces suggests immediately that the area generating function
of directed ajiimals on the triangular lattice is obtained by replacing t by t/{l - t) in the area
generating function of square lattice animals. Similarly, the same substitution, performed on the
generating function of animals on the lattice of Figure 3(a) gives the area generating function of
animals on the lattice of Figure 3(b). Actually, we can obtain a slight refinement of the area
generating frmction. Let u be a ceU of a directed animal A on the triangular lattice; we say that v
is only supported at the center if the vertex placed just below in the same column is the only father
of v lying in A. The number of such cells is denoted c(A).

Proposition 1. 2 - The generating function of directed animals on the triangular lattice, counted
according to their area and number of cells only supported at the center is

2o(<, w)=^^A'wc(A)
A

In particular, the area generating function of directed animals on the triangular lattice is

W} = ^ ((1 - 4<)-1/2 - l) . (1)
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Finally, Conway, Brak and Guttmann [8] have conjectured simple algebraic identities for the
generating functions for directed animals on decorated square lattices These conjectures have been
proved by AU[1J. More details on these lattices are given in the following sections together with
a new proof of Ali's results. We also introduce some decorated triangular lattices and give simple
algebraic expressions for the generating functions of directed animals on these lattices

The animals above are sometimes called site-animals to distinguish them from bond-animals,
which are'connected sets of edges. More precisely, a (directed) bond-animal A on an oriented graph
G is a finite set of edges such that each edge of A belongs to an oriented path of Gstaxtwgtiom 0
and having all its edges in A. The area ofabond-animal is its number of edges. The neighbours oi
A are edges that do not belong to A, but whose starting point belongs to an edge of A. The (bond)
perimeter of A is its number of neighbours. The enumeration of bond-animals accOTdmS to the
perimeter and "the area is related to bond-percolation models When there is no risk of confusion,
we will continue to use simply the word "animal" to denote site-animals.

Figure 4: A directed bond-animal on the square lattice (area 21, perimeter 20).

As far as we know, we have mentionned a// exact known results concerning the enumeration
of animals. By elimination, one can obtain an infinite list of open problems. Here is, however, a
tentative classification.

". The area is the only statistic by which exact enumerations are available. One could try to
into account other parameters, such as the perimeter, given its crucial role in percolation models.
Conway has shown that the perimeter generating function of square lattice directed animals is not
algebraic [7].

. Nothing is known about bond-zinimals.

. Thehoneycomb lattice raises serious difficulties, for site-animals on this lattice do not behave
Uke animals on the square or triangular lattice. In particular, their area generating function does
not seem to be algebraic.

. Other lattices could be studied, in two and three (and more... ) dimensions. In particular, the
eniimeration of directed animals on the lattice of Figure 3(c) corresponds to the famous unsolved
hard square model. ^ ^ .... ",,...., ^,, .

We'focus in this paper on directed animals on two-dimensional lattices. We list in
section several open problems concerning their enumeration. We show that aU these problems
(including the enumeration of bond-animals on the square lattice, the enumeration ofsite-animals
on the honeycomb lattice, etc. ) are special cases of two central problems: calculating the position-
generating function and the perimeter and area generating function of square lattice animals.

How can we compute these generating functions? A natural idea Is to extend one of the two
methods for enumerating square lattice animals according to the area, i.e., the Unk with hard
pM ticle models on the one hand, and the notion of heaps on the other hand. It turns out that

^he notiou of heaps is not, at least at first sight, easily generaUzed. Its main drawback is that is
turns the arrangement of rows of an animal upside down whereas both the position of ceUs and the
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)erimeter are closely linked to this arrangement. Therefore, we have concentrated on Dhar s idea,
and have extended it to take into account additional parameters.

Our central result is that the position-generating function and the area and perimeter generating
function of square lattice directed animals - and, consequently, all generating functions mentionned
in Section 2 - are, essentially, the density of a certain one-dimensional gas model. The distribution
of this gas is the stationary distribution of a simple probabilistic transition.

These transitions are described in Section 3. They are characterized by four parameters pi, p2, p3

and p4. When

PlP4(l - P2)(l - P3) = P2?3(l - Pl)(l - P4), (2)

the stationary distribution and its density have simple expressions. Alas, the position-generating
function is related to the transition (pi, p2, p3, p2?3/Pi) while the area and perimeter generating

function is related to the transition (p\, p2, p2, p2), and neither of these transitions satisfy (2)...
However, when ps = 0, the first trajisition satisfies (2) and is combinatorially significdnt. We thus
obtain a new bivaxiate generating function for directed animals on the square lattice. We derive
from this result the generating functions of animals on decorated square lattices, as well as the
average number of loops in animals of given area as conjectured by Conway [7].

Similarly, we obtain for animals on the triangular lattice a new bivariate geuerating function,
from which we derive the generating functions of dmmals on decorated triangular lattices as well as
the average number of loops in dnimals of given area as conjectured by Conway [7]. These results
do not follow from the corresponding squaj-e lattice results.

To finish, here is now the history of this paper. I had conjectured the bivariate generating
functions of Propositions 4. 1 and 4.4 for the square and triangular lattices respectively. Since I
was not able to prove them "combinatorially", I tried to extend Dhar's method, and discovered
that all open problems on two-dimensional lattices were equivalent to the solution of a gas model.
Although I cotdd only solve this model in some special cases - thus proving the two conjectures -
I believe that the general correspondence between directed animals and gas models is worth being
presented, and could lead in the future to the solution of other open questions.

2 A survey of open problems

2. 1 The position of cells in a square lattice animal
Let us consider a directed animal A on the square lattice. Let v^ 0 be a cell of A. Three cases
occur, illustrated by Figure 5: in the first case, we say that the cell v is only supported on the
right, in the second case, that it is only supported on the left, aad in the third case, that u is a loop
(iu Figure 5, the vertices belonging to the animal are denoted by black circles, and the others by
crosses). We denote r(A) (resp. ^(A)) the number of cells of A only supported on the right (resp.

A A A
Figure 5: The three cases for the square lattice.

left). The number of loops of A is 6(A) = |A| - r(A) - £(A) - 1.
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Definition 2. 1 - The position-generating function of directed animals on the square lattice is

^(f, u, u)=E^IAIUr(A)^(A). (3)
A

The loop-generating function of directed animals on the square lattice is

5^w)-SflAIU;fc(A) (4)
A

=w~lS^tw, w~\w~1).
The sums are over all directed animals of the square lattice.

The following propositions show the interest of two specializations of the series 5i(f, u, u), namely
5i(f, u, u) (or Sf{t, w)) and 5i(i, u, l). We compute 5i(^, u, l) in Section 4.

Proposition 2. 2 - Let Sb(t, x) be the area and perimeter generating function of bond-animals on
the sauare lattice:

5, (<,.F)=E^^A).
A

WG have ^ ^ ^.
Sb(t, x)=-S^tx, 2+^J,

where St{t, w) is the loop-generating function of site-animals, defined by (4).

In their attempt to understand why the generating functions for ammals ou the square and
honeycomb lattices do not have similar behaviours, Conway, Brak and Guttmann have introduced
a new class of lattices, called strange lattices [8] or decorated square lattices [1]. The n-decorated
square lattice is obtained from the usual square lattice by adding n new vertices on each SE-NW
edge. The edges of the new lattice are oriented upwards (see Figure 6). We define the n-decorated
triangular lattice in a similar way.

Figure 6: Square and triangular lattices with 2 and 1 decorations.

Proposition 2. 3 - Let Sd,n(x, y) be the area generating function of animals on the n-decorated
lattice:

square tanlce: sa^y}=^s(A}}y}AMA)^
A

where |5(A)| is the number of cells of A on the underlying square lattice. We have
, N+l __ 1 _

5,, (.,, ) = 5. ̂ .L^1, ^^^T'1) .
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proposition 2. 4 - Let bn denote the total number of loops in all animals of area n. Let Sm(t)
be the generating function of the sequence (&n)n.'

^(<)-E^"=E&WAI.

]Ve have:

Sm(t)=ta^(t)-S^-2^1, 1)
where the series So{t) and S^(t, u, v) are respectively defined in Proposition 1. 1 and Equation (3).

2. 2 The site perimeter of directed animals

Let S^t, x) (resp. H^^t, r)) be the area and perimeter generating function of animals on the square
(resp. honeycomb) lattice. No formula for these series is known. Moreover, no formula is known
for ^(^ 1), whereas S^^t, 1) = 5'o(^) is given in Proposition 1. 1.

Proposition 2. 5 [12] - The area and perimeter generating functions of animals on the square
and honeycomb lattices are related as follows:

H^t, x)=tx+S^t2, x(l+t)). (5)

The niimber of cells only supported on the right is undirectly related to the site perimeter. Let
A be dn animal on the square lattice. Let us call right neighbour of A any neighbour of A lying to
the north-east of a cell of A.

Lemma 2.6 - Let A be a square lattice animal. The number of right neighbours of A is 1 +r(A).

2. 3 The position of cells in a triangular lattice animal

Let A be an animal on the triangular lattice. Let v ^ Obe a. cell of A. Seven cases occur now,
defined in Figure 7. We denote r(A) (resp. ^(A), c(A)) the number of cells of A only supported

4* <> 4> <I> <> 4* 4.
\_/

only supported only siqiponed only supported
on the right on the left at the center simple loops double loop

Figure 7: The seven cases for the triangular lattice.

on the right (resp. on the left, a.t the center). The number of simple loops is denoted sb(A). The
number of double loops is db(A) = \A\ - r(A) - ^(A) - c(A) - sb(A) -1.

Definition 2. 7 - The position-generating function of directed animals on the triangular lattice

Ti(t, u, v, w, x) = J^tWur^vt^wc^xsb(A\ (6)
15
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The loop-generating function of directed animals on the triangular lattice is

W^y}=^A^3bwVdbw ^
A

=y~lT^ty, y-\y-\y-\xy-^.

The sums are over all directed animals of the triangular lattice.

We compute Ti(f, u, 1, 1, 1) in Section 4 and find that it is equal to Ti(^, 1, l, u, 1), which means

at ^flA'ur(A) =^t\A\u^ == ^t\A\uc^. (8)
A A A

This is not trivial at all. Again, the series T^(t, u, v, w, x) has two interesting specializations.

Proposition 2. 8 - LetTb{t, x) be the area and perimeter generating function of bond-animals on
the trianqular lattice:

T^x)=^t\A^A\
A

We have

T^x)=^[tx\2+^3+3^+^Y
where Ti{t, x, y} is the loop-generating function of site animals, defined by (7).

Proposition 2. 9 - Let Td,n{x, y) be the area generating function of animals on the n-decorated

^,^^: ^^^^^-^
A

where |T(A)| is the number of cells of A on the underlying triangular lattice. We have
1-y^+i ^ i_;

T^^y) = Ti [a;±T^-'yN rr^i , 1, 1, 1}.

Proposition 2. 10 - Let T^(t} be the generating function of the total number of loops of animals
of aiven area:

T^{t)=^b(A)t^.
A

We have
.
^1 9TiT^W = t9^w - T,m - 2^(t, 1, 1, 1, D - ^(', 1, 1, 1, D

where the generating functions To(t) and T^t, u, v, w, x) are defined by (1) and (6) respectively.

Remark. According to (8), this identity can also be written as

T^) = ^(0 - W) - 3^, 1, 1, 1, 1).
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3 Directed animals and gas models

3. 1 Animals of bounded width

Consider a cyclic oriented square lattice having N cells in each row (Figure 8). Edges are oriented
away from the center, and the vertices of the first row are labelled with 1, 2,... , N. It is convenient
to consider that the labels belong to the ring 2Z/Ar2Z. In this section, we deal with auimals that
may have a source formed of several vertices.

Definition 3. 1 - Let C C [N\ = {1, 2,... , N}. A directed animal A of source C is a finite set
of vertices containing C such that any vertex of A is connected to (at least) one cell of C through
a path starting from C and having all its vertices in A.

Figure 8: A cyclic oriented square lattice (width 8) dnd dn animal of source {1, 2, 4, 8}.

AU definitions given above can be extended to bounded animals (area, perimeter, loops, cells
only supported on the right, etc). Since the lattice has now a finite width, we can write a finite
system of equations satisfied by the generating functions of animals having a given source. All of
them. aie rational functions.

) Tiemma 3. 2 - For C C [N\, let S^\C} and S^ \C) be respectively the position-generating
function and the area and perimeter generating function of animals of source C. By convention,
5W(0) = SWW =1. We have

s[N\C)=t^ ^ s{N\D)u\D^rt (C^Dr^r^
DC^(C)

(9)

where ̂ f(C) = Cu{i+l :i ̂  C}, ^f^C} = {i ̂ C :i-\ ^. C} and ̂ r(C) = {i+l ̂ C-. i eC}.

S^N\C)=t^ ^ SW(D)x^c^. (10)
DC^(C)

The generatmg functions S[ \C) and S^ '(C) are clearly related to the generating functions
5'i(A, u, v) and S2{t, x) defined in Section 2 by

Urn 5W({1}) = 5i(t, u, v) and Urn 5W({1}) = S^(t, x}.
JV-oo N-^oo
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3. 2 Local transitions

Consider the one-dimensional cyclic lattice drawn in Figure 9. Let CQ (resp. jCi) be the set of
vertices of the internal (resp. external) row. Label the vertices in each row with 1, 2,... , A^.

Figure 9: The one-dimensional cyclic lattice.

A cell distribution on C^ assigns each subset of C^ with a probability of being the set of occupied
vertices. The density of a cell distribution is 1/N times the average number of occupied vertices. Let
Pi;P2, f3 and P4 be real numbers lying in [0, 1]. A distribution of cells on C^ induces a distribution
of cells on Co via the local transition (pi, p2, p3ip4 )~- given two consecutive vertices of jCi, say i and

z + 1, the vertex of Co lying between them will bear a cell

. with probability pi if i and i +1 are both unoccupied

. with probability p2 if i is occupied and i + 1 is unoccupied

. with probability p3 if i is unoccupied and i + 1 is occupied

. with probability p^ if i cind i + I are both occupied.

This transition is schematized in Figure 10, in which a black circle denotes an occupied vertex.

^ ^ ^
^ ^

\^ \^
i\ . 1\

\^ v

Figure 10: A local transition.

If the distribution of cells thus obtained on Co is the same as the original one ou C^, it is said
to be stationary for the transition {pi, p2 ip3, p4 )-

Proposition 3. 3 - Suppose that pi (l - pi)(l - p4 )(l - ?2)(1 - Ps) ^ 0 an(^

Pl?4(l - ?2)(1 - P3) = P2P3(1 - Pl)(l - P4). (11)
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Then the cell distribution given by

W C £" P(D occupied, £, \ fl empty) = ^ (^) g:^:^)
where Afr (D) = {ie D :i+l^ D} and

l^r(D)|

p, \W((I-P. W-P.)\WDV
£^A1-?^ Y(1-P2)(1-P3),z=^[^-

is stationary for the transition (pi, p2, P3, p4 ). Its density is a rational function in the pi's. When

n tends to infinity, it tends to

1

2
^P^^P4_ ((^-Pl-P^ | ^ Pl(l-Pl)

-1/2-

1 -p4 1 -J?4 C(1-P2)(1-P3).

3. 3 Connections between the two models

Using (9) and (10), we have generalized Dhar's argument [11] and shown that the position-
generating function and the area and perimeter generating function of directed animals on the
square lattice can be expressed in terms of the density of a gas model given by the stationary dis-
tnbution of a local transition. Unfortunately, we can not compute this density in the most general
case, but only in a particular case to which Section 4 is devoted.

Proposition 3. 4 - Let p{pi, p2, p3, P4) denote the density of the gas model given by the stationary

distribution of the transition (piip'i, P3, p4)-

. The position-generating function of one-source directed animals on the cyclic square lattice is

^^|A|^(A)^(A) ^ l-^-%(pi, p2, P3, P^3/Pl)
uv

where
tuv

pl =
1 - U -V

P2
-u) , tv(l-v)

and p3=
1 -u - u 1- u - v

. The area and perimeter generating function of one-source directed animals on the cyclic square
lattice is

^A\XPW=l-X-p{p^P^P^P2)
A

where
p-i=. l - x -t and pi =1 - x.

Using the ideas of Section 2, we can express several generating functions for one-source directed
animals (that is, animals of source {1}) in terms of the density of some gas models. Each of these
models is given by the (unique) stationary distributiou of a local transition. The following table
shows to which transition each enumerative problem is related.

113



El

Lattice Site/Bond Parameters Transition

square

square

square

square

square

site

site

site

bond

bond

|A|, r(A) and i{A)
[A| and r(A)
|A| and 6(A)
[A| and p(A)

JA|

Pl, P2, P3, P2P3/Pl
Pl, P2, 0,0

Pl, P2, ?2, PJ/Pl
idem

l, p, p,p
square

honeycomb
honeycomb

site

site

site

|A| and p(A)
|A| and p(A)

|A|

Pl, P2, P2, P2
idem

p(l-p), p, p,p

Note that the transition (pi, ps, 0, 0) is the only transition of this table that satisfies identity (11).
This will be used in the next section to find new generating functions. A similar study can be
carried out for auimals on the triangular lattice.

4 Explicit results

We give here the generating functions for directed animals on the square and triangular lattices,
according to their area and number of cells only supported on the right. These results are new and
can be used to obtain the generating functions of animals on decorated lattices, as well as the mean
number of loops in animcds of given area. The generating functions involved here are quadratic.
Surprisingly, we do not have any "combinatorial" proofs of these formulas.

4. 1 The square lattice

Proposition 4. 1 - The generating function for directed animals on the square lattice, according
to their area and number of cells only supported on the right is

SI(t-u-l)4((l-(TTo(i^^
-1/2

-1

Remark. According to Lemma 2. 6, uSi{t, u, l) is the generating function of directed animals,
counted according to the area and the number of right neighbours.

Corollary 4. 2 - The area generating function of animals on the n-decorated square lattice is

^,, )^, (.l^, ^^, l),
where Si{t, u, 1) is given in the proposition above.

Remark. This result had already been proved by All [1]. His proof is also inspired by Dhar's
method, but requires is a two-dimensional Ising model, whereas we only need a one-dimensional
model here.
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Corollary 4. 3 - The generating function of the total number of loops of animals of given area is

^)=E^4(1-<^^)-
This implies that, in animals of area n,

. the average number of cells supported only on the right (left) is asymptotically 4n/9,

. the average number of loops is asymptotically n/9.

4.2 The triangular lattice

Proposition 4. 4 - The generating function for directed animals on the triangular lattice, accord-
ing to their area and number of cells only supported on the right is

r, (<, », i, i, i)=j((i-,-^)
-1/2

-1

Remark. Comparing with Proposition 1. 2 shows that the parameters "number of cells only sup-
ported on the right" and "number of ceUs only supported at the center" have the same distribution
on animals of fixed area. This is not obvious at all, and it would be nice to fiud a more direct proof.

Corollary 4. 5 - The area generating function of animals on the n-decorated triangular lattice

T^, y)=T, ̂ l^^, y"^i^, l, l, l) ,
where T^{t, u, 1, 1, 1) is given in the proposition above.

Corollary 4. 6 - The generating function of the total number of loops of animals of given area is

T^(t}=Vb(A^=l-(l-\~6t+6t!}.
im^) = ^ ̂ W-' . - 2 ^~ (1 - 4t)3/2 ) '

rr'his implies that, in animals of area n,

. the average number of cells supported only on the right (left) is ̂ ". ^,

. the average number of cells supported only at the center is ̂ ^_-[y

. the average number of loops is v2(2n-T) .

Remarks. 1. Unifonn generation of random directed animals suggests that they are in general
very "thin" [9]. Corollaries 4. 3 ajid 4. 6 give a measure of thinness. H ra-ndom animals were compact,
then they would have lots of loops whereas only one fourth of the cells are loops.

2. The eenerating functions of animals on the decorated square lattice and the results of
CoroUaries 4. 3 and 4. 6 were conjectured by Andrew Conway in his Ph. D. thesis [7]. He rightly says
that results should be easier to prove once the answer is known...

a!
II "I

!i1
,1^
.\-[
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