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Extended Abstract

Abstract The mversion of combinatorial sums is a fundamental problem m algebraic combi-
natorics. Some combinatorial sums, such as On = ^^ ̂ n,jfc&fc, can not be mverted m tenns of the
orthogonality relation because the infinite, lower tricLngular array P = {dn, k}'s diagonal elements
are equal to zero (except <^o, o). Despite this, we can find a right-mverse P such th.at PP = I and
therefore be able to right-mvert the origmal combmatorial sum, thus obtammg bn = Sik^n, Jfcafc-

Resume L'inversion des sommes combmatou-es est un probleme fondameiLtal dans 1'algebre
combmatoire. Certaines sommes combinatoires, par exem.ple an = Sjk^n, jk&fc, ne peuvent pas etre
mverties selon la relation d'orthogonalite, parce que les elements sur la diagonale de la matrice
triangulaire mferieure P = {^n, jk} sont auls (sauf rfo,o). Malgre cela, on peut bien defmir une
matrice droite-mverse P telle que PP = J et, par consequent , on pent droite-mvertir la somme
combinatoire d'origme, en obtenant &n = Eji;<^n, Jfcafc-

1 Introduction

The problem of inverting coinbinatoricd suins has long interested researchers a.n.d the main
reference on the subject is the fainous book [9] by John Riordan "CombuiatoriaJ Identities".
Riordan summarized his results in a paper [8], and some authors subsequently tried to give a
unitary approach to his methods (see, e.g., Egorychev [4] and Spnignoli [13]). Some authors,
such as Milne [7], have examined the problem from various other points of view.

We cum at obtaining a substdntial generdlization of Riordan's results by showing that
the method of generating functions, we examine in this paper, and the concept of Riordan
arrays are powerful tools for proving a large class of inversions, that strictly includes aU the
inversious proposed in Riordan's book.

We are m^nly interested in the set R [t] of formal power series f(t) = S^=o fktk having
real coefficients in some indeterminate t; however, instead of R, we could consider any field
F with 0 characteristic, in particular the field C of the complex numbers. If + and . denote
the usudl sum cmd Cauchy product in R[t], this is an integral domain; the smallest field
containing R[t] is the field R((t)) of formal Laurent power series /(*) = E^=m At > with
m   Z. The order of /(*) = ^=mfktk is the mimmum value of k for which /fc ^ 0.
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R, [t] denotes the set of all formal power series of order s. In particular, Ro[t] is tlle set
of invertible power series, i. e., power series /(t) for which /o = fW ̂  0: lt; ls well-known
that 5(f) £ R[i] such that f{t)g{t) = 1 exists only for these series. For a complete theory
of fonnal power series, the reader is referred to Henrici [6].

If {/fc}fcgN ls a sequence of real numbers, then the generating function f{t}of the sequence
is defined Ias/(t) = ^ {/fc}^N = ^ {A} = ^=o fktk £ R[t]. As usual, the notation [^]
stands for the "coefficient of" operator and, therefore, if /(<) = Efe/*^ is a formal power
series, then [tk]f{t') = fk.

The concept of a Riordan array is a convenient way of expressing certain infinite, lower
triangular arrays {dn, k\n, k   N, A < n}. A Riordan array is a pair (<f(i), A, (f)) of formal
power series, with d{t) £ Rolt], it defines an infuute, lower triangular array {(^, fc} according
to the rule:

d^,k=[tn}d{t)Wt))k. (1. 1)
The most common example of a Riordan array is the Pascal triangle, for which d{t} ==
h(t} == (1 - t)-l. When h(t)   Ro[t] the Riordan array is called proper and since the
dlagonal elements of the corresponding {^n. jk} are all different from 0, the array is invertible,
and its inverse is also a proper Riordan array. No other Riordan array can be inverted in the
usual row-by-column product. Proper Riordan arrays form a group called the Riordan group.
Riordan ajTays are the class of infinite, lower triangular arrays for which combinatorial sums
can be expressed in terms of generating functions; more precisely, we have:

E ̂ ^ = [<n]<^/(^(^)) (1. 2)
k=0

when f{t) is the generating function of the sequence {fk}keN-
Since R [t] and R [y] (in which t an4 y are any two indeterminates) are isomorphic, t is

usually changed into y or any other indeterminate, and vice versa, whenever it is convenient.
Compositiou is another important operation in R[i], and /(^(A)) = fWog(t}= /(y)| (;)
is defined whenever g{t) £ R, [t] with 3 > 1 or /(*) is a polynomial. H /(<)   Ri [t],
then a unique g{t) G RI [t] exist such that f{g{t)} = g{f{t)) = t, which is therefore the
compositional inverse of /(*). The elements of Ri [t] are called almost units or delta series.
The computation of the compositional inverse of a delta series leads us back to the famous,
fundamental Lagrange Inversion Theorem, which we use in the formulation of Goulden and
Jackson [5]: let <^(t)   RO t*]; then a unique formal power series w(t)   RI [t] exists such
that w = t<^(w}. Moreover:

1. If/(t)GR((A))tlien:

r,m ^ - I ̂ r-l]ny)^)n ... _, _ n ^ o'n > order(^[tn}fW = { &°l/(yY-w[rl f/(2/)^(2/)-^'(2/) " = 0'

2. If F(t)   Rli] and the sequence {cn}neN is defined by £" = [tn] F{t)(f>{t)n, then:

^-^tn-T^-

(1. 3)

(1. 4)
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These formulas can be easily written dnd manipulated by introducing a particular nota-
tion. By writing:

fW=[9{y}\yh^t, y)=h^t, y}}
we denote the function (or formal power series) of the iadeterminate t, obtained by substi-
tuting the solution y = y(t}, with y(0) = 0, to the functional equation Ai(^, y) = h^t, y} in
g{y}- The following points should be emphasized:

. the bound variable y in this notation can usually be deduced from the context, ctnd we
omit it as a subscript of the vertical bctr. WTienever possible, equation h^t, y) = h^t, y]
is written as y = h{t, y), thus clarifying which is the bound variable;

. obviously, we have /(^(i)) = [f(, y)\y = 5f(^)j; besides, a convenient way of expressing
the applicability conditions of the Lagrange Inversion Theorem is:

/(i)=/(w(t))=[/(w)|w=^(w)];

. in pajticular, if {cfc}^g]^ is a sequence defined as in point 2 in the Lagrange Inversion
Theorem, then its generating function is:

CW =G{Cn}= F(w)
1 - ^'(w)

w = t</)(w) =
.

F(w)
1 - v]<f)l{w')l(f){w}

w = t<f>(w]

After these preliminary notational remaj-ks, we now go on to illustrate our method for
inverting corabinatorial suins with an exainple directly connected to the problems we ctre
going to solve in our paper. Let us consider the combinatorial identity:

L"/2J
-. =E

Jk=0

71

<2A. Ok, (1. 5)

where {&fc}jfcgN ls a glven sequence and {aji;}^^^ is defined in terms of the bk'a. The
problem in inverting this identity is to find a relation defining the b^s in terms of the
ajfc's. According to the Riordan array theory, identity (1. 5) is related to Riordan array
D = (1/(1 - t), V(l - tf\ whose generic element can be found by means of relatiou (l. l):

*

^=>t"'rlt(d^. =\i i-2Jk1 r-2k - f
J n -(1 - t)2k+1 ~ {n-2k (-l)n-2fc =

n

<2k^

Therefore, the generating function a(f) of the sequence {ajk}^^]^ ls aW == ̂ (f2/(l-t);2)/(l-A)
where b(t) is the generating function of the sequence {&jk}jk^N. This relation can be inverted:

. (1-<)2
=(l-f)a(f), or b{y)= (1 - t)a(t) 2/= (1-^J

The generic element &n can now be found by a series of computations related to the Lagrange
Inversion Theorem; we find (computation passages are omitted in this extended abstract):

..~I./.A_ 1 ^, _^^2n+1^2nA+A+2n-fc^
1-. = w w = ^ |^(-l)^2n" ̂  tj '"-T^^"-^ .
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By perforining some obvious simplifications, we eventually find:

(1. 6)

This inversion is not present in Riordan s book and the reason is fairly obvious. If we
examine the infinite, lower triangular array defined by D above, the diagonal elements are
all zero (except <^o, o) and, therefore, the array cannot be inverted in the usual sense. la other
terms, identity (1. 5) cannot be associated to auy orthogonal relation (see Riordan. [9]). On the
other hand, our proof does not seem to be correct because the two identities y = i2/(l - if
ajid t = yl^2(l - t} are not equivcdent. According to the formal power series theory (see
Henrici [6]), when we have a functional equation y == /i(<) and h(^t) 6 R, [f] with s > 1, the
solution t = t(y) is not unique and there aie exactly s solutions t^y), ts(y'), ..., t, (y) which
actually belong to R y1^ . ^n OUI example, ctinong the various possibilities, we arbitrdrily
chose one solution anH used it to apply the Lagrajige Inversion Theorem. The question is
whether or not our choice is justifiable.

The inversion is definitely correct and, if we define

p= n, A   N p = {(-1)* n, fceN

we can easily check that PP = J and PPP = P, but PP ^ I. Therefore, P is the "right-
inverse" array of P and, strictly speaking, we should refer to the method we develop as a
"right-inversion process .

We conclude this long introduction by summajizing the threefold dim of this paper: i)
justifying the use of a single solution to a functional equation from a theoretical point of
view, in situations like the preceding one; ii) examining the process of right-inversion; iii)
giving a nuinber of significant examples of right-inversion, to show how Riordan's results can
be generalized and new inversions can. be found.

2 Stretched Riordan arrays

In. the Introduction, we have defined the concept of Riordan arrays as developed by Shapiro
et al. [11] and Sprugnoli [12]. Riordan arrays give us a concrete way to define the so-called
1-umbral calculus (see Roman [10]) and, in fact, Riordan ajrays are czdled "recursive matrices"
by Bajnabei, Brim and Nicoletti [2]. Formula 2. 2 below is a version of the "transfer theorem"
of Timbral calculus (see RomcLn [10], p. 50); the row generating functions of a Riordcin array
give the coefficients of the Sheffer polynomials relative to the inverse array. Wha.t seems to
be new in the present paper is the extension of umbral results to stretched arrays, a topic
occasionally considered in the literature (see Al-Salajn and Versa [1] dnd Di Bucchidnico
doctoral thesis [3], two references suggested to us by one of the referees).

We can edsily show that the usual row-by-column product of two Riordan arrays is
another Riordan array, and we have:

{d{t), hW) * (a(t), &(<)) = «i)a(t/i(t)), ^)5(^(t))).
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The Riordan array (1, 1) is the identity matrix and if (^(<), ̂ (i)) is proper, then its inverse
(c?(^), /i(i)) can be computed by equating the identity matrix to the expression above:

J(y) = [<<)-l|y = ^(i)] ^(y) = [h(t)-l\y = th{t)] . (2. 1)

Since the Riordan array is proper, h(t) £ Ro [t] and, therefore, the functional equation
y = th(t\ has a unique solution t = <(y) and d( ), h{t) are well-defined. By means of the
Lagrange Inversion Theorem, we can show that the generic element dn, k of the inverse array
is given by:

dn, k = -
n

in-Al , w\ n> 0, (2. 2)d{t) } d(t}h(t}n

cind SQ^ = dQ Skfl- On the basis of this result, Spnignoli [13] proposed an algorithm for

proving the inversions in Riordan's book [9].
When (rf(i), h(t}) is not proper, we can write h{t} = h^ts-1 + h, ts +... = t'-\h. ^ +

h, t + h,+it2 +... )= t'~lv{t), where /i,-i ^0, 3 > 1 and u(i) G Ro M. The corresponding
numerical array is "vertically stretched" , whereas proper Riordan arrays aie low triangular.
la this case, by going on to R ((<)), we can formally derive formulas (2. 1) again, but we
have h[t) 6 R»-i ((^)) and the functional equation y .= f/i(f) no longer hds a unique solution
t = t{y)- According to the power series theory (see, e. g., Henrici [6]), y = th(t) has s
solutions <i = fi(y), ..., *, = t, (y) in the following form:

^ = ^-(y) = E rim^mym /s J= 1, 2, .., 5.
m=l

Here, w, is any one of the sth primitive roots of unity. The coefficients r]m do not depend on
j, i. e., they aj-e aU the same in the s formal power series in R a;^yl /* . These s formal power

series are said to be conjugate to h{t). They are weU-known thanks to the multisectioning
series theory (see, e. g., Riordan [9]). Their main property is that:

l^t,-(y) R. [y] r>0,
.7=1

i.e., if we maJce the average of aU of them, we obtdin a formal power series in which the roots
of unity dnd the fractioual powers of y disappear.

Properly speaJsing, forraulds (2. 1) correspond to s pairs of functions, one for each choice
of tj(y), j" = 1, 2,..., a. Let us denote the pair obtained considering the j-th solution tj(y)
by (riM(y), AM(y)) ,j == 1, 2,..., 5. Since d{t) G RoM, <??'](y) is weU-defined and belongs to
RO f^y1/'] for every j". As far as A^(y) is concerned, let us make the following remarks. If we

write h{t) = t'~lv(t), with v(t) G RO M a^i invertible formal power series, cind then fix dny j
between 1 and s, we should have y = tj(, y}'v{tj{y)} or tj{y}' = ^(^'(y))" , where v[tj{y)}~1
is well-defined in R ^2/1/* - On the other hand, by m.eans of the previous definition, we

 

1(y) = t(t, (y))-1 = ^C, fo))-1 = f,
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thus establishing a very simple relation between ̂ N(y) and the solution tj{y) to the basic
functional equation. This also shows that A[71(y) is well-defined and belongs to Ri_, ((^yl/'^

It is worth noting that in our introductory example, by solving the functional equation,
we obtain:

/1/2 . . ./1/2
t'fa)= rf^ t'fa'= -r^TTi-

From these expressions and (2. 2), we can easily find the two pairs of the inverse Riordan
array:

^(y) = 

1 ^. i/2 
rf2 (y) =

/ii(y) =

1+y1 /2

1
h2{y} =

l-yl/2
-1

yl/2(l + yl/2) '-^^ - 

^1/2(1 _ yl /2)
From a theoretical point of view, this may be satisfactory since we obtain a good definition
of the "inverse" non-proper Riordan array. However, from a practical (and numerical) point
of view, the question is to establish which array corresponds to the 3-uples of formal power
series pairs. We can prove the following results (proofs aje omitted in this extended abstract):
Theorem 2. 1 The formal power series

dkW=^t^\y)(yh^y))>
(properly, to Rr [y], with r = ^k/s} Vfc   N} and, therefore, they can be

I n,Jt6N'

belong to R[y]
taken as the column generating functions of an infinite array D = \ dn^k [ . _^, in which the
order of the row generating functions is ns +1.

Theorem 2. 2 If we consider the row-by-column product, we find DD = I and therefore
DDD = D. In this sense, D is the right-inverse of the array D and can be used to "invert"
combinatorial sums related to non-proper Riordan arrays.

We call the non proper Riordan array, i.e., the Riordan array with h(t) ̂  Ro [t} vertically
stretched, ajid the array defined by means of a set of conjugate pairs of formal power series
in R a^yl /* horizontally stretched, because of their shape.

From a practical point of view, instead of averaging on j = 1, 2, ..., s, we can take any
<fN(y) and its corresponding ^^(y) and ignore the non integer exponents to obtain the
following definition:

^=[yn}^\y}[yh^\y}>)k.
In our introductory example, by using y = 1, we have:

<t-^^(T^)'-^ (1+^) Jfc+1 =(-1)kf^
k

Alternatively, we can use the solution to the modified functional equation y = (<A(f))1/', the
associated functions J(y) and ̂ (y) and relation (2. 1), dnd obtain the following defmition:

^=[yn]d^=[ym }d(y}(ysh{y})k.
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The reader can easily prove that this definition gives the same results as the previous example,
if d{y) = (1 + y} and h{y) = l/(y(l + y)). The latter is perhaps the most direct method,
while the others are more elegant dnd show that the dk{y) can be defined as belonging to
R[y] and as relating to series multisectioning. We caji now prove a formula for dn, k, which
generalizes formula (2. 2) for proper Riordan aj-rays:

Theorem 2. 3 (s-transfer formula)

<L . = J_ k^} (k - tdw\
n'k = ^ ^">-"J 1, A ~ t~dw) d^v{tY (n > 0), do^k = Sk,o/do.

These formulas solve, from a theoretical point of view, the problem of inverting combi-
natorial sums involving Riordan arrays, with A,(i) 6 R, [^] and s >, 0, since every sum.

L"/*J
On = ^ dn^bk

Jfc=0
has the inverse &" == ̂  dn^a-k-

fc=0

It is actually often more convenient to apply the Lagrange Inversion Theorem to obtain the
inverse formula directly, and this is illustrated in detail in the next section. As a result of
the previous remarks, we can generalize the Lagrange Inversion Theorera as follows:

Theoreni 2.4 (Lagrange s-inversion) Let h(t') = t'~lv(t] G Ra-i [*] and set <f)(t) == v(t}~lt';
consequently a unique formal power series w^t) G R[i] exists such that w = f^(w). Moreover
iff^t) 6R((f)) then:

[tn}[f{w)\t=wsvW=
j_ r,, ru-ii f(v)
", Itf J u(y)" n^O
[y°}M+}'[y-l}M^yrl ^y) "=o;

(2. 3)

besides, if F{t} G R[<] ^en;

[C F(w)
1 - w^{w}/<f>{w)

t = w'v(w) =[yna} FW
U(y)n-

(2. 4)

3 Sample inversions

In the simplest cases, formula (2. 3) is a very direct method of inverting (or right-inverting)
combinatorial sums. The formula cdn be applied to the example given in the Introduction
and, in fact, we can also prove the more general and "rotated" inversion (the computations
are omitted in this extended abstract):

[n/.J
a»='s

Jfe=0

n+p
6fc

^sk + pj

Another inversion proved by formula (2. 3) is:

_^(sn+P\
6n=£^'+p'Jat-

ni
-EW {x + qk}n-sk bk b_n_^, , ̂ -kkq+x3{x+qn)tn-k-lak

fro ("-^)! ^ n! 
~ 

^ov-^ ^ (.n-A:)! AT
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Not allcases are so lll:lear and we often have to make multiple use of the Lagrange
Inversion Theorem, especially when the original sum contains some factor depending on n
(the bound variable in the sum to be inverted). The Riordan array approach still applies,
but an initial application of the Lagrange Inversion Theorem is required in order to obtain
the Riordan array to be used in the right-inversiou process. The following algorithm can
then be applied both in difficult and very simple cases:

Algorithm: Let the identity a^ = Ejk ̂n,kbk be given:

(1) Put the sum into a suitable form for a Riordan array approach (see [13] for a discussion
on this point);

(2) Express a^ as [tn}G{t}

(2a) if G{t) does not depend on n, G{t) = a(^) is the generating function of the
sequence {an}ngN; then proceed with step (3);

(2b) otherwise, use the Lagrange Inversion Theorem (2. 4) to find the generating func-
tion a(t);

(3) invert the identity obtained in step (2);

(3a) if h{t) = 1, simply apply the Riordan array rule (1.2) backwards;
(3b) if y = th{t] can be solved explicitly, then substitute the solution in the inverse

relation dnd apply the Riordan array rule (1. 2) backwards;
(3c) otherwise, to obtain the expression for &n in terms of afe's, use the (2. 3) form of the

Lagrange Inversion Theorem, if possible, utilizing the notations in the previous
section.

(3d) alternatively, apply the (2. 4) form of the Lagrange Inversion Theorem backwards.

The algorithm can be used to prove the following sample inversions:
[n/,J

«. =E"
k=0

^p+qk-k^ s+q-1 (P+qk- k^
n-sk ) ' s \n-3k-l.

^(p+n(^-r)-k)^-^
-gf":-1;^* ^^E<(:,+_T)(-0^. (""

Jk=0 n - sk
k=0

an _^ [{x+n+ k}n-'k (a; + n + A;)"-'*-1 ̂  b^
"! - ^o ^ (" - ^)! (n-sA-1)! ; AT
6n - ^/_1 ̂ -fc3s±I-3 + l)A(a; +n + A)tu-fc-1 afc
n! ±^' ~" 3 ('n7-^1! fcT'^ / a {ns-k)\

The first inversion generalizes inversion 2 in Table 2.2 (Gould Class of Inverse Relations) in
Riordan [9]; the third inversion is related to the Abel identity and generalizes inversion 4a
in Table 5. 1 of Riordan's book; finally, the second inversion, although very simple, seems to
be new.
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