/Y

An Algebraic Approach to the Prefix Model Analysis of
Binary Trie Structures and Set Intersection Algorithms

EXTENDED ABSTRACT

Pilar de la Torre! David T. Kao®
Department of Computer Science Department of Computer Science
University of New Hampshire University of New Hampshire
Abstract

The trie, or digital tree,is a standard data structure for representing sets of strings over
a given finite alphabet. Since Knuth’s original work [Knu73], this data structures have been
extensively studied and analyzed. In this paper, we present an algebraic approach to the
analysis of average storage and average time required by the retrieval algorithms of trie
structures under the prefiz model. This approach extends the work of Flajolet et al. for
other models which, unlike the prefix model, assume that no key in a sample set is the prefix
of another. As the main application, we analyze the average running time of two algorithms
for computing set intersections.

Résumé

Le trie, ou irie numérique, est une structure de données standard pour représenter des
ensembles de mots sur un alphabet fini donné. Depuis le travail original de Knuth [Knu73],
ces structures de données ont été intensivement dtudiées et analysées. Dans cet article, nous
présentons une approche algébrique de I’analyse de I’espace moyen et du temps moyen requis
par les algorithmes de recherche dans les structures de trie utilisant le modéle préfize. Cette
approche étend le travail de Flajolet et al. a d’autres modéles, qui, contrairement au modéle
préfixe, supposent qu’aucune clef dans un échantillon n’est le préfixe d’une autre. Comme
principale application, nous analysons le temps d’éxéution moyen de deux algorithmes pour
le calcul d’intersections d’ensembles.

Address for correspondence: Pilar de la Torre, Department of Computer Science, Univer-
sity of New Hampshire, Durham, NH 03824, U.S.A.; e-mail: dltrr@cs.unh.edu; phone: (603)

862-2682, FAX: (603) 862-3493.

1The research of this author was supported in part by the National Science Foundation under Grant CCR-

9010445, and Grant CCR-9410592.
2The research of this author was supported in part by the National Science Foundation under Graat IRI-

9117153.

127

1 Introduction

Since Knuth’s original analysis [Knu73], the average case performance of trie [Fre60], or digital
tree, data structures has received a great deal of attention (see, for example, [GBY91, FS36]). In
particular, systematic approaches to their analysis under several probability models have been
developed (see, for example, [dIT87, Fra77, Fla83, FRS85, VF87]). All these models, however,
preclude the possibility of sets in which the key of one element is a prefix of that of another.

The design of tries for storing sets of keys that may contain prefizing keys (that is, keys
that are prefixes of other keys in the set), was taken up by Knott in [Kno86]. The first analysis
of tries that store prefixing keys was done in [dIT87] under the prefiz model which generalizes
Trabb Pardo’s model [Tra78] and is defined as follows.

Definition 1.1 PrEFIX MoDEL. The prefix model P(h,n,m) assumes as equally likely all sets
of n strings with length at most A over an alphabet A of m characters. That is, all n-elements

subsets of AU AlU...U A"

In this paper, we present an algebraic approach to the analysis of trie structures for sets
of binary strings under the prefix model, which extends the work done by Flajolet et al. in
[FRS85] for other models. As the main application of this approach, we analyzed the average
running time of two algorithms for computing intersections of sets of binary strings under the
set-intersection prefiz model (defined in §5) which generalizes Trabb Pardo’s set-intersection
model [Tra78].

Section §2 introduces the root-function method — a uniform approach to deriving the ex-
pectations of a wide class of random variables under the prefix model. Section §3 drives the
generating function translation rules corresponding to the prefix model. Section §4 illustrates
the use of these rules by applying them to compute the average space and time requirements of
the retrieval algorithms of two trie varieties analyzed in [dITK94b]: full prefixing-tries and com-
pact prefixing-tries. Applying these rules, section §5 calculates the exact average running time
of the algorithms for computing set intersections. To shorten the exposition, only the summary
of our results are put into this extended abstract. All proofs are given in the full version of our

paper [dITK9%a)].

2 The Prefix Model

Let A be a totally ordered alphabet of m (> 2) symbols that we will identify with A =
{1,...,m}, where 1 < 2 < ... < m. Let ARl .= A9y A1 U ... A" be the set of all strings
of length < h composed from A. The set of finite length strings composed from A will be
denoted by A*, the set of infinitely long strings by A*°, and AD = A" U A=. For a finite set
B, R(B) will denote the set of n-element subsets of B, and R(B) := Unxo Rn(B).

For the integer-valued parameters h, n, m, with A,n > 0 and m > 2, the probability space
for the prefix model consists of the n-element subsets of Al which are assumed to be equally
probable. We have

h+1 _ [h]
mbl o= AW =2 L and [Ra(AM)] = ("‘)
m-—1 n

128

Throughout this section X will denote a real-valued function of finite subsets £ C AlRl The
expected value of X (&) over the n-element subsets £ C Al% will be denoted by E[X], and also
by Exn[X] when we wish to emphasize its dependence on h and n. The sum

Nw[X]:= 3 X(§)

EERA(AlR]

is related to the expectation of X by Np,[X] = ("‘ih])Eh,,[X], and will be called the normalized
ezpectation of X.

2.1 Translation Rules

To each real-valued function X of subsets A" we associate its generating function of the nor-
malized ezpectations X #)(z),

XW(z):= Y NwmlX]z"= S x(&)zKl.

Osnsh ger(AR))

Our intention is to establish rules that often help in translating a function X into its gener-
ating function X(*)(z).- These translation rules will be formulated as properties of the operator
F,[X] := X(#)(z), which maps real-valued functions of subsets Al ¢ polynomials in z.

We introduce the family of auxiliary functions P, with z € A*. The value of P, on a subset
£ C A8 is P(€) := £, where &, := {y | zy € €} (i.e., & is the set of tails of the strings of £ that
begin with z). For each ¢ € A, P, maps R(A]) onto R(AF-1). We also define the function
Py (€) := €N {¢}, which maps R(A") onto R({e}).

Lemma 2.1 ADDITIVE-MULTIPLICATIVE RULE. Let X, Y, Yy, Yi,...,Ym be real-valued func-
tions of subsets of A", Then,

(i) Fa[A.X] = AFRL[X];
(i) FalX + Y] = Fi[X] + Fi[Y];
(i4i) For h > 1,
Fi[(YioPy)...(Ym o Pyl = (1 + 2) Fyuoq[Yi] . .. Fac1[Yal;
(iv) For h > 1,
Fi[(Yoo PL)(Yi0 P1)...(Ym 0 Pn)] = Fo[Yo] Fh-a[Y1]. .. Fae1[Yam].

Lemma 2.2 INITIALIZATION RULE. Let I(§) := 1, and C(§) := |£|. Then

@) Bl = (1 +2)™";
(i5) Fy[C] = mM z (1 + z)™™-1;

(id) If X(€) = 8y p then Fa[X] = (™).

129

Theorem 2.3 Let X and Y be real-valued functions of subsets of Alh,
(i) If X(§) = Y(£n {e}) then XP(z) = (1+ 2)™"-1y O)(z);
(i) If X =Y o P., with c € A, then XM (z) = (1 4 2)™"Y(h-1)(z);

(#47) Let rx(&) := X(€) — X(&1) — -+ - — X(En). Then,
X®(z) = rPz)+m1+2)™" xB-1(z). (1)

Lemma 2.4 (Flajolet-Regnier-Sotteau) ITERATION RULE. Let A,,..., A and By,..., B be
polynomials. The solution to the recurrence zo = By,

zn = Apzp-1+ B (h > 0), (2)
15 2h = Locj<nlBi [ljs1<e<n Akl-

Theorem 2.5 Let X be a real-valued function of subsets of A"l and let rx(£) := X(¢) -
X(&)—...— X(&m). Then,

xW(z) = Y mti 420 (g, @3)
0<i<h

3 Analysis of Prefixing-Tries

This section presents the data structures used by the set intersection algorithms that will be
presented later in §5. Prefizing-tries, which are natural adaptations of the original tries of
Fredkin [Fre60] for the purpose of storing sets of keys that may contain prefixing keys, have
been analyzed in [dIT87, dITK94b]. Applying the generating function tools of §2, we shall
now rederive the exact average space and time requirements of the retrieval algorithms of fuil
prefizing-tries and compact prefizing-tries.

oo100

o010l 00100

(a) ®)

Figure 1. (a) Prefix tree built from the set of keys s = {00100, 0101,011}. (b) Prefixing-tree
built from s = {00100, 0101,011,0010,0}, which can not be represented by a prefix tree.

130

Tries are implementations of the prefiz tree (see Figure 1(a)). A finite set of keys £ C A®,
which may include prefixing keys, can be easily encoded to yield a suitable representation of £
as a trie. This can be attained by attaching a symbol L¢ A, the endmarker, to the end of the
prefixing keys of £. In the resulting set of keys, £[1] := (£ — prefizingkeys(§))U {zl | z €
prefizingkeys(€)}, no key is a prefix of another. £[L] can be represented as an prefizing-tree

(see Figure 1(b)).
3.1 Full Prefixing-Tries

Definition 3.1 FuLL PREFIXING-TRIE. The full prefizing-trie built with a finite set of keys
£ C A* is the (m + 1)-ary tree, denoted by t/°(€), which is recursively defined as follows:

(3) If € is empty, t/°(£) is the empty tree.
(i) If € = {€}, tf(&) is the tree whose root is a leaf node (i.e., all its subtrees are empty).

(ii%) Otherwise, t/°(€) is the (m+ 1)-ary tree having an ‘internal’ root node whose subtrees are
tfe(en {e}), t'°(&1),...,t7%(&n) in order.

See Figure 2(a) for an example of a full preﬁxing-tﬁe. For a given full prefixing-trie, we use
the notation Sy and Ty to represent the number of internal nodes and its total leaf node path
length.

(a) full (b) compact

Figure 2. Prefixing-tries for the items ri,...,7s with respective keys k; = 00100, k; = 0101,
k3 = 011, kg = 0010, ks = 0. The alphabet is {1,0,1}, with L <0 < 1.

131

Theorem 3.2 The ezpectations of Sy and Ty over the n-element subsets of Al are

Es) = 3 mruill—r(m®,mb,n,0) — r(ml, mP, n, 1),
1<5<h
E[Ty] = Z mh“"[-r—'-z%mm-—r(m[h],mm,n,l)],
1<i<h
a=—b

c—d

where 1(a,b,c,d) = (

)
3.2 Compact Prefixing-Tries

See Figure 2(b) for an example of a compact prefixing-trie. For a given compact prefixing-trie,
we use the notation S, and T to represent the number of internal nodes and its total leaf node

path length.

Theorem 3.3 The ezpectations of S. and T. over the n-element subsets of ARl gre

ElS] =. E mh=I[1 - r(m["],mm,n,O) - mm‘r(m["], mbl, n,1)],
1<5<h

E[T) = z mP=imbl [_%T - r(m[h],mm, n, 1)] A
1<5<h m

a=—b
where T(a,b,c,d) = %{‘)’—).
b

4 The Binary Set—Intersection Prefix Model

Definition 4.1 BINARY SET-INTERSECTION PREFIX MODEL. The sample space of the binary
set—intersection prefiz model consists of a class of ordered pairs (§,n) of sets of binary string
keys. This class depends on four parameters: the size | of the first component §, the size n of
the second component 1, the size k of the intersection £ N 7, and the mazimum length h of the
of the binary string keys. For nonnegative integers h, |, n, and k, the probability space of the
binary set-intersection prefiz model is

Masnge = {(&m | E&nc {0,116l =1, In| = n, [Enn| = K},

where {0,1}* = {0,1}°u {0,1}' U...{0, 1}*, and all set pairs (£,7) are assumed to be equally
probable.

The expectation of a real-valued mapping X (&, n) over the pairs (£,1) € Malnk will be denoted
by E[X]. The sum
Nh,l,n,k[X] = Z X(Ev 77)

encloaph
€l=l, Ini=n, [Enni=k

is related to the expectation of X by Niak[X] = [M minkl E[X] and will be called the nor-
malized ezpectation of X.

132

R it

4.1 Translation Rules

Throughout this section X will denote a real-valued mapping of ordered pairs (&,7) of sets
& nc {0, 1}["]. To each such mapping X we associate the generating function of normalized

ezpectations X B (z,y,1t),

XM(z,y,t) = Z X (€,n) zlélylnl glénml
&,nc{o,1}x

= Z lvh,l,n,k[)(] z! Yy i,
l,n,k2>0

We shall now establish translation rules, between X and its generating function X (*)(z,y,t),
similar to those derived for the prefix model in §2.1. As earlier, the translation rules will be
formulated as properties of the operator Fj, which maps a functions X into its generating
function Fj[X] := X ()(z,y,t). Some of these properties can be conveniently expressed in
terms of the mappings P.(&,7) := (&, 1) (where &, = {z | cz € £}) for each ¢ € {0, 1}, and also

Po(&n) = (En{e},nn{e})
Lemma 4.2 ADDITIVE-MULTIPLICATIVE RULE. Let X, Y, and Z be real-valued mappings of
ordered pairs (£,7) of sets £, 1 C {0, 1},

(i) Fa[A.-X] = AF,[X];

(i) FalX +Y] = Fa[X] + FiY];

(#3) Fa[(Y 0 Po)-(Zo Py)]=(1+ 2+ y+zyt) Faq[Y] Faca[Z], 2 1;

(iv) Fu[(X 0 PL).(Y 0 Py).(Z o P1)] = Fo[X] Faa[Y] Fra[Z], B 2> 1.

Lemma 4.3 INITIALIZATION RULE. If I(§,n):=1 then

I(h)(z,y’ t) = (1 +z+y+ zyt)zm,

Theorem 4.4 Let X and Y be real-valued functions of pairs (€,n) of subsets &, C {0, 1}4,
and let us assume that h > 1.

() IF X(&,m) = Y(EN {e}, nN {e}) then XP)(z,y,t) = (1 + 2)*"-1YO)(z,y,1).
(i) If X =Y o P., with ¢ € {0, 1}, then

X (z,y,8) = (1+ 2 +y +zy)?" Y3, y,2).

(35) If rx(&,m) := X (&, m) — X(§o,m0) — X (§1,m)) then
XW(z) = riP(@) +2(1+ 2 + y + zyt)” XAV (z). (4)

133

Theorem 4.5 If Let X be a real-valued function of pairs (€,n) of subsets £, C {0, 1}["1, and
let rx(€,m) = X(&,1) — X (€0, m0) = X(§1,m)- Then,

X(h)(x, y,t) = Z gh=J l+z+y+ Iyt)zihl_zbl rfg)(z, ¥,).
0<i<h

5 Analysis of Algorithms for Set Intersection

We now present two algorithms for computing the intersection of sets of binary string keys.
For each of them we will compute the exact average running time with respect to the binary
set—intersection prefix model.

5.1 Average Set-Intersection Time Using Full Prefixing-Tries

The set intersection INTERSECTF(&,7) := £ N7, with §,7 C {0, 1}41, can be computed by the
following algorithm:

[Set-Intersection Algorithm Using Full Prefixing-Tries]

If || = 0 or |g| = 0 then INTERSECTF(, n) — 9;
If £ = {¢} then INTERSECTF(&,7) < &;
If 7 = {¢} then INTERSECTF(&, 1) « 7;

Otherwise,

ol

INTERSECTF(£,7) — (§NnN{e})UOINTERSECTF(o, 70) U 1 INTERSECTF(&1,).

Let t/%(€) and t/¢(n) be the full prefixing-tries built from § and 7 respectively. The total time
necessary to compute the intersection is thus proportional to the number, F(§,n), of pairs of
nodes that are simultaneously visited in t/¢(¢) and t/¢(n) (i.e., F(€,7n) equals the total number
of times that Step 4 is executed).

The results of the following lemma will be helpful in extracting coefficients from the gener-
ating functions that will emerge from our computations. The coefficient of the term z'y™t* in a
polynomial P(z,y,t) will be denoted by [, n, k) P(z,y,1).

Lemma 5.1 The coefficient
Kipplo B := [m K {{[(1+2)7 + (1+9)7 - (1 + 2+ +29)}
equals
Kinkla, 8] = Dakla, B+ Lnykle, 8] = Iia k[0, 8], (5)

where Ij » x[a, 8] := (5) (g:’;) (Bte-m). Also, Kin k[0, 9] = I £ [0, 20M] = | M 1 n il

134

Theorem 5.2 The ezpected value of F(,n) over the pairs of sets (§,1) € Mpink S

LS bk (el 1, 2 - bl 4],

= (olf — 1) =
E[F] = (2 1) Ith,l,n,kl 1<j<h

where |Mpinkl = Kiakl0, 2A]].

5.2 Average Set—Intersection Time Using Compact Prefixing-Tries

We shall now consider another algorithm for set intersection, which is based on compact
prefixing-tries. Let Part(a,) be the function of a,8 C {0,1}(* that has the value a when
o C B, and the value @ otherwise. The set intersection INTERSECTC(E,7) := £ N 7, with
£,nC {0, 1}["], can be computed by the following algorithm:

[Set-Intersection Algorithm Using Compact Prefixing-Tries]

1. If || = 0 or || = O then INTERSECTC(E, 1) < 0;
2. If |¢] = 1 then INTERSECTC(E,) «— Part(€,7);
3. If |g| = 1 then INTERSECTC(E, 1) « Part(n,§);
4. Otherwise,

INTERSECTC(E, 7) — (§NnN{e})UOINTERSECTC(o, 70) U L INTERSECTC(£1,).

Let t°2(£) and t°°(7) be the respective compact prefixing-tries of { and 7, and let us assume
that |€],|n] > 2. Then, ¢ € £ N7 precisely when the first sons of t°°(§) and ¢°*(n) are nonempty.
The sets & and ng are represented by the respective second subtrees of t°*(£) and t°*(n); &1 and
1h are represented by the third subtrees of t°*(£) and t°(n). '

The algorithm INTERSECTC(E,7) can thus be implemented by the simultaneous traversal
of the compact prefixing-tries t°°(£) and t°*(n). We start at the root nodes of the tries, and
implement Step 1 by testing whether one of the trees is empty. Step 2 (respectively Step 3)is
realized by testing whether the root node of t**(£) (respectively ¢t°*(7)) is a terminal node. If it
is, i.e., £ = {z} (respectively n = {y}), Part({z},n) (respectively Part(§,{y})) is implemented
by searching for the key z in t°(n) (respectively searching for y in t°°(§)). If this search is
successful, we return the value {z} (respectively {y}); otherwise, we return the value @. Since
Step 4 is executed precisely when |£],|| > 2, we can then compute { N7 N {e} by simply
examining the first subtrees of t°°(§) and t°*(n) (these subtrees are terminal nodes precisely
when ¢ € £N 7). The recursive call INTERSECTC(, 7o) (respectively INTERSECTC({1,7m1)) can
be implemented by simultaneously visiting the second sons (respectively third sons) of ¢°*(§)
and t°*(n), which are the root nodes of compact prefixing-tries representing the sets §o and ng
(respectively &; and 7).

The time required to compute £ N7 by the above algorithm is proportional to C(¢,7), which
is defined as the number of pairs of internal nodes simultaneously visited in tries t°*(£) and t**(n)
(i.e., the number of times that Step 4 is executed) plus the number of internal nodes visited in

135

only one of the tries after a terminal node has been reached in the other (i.e., the number of
nodes visited while executing the calls to Part).

We shall calculate the expectation of C in two ways. Our first calculation makes use of
the relation between full and compact prefixing-tries. That is, the compact prefixing-trie t°°(£)
results from the full prefixing-trie t/°(£) by pruning every internal node that has only one ter-
minal node among its descendants. Hence, M(£,n) := F(&,n) — C(,7) is equal to the number
of pairs of internal nodes of t/(¢) and t/*(n) simultaneously visited, in the implementation of
INTERSECTF(E,) given in §5.1, such that each internal node in the pair has only one terminal
among its descendants. Thus the function rar(€,7) := M(&,1) — M(&o,m0) — M(&1,m) has the

expression ra7(&,7) = 8 (j¢|=1) and (¢#{e}) I (Inl=1) and (ns£{e}) -

Theorem 5.3 The expectation of M(&,n) over the pairs (£,17) € Mpnk is

E[M] = gt Tigjn 2t (24l - 1) {K,_l,,,_l,k_l[o , 2041 — ol
+(2W! - 2) Ki_y 1,400, 2% - 20T},

where | M 10 k] = K nx[0, 2[h]].

Theorem 5.4 The average total time E[C] required to compute the intersection using compact
prefizing-tries is

1 _: y P ‘
E[C] = (2[h] = 1) =5 m{ Z 2h JKl.n,k[2b] -1, 2[h] - 2[)] + 1] §
L 1<j<h x

+ 3 2l - 1) [Kici 1610, 2% = 200 4 (211 - 2) Ky 0, 2 —251]]},
1<j<h

where l.Mh.I,n,kl = Ki.2[0, 21M].

The following alternative way of computing E[C] yields additional information of interest
to the cost analysis. We break up the values of the function C into two components,

C(&,n) = A(E,n) + B(&,m). (6)

The first component, A(,7), is the number of pairs internal nodes of t°*(£) and ¢°°(n) that are
simultaneously visited in the implementation of of the above algorithm for INTERSECTC(,7)
(i-e., the number of times Step 4 is is executed). This quantity is of interest in its own right since,
as remarked by Trabb Pardo in [Tra78], A(¢,n) measures the risk of computing the intersection
€N 7 to find that it is empty. The second component, B(§,7), is the number of internal nodes
visited in only one of the tries after an internal node has been encountered in the other (i.e.,
the number of nodes visited in the execution of the calls to Part(§,n)).

Since Step 4 is executed precisely when [¢],[n| > 2, ra(&,n) := A(&, 1) — A(&o, m0) — A(61,m)
can be written as

TA(E,U) = 1—Z(§77’)’ (T)

136

with Z(&,7) = §(¢1<1) or (ni<1)- We further observe that an internal node v of t°*(£) (respectively
t°®(n)) is visited in the process of executing the function Part(¢,n) (respectively Part(n,£))
precisely when the string z, corresponding to the path that connects the root and v, satisfies
€21 > 2 and |1, = 1 (respectively |n.| > 2 and |&,] = 1). Thus, r5(&,7) = B(€, 1) - B(Eo,70) —
B(é1,m) has the expression

rB(6M) = Sjgl=1 8¢ (e} Glnin2 + Opni=1 Gn () Glel2- (®)

Theorem 5.5 The ezpectation of A(€,n) over the pairs (£,1) € Mpnk is

1
E4] = W-1)- —r—
4] = ()~ W]
Z 9h—igoli] [Kl,n'k[gm —1, 201 _oll 4 1] - (2¥1 - 1) Ki—1-14[0, 20 - QU]]]
1<5<h
- Z 2h=i(9l] — 1) K, x[2V1, 21 - QUI]}’
1<i<h

with | Mokl = Kiail0, 2]

Theorem 5.8 The ezpectation of B(&,n) over the pairs (§,1) € Mpni is

E[B] = m{ Ticicn 279 @H-1) [Kl,n,k[2[j] =1, 20— 2l 4 1] — Ky, k[2U1, 2] — 2L)
~Ki_1n-16-1[0, 2 — 20 — 2. 20 — 1)Ky oy 0, 2 - 20T,

where |Ma 12 x| = Kin k[0, 2["]].

References

[dIT87] P. de la Torre. Analysis of tries. Ph.D. Thesis CS-TR-1890, Department of Com-
. puter Science, University of Maryland, 1987.

[dITK94a] P. de la Torre and D. T. Kao. An algebraic approach to the prefix model analysis
of binary trie structures and set intersection algorithms. Technical Report 94-18,
Department of Computer Science, University of New Hampshire, 1994. Submitted to
7th International Conference on Formal Power Series and Algebraic Combinatorics.

[dITK94b] P. de la Torre and D. T. Kao. A uniform approach to the analysis of trie structures
that store prefixing keys. Technical Report 94-17, Department of Computer Science,
University of New Hampshire, 1994. Submitted to Journal of Algorithms.

[Fla83] Ph. Flajolet. Methods in the analysis of algorithms: Evaluation of a recursive par-
titioning process. In M. Karpinski, editor, Proceedings of the 1983 International
FCT-Conference, number 158 in Lecture Notes in Computer Science, pages 141-
158, Borgholm, Sweden, 1983. Springer-Verlag.

137

(Fra77]

[Fre60]
[FRSS5]

[FS86]

[GBY91]

[Kno86]

[Knu73]

[Tra78]

[VF87]

J. Frangon. On the analysis of algorithms for trees. Theoretical Computer Science,
4:155-169, 1977.

E. Fredkin. Trie memory. CACM, 3(9):490-499, 1960.

Ph. Flajolet, M. Regnier, and D. Sotteau. Algebraic methods for trie statistics.
Annals of Discrete Mathematics, 25:145-188, 1985.

Ph. Flajolet and R. Sedgewick. Digital search trees revisited. SIAM J. Comput.,
15(3):748-767, 1986. :

G. H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Structures: In
Pascal and C. Addison-Wesley, Reading, Massachusetts, 2 edition, 1991.

G. D. Knott. Including prefixes in doubly—chained tries. Technical Report CAR~-
TR-236, Computer Science Department, University of Maryland, 1986.

D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison—Wesley, Reading, Massachusetts, 1973.

L. I. Trabb Pardo. Set representation and set intersection. Ph.D. Thesis STAN-CS-
78-681, Department of Computer Science, Stanford University, 1978.

1. S. Vitter and P. Flajolet. Average-case analysis of algorithms and data structures.
Technical Report CS-87-20, Department of Computer Science, Brown University,
Providence, Rhode Island, 1987. Revised April 1989.

138

