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Abstract

The trie, or digital tree, is a standard data structure for representing sets of strings over
a given finite alphabet. Since Knuth's original work [Kau73], this data structures have been
extensively studied and analyzed, hi this paper, we present an algebraic approach to the
analysis of average storage and average tune required by the retrieval algorithins of trie
structures under the prefix model. This approach extends the work of Flajolet et al. for
other models which, ualilre the prefix model, assume that no key in a sample set is the prefix
of another. As the main application, we analyze the average runmag time of two algorithins
for computing set intersections.

Resiune

Le irie, ou trie numerique, est une structure de doimees standard pour representer des
ensembles de mots sur un alphabet fini domie. Depuis Ie travail original de Knuth [Kau73],
ces structures de donnees out ete intensivement etudiees et aaalysees. Dans cet article, nous
presentons une approche algebrique de 1'analyse de I'espace moyen et du temps moyea requis
par les algorithmes de recherche dans les structures de trie utilisant Ie modele prefixe. Cette
approche etend Ie travail de Flajolet et al. a d'autres modeles, qui, coatrairement au modele
prefixe, supposent qu'aucune clef dans un echantillon a'est Ie prefixe d'une autre. Comme
principale application, nous analysons Ie temps d'excutioa moyen de deux algorithmes pour
1c calcul d'interaectioas d'ensembles.
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I

1 Introduction

Since Kauth's original analysis [Kau73], the average case perfonnance of trie [Fre60], or digital
tree, data structures has received a great deal of attention (see, for example, [GBY9I, FS86]). In
particular, systematic approaches to their analysis under several probability models have been
developed (see, for example, [<UT87, Fra77, Fla83, FRS85, VF87]). AU these models, however,
preclude the possibility of sets in which the key of one element is a prefbc of that of another.

The design of tries for storing sets of keys that may contain prefixing keys (that is, keys
that are preftxes of other keys m the set), was taken up by Kaott m [Kno86]. Tbe first analysis
of tries that store prefixing keys was done in [dlT87] under the prefix model which generalizes
Trabb Pardo's model [Tra78] and is defined as follows.

Definition 1. 1 PREFFX MODEL. The prefix model "P(/i, n, m) assumes as equally likely all sets
of n strings with length at most h over an alphabet A of m characters. That is, all n-elements
subsets of ̂ °U-41U... U-4/l.

In this paper, we present an algebraic approach to the analysis of trie structures for sets
of bmary strings under the prefix model, which extends the work done by Flajolet et al. m
[FRS85] for other models. As the main application of this approach, we analyzed the average
nummg time of two algoritluns for computmg mtersections of sets of binary strings under the
set-intersection prefix model (defined m §5) which generalizes Trabb Pardo's set-intersection
model [Tra78].

Section §2 mtroduces the root-function method - a uniforai approach to deriving the ex-
pectations of a wide dass of random variables under the prefix model. Section §3 drives the
generating function translation rules corresponding to the prefix model. Section §4 illustrates
the use of these ndes by applymg them to compute the average space and tune requirements of
the retrieval algorithms of two trie varieties analyzed m [dlTK94b]: fuU prefixmg-tries and com-
pact prefixmg-tries. Applying these rules, section §5 calculates the exact average numing tune
of the algorithms for computing set intersections. To shorten the exposition, only the summary
of OUT results are put mto this extended abstract. All proofs are given in the full version of our
paper [dlTK94a].

2 The Prefix Model

Let ^ be a totaUy ordered alphabet of m (^ 2) symbols that we wffl identify with A =
{!,..., m}, where'1 <2 < ... < m. Let ̂  := <4° U -41 U ... -4/l be the set of aU strmgs
of length"^ h composed from A. The set of finite length strmgs composed from A wffl be
denoted by--4-, the'set of iniinitely long strings by A°°, and ̂  :=A'UA'X. For a finite set
B, %n(5) will denote the set of n-element subsets of B, and %(5) := Un>o 7^n(-B).

For the mteger-valued parameters A, n, m, with h, n > 0 and m ^ 2, the probability space
for the prefix model consists of the n-element subsets ofAlh}, which are assumed to be equally
probable. We have

mW := \AW\ = mt/l+l -1
m-1 ' and |7Z,(^M)| = m'[h?

n
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Throughout this section X wiU denote a real-valued function of finite subsets ̂  C A^. The
expected value of X(<f) over the n-element subsets ^ C A^ wiU be denoted by E[X}, and also
by -S/int-V] when we wish to emphasize its dependence on h and n. The sum

NHn[X] := ^ X(<f)
^Tin(^W)

is related to the expectation of X by Nhn[X] = (" )£'/in[-Y], and will be called the normalized
expectation of X.

2. 1 Translation Rules

To each reaJ-valued function X of subsets /4t/ll we associate its generating function of the nor-
malized expectations X<<h\x')^

xW(xy. = ^ N,n[x]xn= ^ ^(Oz'^i.
0<n<A ^^(-4^')

Our intention is to establish rules that often help in translating a function X mto its gener-
atmg function X^^(.r). These translation rules will be formulated as properties of the operator
Fh,[X] := X^h\x), which maps real-valued functions of subsets A[m to polynoinials in x.

We mtroduce the family of auxiliary functions Px, with x ^. A'. The value of Ps on a subset
^ C -4® is Pr(0 := &c, where ̂  := {y\xy^ ^} (i. e., ̂  is the set of tails of the strings of^ that
begin with a;). For each c e A, Pc maps ̂ (A[h}) onto 7i(A[h~l]). We also defLae the function
^. (0 := $n {£}, which maps %(^) onto %({s}).

Lemma2. l ADDITIVE-MULTIPLICATIVE RULE. Let X, Y, YQ, Yi,...,Ym be real-valued func-
tions of subsets of Aw. Then,

(i) F^[\. X] = AF/,m;
(ii)Fi,[X+Y}=Fh[X]+F,, [Y};
(tit) For A ^ 1,

^[(Vi o Pi).. . (Y^ o P^)] = (i +1) F,-i[ri].. .FA-I^];

(iv~) Forh^l,

^[(YO ° P^(Y, ° -Pl) . . .(^" ° -Pm)] = ^[Vo] ̂ -l^l] . . . ^-1^].

Lemma 2.2 INITIALIZATION RULE. Let I (^} := 1, and C(0 := |^|. TAen

(z)F,[I}={l+x}mw;
(ii)FH[C]=mWx{l+x)mw-1;
(iii) If X^ = S\^ then F,[X} = (ml^xP.
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Theorem 2.3 Let X and Y be real-valued functions of subsets of A^.

(i) 7/X(Q = V(^n {£}) fAen XW(x) = (1 + ^)mw-1 y(°)(z);
(«) IfX=Yo P,, u;i(A c   A, then XW(x) = (1 + x)mhY^-l\x);
(iii) Let r^(Q := X(Q - X{^) - ... - X(^). TAen,

X^h\x) = ry{x)+m^+x)mhX^-l\x). (1)

Lemma2. 4 {Flajolet-Regnier-Sotteau) ITERATION RULE. Let Ai,..., Ah and BQ,. . ., Bh. be
polynomials. The solution to the recurrence ZQ = By,

Zh. = Ah, zh-\ + Bh.

" ^ = Zo<j<h[Bj Hj+i<k<h Ak}.

(A > 0), (2)

Theorem 2. 5 Let X be a real-valued function of subsets of A^ and let r^-(^) := X(^) -
A-(^)-... -X(^). Then,

XW(x) = ^ mA-^(l+3:)m['"-mNr^(s).
0<j<h

(3)

3 Analysis of Prefixing-Tries

This section presents the data structures used by the set mtersection algorithms that wUl be
presented later m §5. Prefixing-tries, which are natural adaptations of the original tries of
Fredldn [Fre60] for the purpose of stormg sets of keys that may contain prefixing keys, have
been analyzed m [<UT87, <UTK94b]. Applymg the generating function tools of §2, we shall
now rederive the exact average space and time requirements of the retrieval algorithms of full
prefixing-tries and compact prefixing-tries.

0101

00100
0101

(*)

ooiai. ooioo

(b)

Figure I. (a) Prefix tree buUt from the set of keys s = {00100, 0101, 011}. (b) Pre&cmg-tree
built from s = {00100, 0101, 011, 0010, 0}, which can not be represented by a prefix tree.
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Tries are implementations of the prefix tree (see Figure l(a)). A finite set of keys ̂  C ><®,
which may include prefixing keys, can be easily encoded to yield a suitable representation of if
as a trie. This can be attained by attaching a symbol -L^ -4, the endmarker, to the end of the
prefbdng keys of $. In the resulting set of keys, ^[±] := (^ - pre fixing key s(^)) U {xl. \ x £
prefixingkeys(^)}, no key is a prefix of another. ^[±] can be represented as an prefixing-tree
(see Figure l(b)).

3. 1 Full Prefixing-Tries

Definition 3. 1 FULL PREFIXING-TR. IE. The full prefixing-trie built with a finite set of keys
^ C A* is the (m + l)-ary tree, denoted by t^e{^), which is recursively defined as follows:

(i) I f ̂  is empty, t/e(^) is the empty tree.

(it) If^= {e}, t/e(^) is the tree whose root is a leaf node (i. e., all its subtrees are empty).

(iii) Otherwise, ̂ e(^) is (Ac (m+ l)-ary tree having an 'internal' root node whose subtrees are
t^H{£}), f/e(^i),..., </c(^) in order.

See Figure 2(a) for an example of a fuU prefixmg-trie. For a given full prefbcmg-trie, we use
the notation Sf and T/ to represent the number of mteraal nodes and its total leaf node path
length.

^\

(a) fuU (b) compact

Figure 2. Pre&dng-tries for the items ri,..., rs with respective keys fci = 00100, A;2 = 0101,
ks = Oil, &4 = 0010, &5 = 0. The alphabet is {±, 0, 1}, with 1 < 0< 1.
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Theorem 3. 2 The expectations of Sf and T/ over the n-element subsets of A^ are

E[Sf] = ^ m/l--'"[l-r(mM, m", ra, 0)-r(mM, m", ra, l)],
1^'^A

E[TA = ^mh-^m^-r^h\m^n^
1$^A

'a-k'
^C-dJwhere r(a, &, c, <i) = lfi^!

b.

3. 2 Compact Prefixing-Tries

See Figiire 2(b) for an example of a compact prefixing-trie. For a given compact prefixing-trie,
we use the notation Sc and Tc to represent the number of interaal nodes and its total leaf node
path length.

Theorein 3.3 The expectations of Sc and Tc over the n-element subsets of A^ are

E[Sc} = - E m/l--'[l-r(mM, mN, n, 0)-mMr(mM, mM, n, l)],
l$J$A

£[Tc] = S m^mb-l[^-r(mM, mM, n, l)],
1$J"^A

.a-^

where r(a, &, c, d) = v^/.
. 6,

4 The Binary Set-Intersection Prefix Model

Definition 4. 1 BINARY SET-INTERSECTION PREFIX M.ODEL. The sample space of the binary
set-intersection prefix model consists of a class of ordered pairs (^, ?;) of sets of binary string
keys. This class depends on four parameters: the size I of the first component ^, the size n of
the second component 77, the size k of the intersection ^(~\T{, and the maximum length h of the
of the binary string keys. For nonnegative integers h, I, n, and k, the probability space of the
binary set-intersection prefix model is

M^n, k := { (^, ry) I ̂ , '7 C {0, 1}M, 1^1 = /, |r?| = n, |$n»;| = &},
where {0, 1}M = {0, 1}° U {0, 1}1 U ... {0, \}h, and all set pairs (^, 17) are assumed to be equally
probable.

Tlie expectation of a real-valued mapping X(^, 77) over the pairs (^, 77)   Mii, i,n, k wUl be denoted
by E[X]. The sum

Nh^[X}:= S X^, ^)
(, iC[o.i}W

Kl-i, Wmn, |<m|«*

is related to the expectation of X by Nh, i,n,k[x} = \-Mh, l,n, k\E[X] and will be called the nor-
malized expectation of X.

Ill
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4. 1 Translation Rules

Throughout this section X will denote a real-valued mapping of ordered pairs (<f, 77) of sets
^)77 S {0, 1}^. To each such mapping X we associate the generating function of normali:ed
expectations X('h\x, y, <),

XW(x, y, t) := i: X^^z'^M^I
$.'7C{0,1}W

^ NH, ^k[X]xlyntk.
l,n, k>0

We shaU now establish translation rules, between X and its generating function X^h\x, y, (),
sunilar to those derived for the prefix model m §2. 1. As earlier, the translation rules will be
formulated as properties of the operator Fh. whidi maps a functions X into its generating
functiou Fh[X} := X<-h'\x, y, t). Some of these properties can be conveniently expressed in
terms of the mappings T^ ̂  := (^c, 77c) (where ^= {i| ca; 6 ^}) for each c 6 {0, 1}, and also
'Pj. (^^:=(^n{£}^n{£}).

Lemma 4. 2 ADDITIVE-MULTIPLICATIVE RULE. Let X, Y, and Z be real-valued mappings of
ordered pairs ̂ , T)) of sets ̂ T]C {0, 1}M.

(i) Fh[>. X] = AFA[X];

(ii)F^[X+Y}=Fh[X}+FH[Y};
(m) F^[(yo7o). (^°'Pi)] = (l +i+ y+ ̂ ) ^-i[y] ^-i[Z], A ^ l;

(iv) F^X o ~P^. (Y o 7o). (Z o 7:)] = Fo[^] ̂ -i[V] ̂ -i[^], /i^l.

Lemma4. 3 INITIALIZATION RULE. Ifl{^r]}:=\ then

lW(x, y, f)={l+x+y+xyt)2w.

Theorem 4.4 Let X and Y be real-valued functions of pairs (^, 77) of subsets ^, 77 C {0, 1}N,
and let us assume that h>l.

(i) ifx{^} = y(^ n {e} , r?n {^}) (Aen .YW(3;, y, f) = (1 + i)2"1'-1 y(°)(^, y, f).
(ii) If X = Y oPe, vnth c   {0, 1}, then

X(h\x, y, f)= (1+ a; + y+ xyt)2h V^-1^, y, t).

(m) If rx{^ rj) := X^, 77) - ^(^o, r?o) - X^, r,^) then

XW(x) = r^(x) +2(l+x+y+ xyt)2h X^-l\x). (4)
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Theorem 4. 5 J/ Let X be a real-valued function of pairs (^, rj) of subsets ̂ , T] C {0, 1}[/1], and
let rx^, r)) = X{^, »?) - X(^o, ̂ o) - .Y(^, '7i). Then,

X(/l)(x, y, f)= E 2/l-^l+x+y+x^)2[h'-2(Jl^)(x, y, f).
0<j'</l

5 Analysis of Algorithms for Set Intersection
We now present two algorithms for computing the mtersectioa of sets of binary string keys.
For each of them we wiU compute the exact average ninning time with respect to the binary
set-intersection prefix model.

5. 1 Average Set-Intersection Time Using Full Prefixing-Tries
The set mtersection INTEIISECTF(^, T?) := ̂  n ry, with ̂ , 77 C {0, 1}M, can be computed by the
following algorithm:

[Set-Intersection Algorithm Using FuU Preimng-Tries]
1. If |^| = 0 or \r]\ = Q then lNTEItSECTF(^, 77) <- 0;
2. If ̂  = {e} then INTERSECT?^, 77) «- ̂ ;
3. If ̂  = {e} then lNTERSECTF(f, T?) +- T{;
4. Otherwise,

INTERSECTF(^, ?7) <- (^O^n {£})UOlNTER. SECTF(^o, 7?o)U 1 INTERSECTF^i, T7i).

Let f/e(0 and tfe{r)) be the fuU prefixing-tries buUt from ̂  and T? respectively. The total time
necessary to compute the intersection is thus proportional to the number, F(^, 77), of pairs of
nodes that are simultaneously visited in t^e(^ and t^^) (i.e., F(^, r?) equals the total number
of times that Step 4 is executed).

The results of the foUowing lemma wffl be helpful m extracting coeflScients from the gener-
atmgftmctions that wffl emerge from OUT computations. The coeffident of the term xlyntk m a
polynomial P(a;, y, t) wffl be denoted by [l, n, k}P(x, y, t).

Lemma 5.1 The coefficient

^,^, ^:=[/, n, fc]{[(l+^a+(l+y)a-l](l+x+y+^^}
equals

Kl,n,k[oi, 0} = Il,n,k[^ /3] + I^k[a. /3] - ^.n,Jk[0, /3], (5)

where It,n,k[^\ == (S&S^D- Als0' K^[Q, 2W} = 7(,n.. [0, 2(/ll] = |^^.n,, |.
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Theorem 5. 2 The expected value o/F(if, 7?) over the pairs of sets (^, 77) 6 A/(/i. ;, n. jk t5

E[F} = (2^1 - 1) -

where \Mh, i,n, k\=Ki, n, k[0, 2W}.
\Mh, l,n,k\ ^̂  2h-jKl, n, k[2^ - 1 , 2^ - 2b'l + I],

5. 2 Average Set-Intersection Time Using Compact Prefixing-Tries
We shall now consider another algorithm for set intersection, which is based on compact
prefixmg-tries. Let Part{a, /3) be the function of a, /3 C {0, 1}^ that has the value a when
a C /3, and the value 0 otherwise. The set intersection INTERSECTc(^, ?7) := ^ n ?7, witli
^, r]C {0, 1}^, can be computed by the following algorithm:

[Set-Intersection Algorithm Vsmg Compact Prefixmg-Tries]

1. If |^| = 0 or IT?) = 0 then lNTEltSECTc(^, 7?) <- 0;

2. If |^| = 1 then INTERSECTC(^, r?) <- Part(^, 77);
3. If |r?| = 1 then INTER. SECTC(^, 77) <- Part(rj, ^;
4. Otherwise,

INTERSECTC(^, 7?) ̂ - (^n77n{£})UOlNTERSECTC(^o, T?o)U 1 INTERSECTC^i, 771).

Let tcc(0 and tc (rj) be the respective compact preftxmg-tries of ̂  and 77, and let as assume
that |^|, |T?| >. 2. TIien, £ 6 ^n 77 precisely when the first sons of tce(^ and tce(r]) are nonempty
The sets ̂ o and r?o are represented by the respective second subtrees of fce(^) and tce{rj); ̂  and
T/I are represented by the third subtrees of^ce(^) and tce(r]').

The algorithm INTERSECTC(^, 77) can thus be unplemented by the simultaneous traversal
of the compact prefixing-tries tce^) and tce(ri). We start at the root nodes of the tries, and
unplement Step 1 by testing whether one of the trees is empty. Step 2 (respectively Step 3) is
realized by testing whether the root node of(ce(^) (respectively fce(7?)) is a terminal node. If it
is, i.e., ̂  = {a;} (respectively rj = {y}), Part{{x}, Tj) (respectively Part(^, {y})) is unplemented
by searclung for the key x m fcc(»?) (respectively searching for y m tce(^)). If this search is
successful, we return the value {a;} (respectively {y}); otherwise, we return the value 0. Smce
Step 4 is executed precisely when \^\, \T{\ ^ 2, we can then compute ^H rj n {e} by simply
examuiing the first subtrees of tce(^) and ("(r?) (these subtrees are terminal nodes predsely
when e £ ^n 77). The recarsive call INTERS ECTc(^o, ??o) (respectively lNTERSECTc(<fi, ??i)) can
be unplemented by simultaneously visiting the second sons (respectively third sons) of (ce(^)
and tce(»7), which are the root nodes of compact prefixing-tries representing the sets fo and 770
(respectively ^i and 771).

The tune required to compute ^ n T? by the above algorithm is proportional to  (^, 77), which
is defined as the number of pairs of internal nodes simultaneously visited in tries tce(^ and <ce(r?)
(i. e., the number of tunes that Step 4 is executed) plus the number of mteraal nodes visited m
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only one of the tries after a terminal node has been reached in the other (i. e., the number of
nodes visited while executing the caUs to Part).

We shall calculate the expectation of C ui two ways. Our first calculation makes use of
the relation between faU and compact prefixing-tries. That is, the compact preflxing-trie tce(^)
results from the full prefixing-trie tfe{^} by pnming every internal node that has only one ter-
minal node among its descendants. Hence, M{^, 77) := F(^, 77) - C(^, ??) is equal to the number
of pairs of internal nodes of f/e(^) and tfe{ri') simultaneously visited, in the unplementation of
INTERSECTF(^, 77) given in §5. 1, such that each mtemal node in the pair has only one terminal
among its descendants. Thus the function TM^, T]} '.= A/'(<f, »?) - M{^Qi ?7o) - M{^ 771) has the
expression rM^, ri) = ^(|<|=i)an<i(^{<}) 8 (\n\=i) and (n^{e}) .

Theorem 5.3 The expectation of M(^, T)) over the pairs (^, 77) £ Mh, l,n, k is

EW = F^n Ei^-^ 2/l-J (2^1 - 1) {^-i.n-i., -i[0 , 2^1 - 2"]
+(2N-2)^-i.n-i,A[0, 2M-2N]},

where \Mh, l,n, k\ = ^, n,fc[0 , 2^}.

Theoreni 5.4 The average total time E[C} required to compute the intersection using compact
prefixing-tries is

E[C} = (2(/ll-l)-^-{ S 2/l-^,, ^[2N - 1, 2^ - 2" + 1]
lyvl/l-'-»-*l *. l<j<h,

+ ^ 2A-^(2N - l)[^-i, n-z,,-i[0 , 2W - 2"] + (2" - 2)^-i.n-i.A[0 , 2^ - 2"]] },
1<J<A

where \Mh, l,n, k\=Ki, n, k[0, (iw}-
The foUowing alternative way of computing E[C\ yields additional mformation of mterest

to the cost analysis. We break up the values of the function C mto two components,

C'(^'?)=A(^ 7?)+5(^, 77). (6)

The first component, A(^, 77), is the nmnber of pau-s mteraal nodes of <cc(^) and t<x(ri) that are
simultaneously visited in the implementation of of the above algorithm for INTBRSECTC(^, T])
(i.e., the number of times Step 4 is is executed). This quantity is ofmterest m its own right since,
as remarked by Trabb Pardo in [Tra78], A(^, 77) measures the risk of computing the mtersection
^HT] to find that it is empty. The second component, £(^, 77), is the number of internal nodes
visited m only one of the tries after an mternal node has been encountered m the other (i. e.,
the number of nodes visited m the execution of the calls to Part(^, 77)).

Since Step 4 is executed precisely when |^|, |T7| ̂  2, TA^, rj) := A(<f, T?) - A(^o, ̂ o) - A(^i, 7/1)
can be written as

r^. r?) = 1-^, »7), (T)
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with Z{^, rj) = ^(|<|<i)or(|7, |$i)- We further observe that an interoal node v oftce{^) (respectively
fce(7?)) ls visited m the process of executing the function Part^, ^') (respectively Part(rj^)')
precisely when the string z, corresponding to the path that connects the root and v, satisfies
\U ^ 2 and |^| = 1 (respectively JT?^) ^ 2 and |^| = 1). Thus, rs(sc, 77) := 5(^, 77) - 5(^o, 770) -
.S(^i, ??i) has the expression

ra{^ r)) = ^[=1 ̂ {e} ̂ |^2 + ^|7, |=i ̂ {;} ̂ |^2. (8)

Theorem 5.5 The expectation of A(^, T{) over the pairs (if, r?) 6 Mh, l, n, k is

E[A] = (2^-1)- \M^, n, k\
^ ^ 2A-^2N [^, n, jk[2N - 1, 2^ - 2M + 1] - (2N - l) ̂_i, ^_i,, [0 , 2W - 2^'i]]

1<J"<A

- ^ 2^(2N-1)^,, [2M, 2M-2^]},
1$J$A

with\M^, n, k\=Ki, n, k[0, 2W}.

Theorein 5. 6 The expectation of B{^, TJ) over the pairs (^, 77)   Mh,, l, n, k is

EW = p^j{ Ei^-^ 2^(2" - 1) [K^[2^ - 1, 2M - 2N + 1] - A-^., [2M , 2^ - 2"]
-^-i,n-i.^i[0, 2^ - 2N] - 2 (2N - l)A-, _i^_i, 40 , 2^ - 2"]]},

where \Mh^k\=Kt, n, k[0, 'iW}.
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