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Extended Abstract

Summary.

We use the exterior face ring of a simplicial complex to develop an iterated homology the-
ory for simplicial complexes. Let A be a simplicial complex of dimension d - 1. For each
r = 0,... , J, we define rth itera. ted bomology groups of A, the r = 0 case corresponding
to ordinary homology. (Our theory is different from Kalai's iterated homology theory intro-
duced in [K2], but. if all iterated homology groups vanish for r < n in one theory, then they
must vanish in the other theory as well.)

If a simplicial complex is sheUable (in the generalized nonpiire sense of Bjomer and

Wachs [BW]), then its iterated Betti numbers (vector-space dimensions of the iterated ho-
mology groups over a field) give the restriction numbers, /i,j, of the shelling. Iterated Betti
numbers are preserved by Kalai's algebraic shifting, and may be interpreted combinatorially
in terms of the algebraicaUy shifted complex in several ways. Iterated Betti numbers are
also depth-sensitive.

Resume.

Nous utilisons 1'anneau des faces exterieures d'un complexe simpliciaJ pour developper une
theorie d'homologie iteree pour les complexes simpliciaux. Soir A un complexe simplicial de
dimension d - 1. Pour tout r = 0,... , c?, nous definissons les r-iemes groupes dTiomologie
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iteree de A, Ie cas r = 0 correspondant a 1'homologie ordinaire. (Notr theorie est differente
de 1'homologie iteree de Kalai, introduite en [K2], mais si tous les groupes d'homologie iteree
s'annulent pour r <n dans une theorie alors ils s'annulent aussi dans 1'autre.)

Si un complexe simplicial est "shellable" (dans Ie sens non pur genralise de Bjorner
et Wachs [BW]), alors ses nombres de Betti iteres (dimensions des groupes d homologie
iteres sur un corps) donnent les nombres de restrictiou h, j du shellage. Les nombres de
Betti iteres sont preserves par Ie decalage algebrique de Kalai, et peu vent etre interpretes
combinatoirement en termes du complexe algebriquement decale, ceci de plusieurs majiieres.
Les nombres de Betti iteres sont aussi sensibles a la profondeur.

II
II

Notation.

Let A be a finite (abstract) simplicial complex. The dimension of F e A is dim F = |-F|-1,
and the dimension of A is dim A = max{dimF: F   A}. The maximal faces of A are
called facets, and A is pure ifcJl the facets have the sajne dimension. Let Afc denote the set
of fc-faces (z. e., fc-dimensional faces) of A. The /-vector of A is the sequence (/i,..., /j-i),
where fk = #Afc and d-\= dim(A). The same notion of /. (A) and the /-vector will apply
to every finite collection of sets.

We call ^i(A) = dim^- ̂ '(A; A') the ith reduced Betti number of A with respect to
the field K. The Betti sequence of A is /3(A) = (/?o,... , /3d-i). Recall that over a field
dimK ̂ rt(A; K) = dimK ̂ i(A; K), so that the Betti sequence measures (reduced) homology
cts well as (reduced) cohomology of A.

Shifted complexes and near-cones.

Define the partial order <p on fc-subsets of integers as usual: ]!S = {ii < ... <ik} and
T ={jt< ... < jk} are two fc-subsets of integers, then S <p T if. ip <, jp for all p. A
collection C of A;-subsets is shifted if5 ^p TandT   C together imply that 5   C. A
simplicial complex A is shifted if Aj^ is shifted for every k.

Bjorner and Kalai show in [BK] that shifted complexes are near-cones, defined cis follows:
Let A/U B be a simplicial complex such that 5 is a set of maximal faces in A' 0 B (so A
is a subcomplex and B is an antichain). Then A = (vo * A') 0 B is a near-cone (where UQ
is some new vertex not in A' 0 B axid * denotes topological join). In this czise, we define
5(A) = B. If 5(A) = 0, then A is a cone; more generally, we have the following theorem.

Proposition 1 (Bjorner-Kalai [BK, Theorem 4. 3]) Let A 6e a near-cone. Then A is
homotopy equivalent to the /(B(A))-we^e of spheres. In particular,

A-(A) = /.-(B(A)).

A shifted simplicial complex is really an iterated near-cone.

Proposition 2 Z/A is a non-empty shifted simplicial complex on vertices {1, 2, 3,... }, then
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(a) [BK] A is a near-cone with apex 1, soA = (I* A') D B; and

(b) A' is a shifted simplicial complex on vortices {2, 3,... }.

D

This means, for instance, that ifA = (1 *A/) OB is shifted, then A' = (2 * A") U B^ for
some Bi and A , and thus,

A = (I* ((2* A") 0 Bi)) U B.

More generally, we have the following corollary.

Corollary 3 Let A = A^ be a shifted simplicial complex of dimension d-1. Then we may
inductively define A<r) = (A(r-l))/, i. e.,

A<r-l) = (r * A(r)) 0 B,_i (1 < r < d), (1)

for some Br- Furthermore,

A = 1 * (2*(3*(. --(J- 1) * ((d* 0) 0 Bd-i) 0 Bj-2 ... ) U Bz) U Bi) U Bo. (2)

Proof: Proposition 2 sho\vs, inductively, that A(r-l^ is a near-cone with apex r, allowing
A(r) to be defined by equation (1). Equation (2) then follo\vs from iterating equation (1). D

By Proposition 1, then,
/, (B. ) = A(A(r)). (3)

Iterated homology is an algebraic way to recover this data, even when the simplicial complex
is not shifted.

Iterated homology.

Before we can define iterated homology, we must define the exterior face-ring (see [BK]
for more details). Let F be a simplicial complex with vertices V = {ei,..., Cn} linearly
ordered ei < . . . < e^. Let A. (KV) denote the exterior algebra of the vector space KV;
it has a A'-vector space basis consisting of all the monomials es '.= e, i A ... A <s, ),, where
S = {e^ < ... < e,̂ } C V (ajid eg = 1). Let TT be the ideal of A-(KV) generated by
{es: S ^ F}. The quotient algebra A[F] := A(ATy)/Jr is the exterior face ring of F (over
K), an exterior algebra analogue to the Stzinley-Reisner face ring [St, Re].

Cohomology is easy to compute with the exterior face ring. Let x denote the image
module Ir of x  . KV. If f = Qiei+- . -+Qne^, then Sf. A[T] -^ A[F] defined by 8f(x) = x/\f
is a weighted coboundary operator, so-called because

n

Sf(es) = e5A/ = ^ aiCs A e, = ^ ±Q;,esu{. }.
«=1 i^S

S'U{«} A
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Setting every a, = 1 gives the usuaJ coboundary operator. Ordinary Betti numbers may
be computed using weighted coboundary operators: /?. (?) = dimA'(ker<?/).7(im^),, if / =
Q g + ... + ctnCn and every a, is non-zero [BK, pp. 289-290].

Definition: Let {/i,..., /n} be a "generic" basis of KV, i. e., /. = E^iO'. j^, w^ere the
o;, /s are n2 transcendentals, algebraically independent over K. We define fs:=f^ A . . . A /;
for5'= {?i < ... < ik} and set /g =1. If F is a simplicial complex and 0 ^r <k ̂ d,
define

AfcM(F) = /[r]AA, -. [r]=/iA... A/. AA,-, [r],
Zfc-l[r](F) = {.F Afc[r](r):/. +iA.r=0},

Bt-W) = {^AAt-^) ^^,
Hk[r}(T) == Zk[r](r)/Bk[r}{T).

Notice that Bfc-l[r](F) = A^[r + 1](F). The fffc[r](F) are the rth iterated cohomology
groups of F. Define the rth iterated Betti numbers by

/3fc[r](r)=dim^[r](r).

D

The r = 0 case is just ordinary (reduced) cohomology. The iterated Betti numbers can
also be interpreted as

^M(r) = ^(A[r](r)).

Remark: Kalai [K2] defined a similar, but not identical, iterated cohomology We distin-
guish between the two definitions by putting baj-s over his. First let Fr = span{/i, ... , /r}.
Then define

Zfc[r](F) = {.c Afc[r]:/iA... A/. Aa;=0},
Bfc[r](F) = span{F, AAfc-i[r]},

and define Hk[r](T} and ̂ [r](F) in terms of Bk[r}(T) and Zk[r}{T) as above. We show
below (using a combinatorial characterization of iterated cohomology) that the two iterated
cohomology definitions axe different, d

Algebraic shifting.

Algebraic shifting (mtroduced by Kalai [Kl]; see also [BK, K2]) transforms a simplicial
complex F into a shifted simplicial complex A(F) with the same /-vector, cind also preserves
many algebraic properties of the original complex. Algebraic shifting provides much of the
motivation for iterated homology.
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For a set of integers F ̂ define

init(F) = min{r: r ^F} - 1,

which measures the largest "initial segment" in F, and is 0 if there is no initial segment (t'. e.,
l^F).

Theorem 4 Let Y be a simplicial complex. Then

/3fc-i[r](r) = ^{facets F   A(F): |F| = A, init(F) = r},

where A(F) is the result of applying algebraic shifting to T.

Proof: Very similar to the proof of the r = 0 case by Bjorner and Kalai, Claim 2 in [BK,
Theorem3. 1]. D

Corollary 5 Let F be a simplicial complex. Then

/3'-lM(r) = /3fc-lM(A(r)).
where A(F) is the result of applying algebraic shifting to T.

Proof: Using the stability of algebraic shifting, i. e., that A(A(F)) = A(F) [BK, p. 291], and
Theorem 4 twice,

/3fc-l[r](F) = ^{facets F   A(F): |F[ = fc, init(F) = r)
= ^{facets F   A(A(F)): \F\ = k, init(F) = r}
= /3fc-l[r](A(r)).

Corollary 6 Let T be a simplicial complex, let A = A(F) be the result of applying algebraic
shifting to Y, and define Bi,.. ., Bj as in Corollary 3. Then

^+r-lM(F) = fk-iW = ^-l(AM).

Proof: It is ezisy to see by equation (2) that

fk-iW = ^{facets F   A(F): |F| = fc + r, imt(F) = r}.

Then apply Theorem 4 and equation (3). D

Remark: We can uow show that Kalai's iterated cohomology is different from the one
presented here. In [K2], Kalai gives the fonnula

^-1M(F) = ^{F   A(F): |F| = fc, Fn[r] =0, FU [r] ̂  A(F)}.
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To see that the definitions are essentially different, consider the (shifted) simplicial complex
on n vertices whose maximal faces are

{l, 2}, {l, 3}, {l, 4},..., {l, n}.

In Kalai's theory, each face {m} contributes m-2 (m >3) to the iterated Betti numbers
(with r = 2,..., m- 1), for a grand total of ("^ ). However, our iterated Betti numbers in
this case only have a grand total of n - 1, one each for each of the n - 1 maximal faces.

On the other hand, it is not hard to check that if a simplicial complex is "5-fold acyclic
(?. e., all the rth iterated homology groups vanish for r = 0,... , 5} under either defimtion,
then it is "5-fold acyclic" under the other definition (both conditions correspond to the
algebraically shifted complex A being an "5-fold cone", z'. e., A = [^] * A/ for some A/). D

Shelling.

A simplicial complex F is shellable [BW] if there is a map R: {facets of F} -). F called the
restriction map and an ordering (called the shelling ordering) of the facets -Fi,... , F( of
r such that:

r= U [-R )^. ]; ^ (4)
!<»<(

R{Fi} C F, ̂  i ^ j. (5)

Note that coudition (5) implies that the union in equation (4) is disjoint. The restriction
numbers aj-e defined by

/i,, (r) = {facets F: \F\ = z, \R[F}\ = j}

and are independent of the shelling order.
Alternatively, a simpliciaJ complex A is shellable if it can be constructed by adding one

facet at a time, so that as each facet F is added, the restriction face R{F) is the unique new
minimaj face added. Traditionally, A also had to be pure, but in [BW], Bjorner and Wachs
generalize the definition of shelling by dropping the assumption of purity, and prove basic
results about general (z. e., non-pure) shellability. For instcLnce, if A is sheUable, then

/9fc-i(A) = ^, (A), (6)

generalizing earlier results about homology of pure shellable complexes. Iterated homology
provides ctn algebrzdc interpretation of the non-diagonal restriction numbers (i. e., A;j(A),
where i / j).

Lemma 7 (Bjorner-Wachs [BW, Corollary 11.4]) Z/A is a shifted simplicial complex,
it is shellable with restriction numbers given by

^. (A) = ^{facets F   A: |F| = i, imt(F) = z -j}.
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Theorem 8 Let F be simplicial complex. Then

/?fc-l[r](r) = ^-. (A(F))

where A(F) is the result of applying algebraic shifting to T.

Proof: Apply Theorem 4 and Lemma 7. D

A different kind of decomposition, collapsing [K2, §4], is needed to fully generalize equa-
tion (6). A face R of a, simplicial complex F is free if it is included in a unique facet F (the
empty set is a free face off ifF is a simplex). A collapse step is the deletion from F of a free
face and all faces containing it (?'. e., the deletion of the Interval [R, F], a Boolean algebra).
A collapsing sequence is a sequence of collapse steps that reduce F to the empty simplicial
complex. If the maximal face of each collapse step is a facet of F, then the collapsing se-
quence corresponds to a shelling of F, with the intervals of the collapse steps corresponding
to the shelling decomposition in equation (4).

Theorem 9 If T is a shellable simplicial complex, then

A., (r) = A,, (A(r))

where A(F) is the result of applying algebraic shifting to Y.

Proof: (sketch) Algebraic shifting preserves collapsibility [K2, Theorem 4.2]; applying this
one collapse at a time to F, using the shelling of F, we see that we can collapse A(F) into
Boolean algebras that have the same dimensions as the sheUing decomposition of F. Now,
by [BW, Theorem 2. 6], we may assume that the shelling order of the facets of F is in order of
decreasing dimension (i. e., if F, and Fj are facets of F and z < j, then dim1?, ^ dim^, ), so
the mzLximal face in each step of the collapse of A(F) is a facet in A(F). Thus, the collapsing
sequence of A(F) corresponding to the sheUing of T gives a shelling order of A(F) with the
same restriction numbers as F. D

Corollary 10 If F is a shellable simplicial complex, then

^-l[r](F) = h^-rW.
Proof: By Theorem 8 and Theorem 9,

^-l[r](F) = ^-. (A(F)) = ^-. (F).
a

Corollary 10 is the desired generalization of equation (6), providing an algebraic interpre-
.tation .of restriction nuinbers dnd a combinatorial interpretation of iterated Betti nimibers
of shellable complexes.
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Depth.

A sequence (a;i,.. . , Xk) of elements of a ring R is a. regular sequence on R if each z, is
not a zero divisor on the quotient ^?/(a-i,..., a;;_i). The depth of a ring is the length of
the longest regular sequence on R. The depth of a simpliciaJ complex A is defined to be the
depth of A'[A], the face ring of A over K. Smith [Sm] and Munkres [Mu] have described
the depth of A in terms of combinatorial and topological properties of A. In [Bj], Bjorner
gives a description of the depth of a shellable complex A in terms of the shelling restriction
numbers /i, j(A). We use this to describe depth in terms of iterated homology.

Theorem 11 Let T be a simplicial complex; then depth(F) = k if and only if:

(a) /9t[r](r) =0fori< k; and

ft) Pk[r](T) ^0 for some r.

Proof: Using [Sm, Theorem 4. 8] (see also Hibi [Hi]), we know that depth(F) = fc if zind
only if k is the largest integer such that the ^-skeleton of F is Cohen-Macaulay. From [K2.
Theorem 5. 3], this is equivalent to k being the largest integer such that the fc-skeleton of tht-
shifted complex A(F) is pure. This means that all facets of A(F) have dimension at least
k, and there exists a facet of dimension exactly k. Thus, in any shelling of A(F), we have
hij = 0 whenever i <, k, but hk+ij / 0 for some j. By Theorem 8, this is equivalent to
/3i[r}(T) =0'ifi<k, for any r, but /3fe[r](r) 7^ 0, for some r. D '
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