The cd-index of Eulerian cubical posets
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Abstract

We show a cubical analogue of Stanley’s theorem expressing the cd-index of an Eulerian simplicial
poset in terms of its h-vector. Our result implies the cd-index conjecture for Gorenstein® cubical
posets follows from Ron Adin’s conjecture on the nonnegativity of his cubical h-vector for Cohen-
Macaulay cubical posets. We show a cubical analogue of Stanley’s conjecture about the connection
between the cd-index of semisuspended simplicial shelling components and the reduced variation
polynomials of certain subclasses of André permutations. The notion of signed André permutation
used in this result is a common generalization of two earlier definitions of signed André-permutations.

Résumé

Nous démontrons un analogue cubique du théoréme de Stanley, qui exprime 'index c¢d d’un en-
semble partiellement ordonné simplicial eulérien en fonction de son vecteur h. Notre résultat implique
que, si le vecteur h cubique de Ron Adin est positif pour les complexes cubiques de Cohen-Macaulay,
alors la conjecture de positivité de I’index cd des ensembles partiellement ordonnés ayant la propriété
Gorenstein*® est vraie dans le cas cubique. Nous montrons un analogue cubique d’une conjecture
de Stanley sur le rapport entre 'index cd de la semisuspension des composants d’effeuillage d’un
complexe simplicial, et les polynémes de variation réduite de certaines sous-classes des permutations
d’André. La notion de permutation d’André signée utilisée dans ce résultat est une généralisation
commune de deux définitions antérieures des permutations d’André signées.

Introduction

In [14] Stanley expressed the cd-index of an Eulerian simplicial poset in terms of its h-vector. He
conjectured that the cd-polynomials occurring in his formula are the cd-variation polynomials of
certain classes of André permutations. (This conjecture was proved by G. Hetyei in [9].) In this
paper we generalize Stanley’s theorem and conjecture to cubical posets.

In Section 1 we recall the definition and fundamental properties of the cd-index of a graded
poset, with a special focus on C-shellable CW-spheres. We draw attention to Stanley’s [14,
Lemma 2.1] which allows us to greatly simplify the calculation of the change in the cd-index of a
CW-sphere when we subdivide a facet into two facets.
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In Section 2 we specialize the results of Section 1 to shellable cubical complexes. We indicate
the reason why in this special case there is no difference between the usual notion of shelling (which
we call C-shelling, following Stanley in [14]) and the notion of S-shelling or spherical shelling (also
introduced in [14]). Using a consequence of [14, Lemma 2.1], we obtain a formula for the cd-index
of a shellable cubical sphere.

In Section 3 we use [14, Lemma 2.1] to establish linear relations between the cd-indices of
semisuspended cubical shelling components. These relations allow us to express the cd-index
of a shellable cubical sphere in terms of the “long h-vector” suggested by Ron Adin in [1]. As
in Stanley’s [14, Theorem 3.1], every h; is multiplied with a cd-polynomial with nonnegative
coefficients. Ron Adin has asked whether the long A-vector of a Cohen-Macaulay cubical complex
is nonnegative. An affirmative answer to his question would imply a new special case of Stanley’s
[14, Conjecture 2.1] about the nonnegativity of the cd-index of Gorenstein* posets.

There are two other h-vectors defined for cubical complexes which were studied before: the
toric h-vector defined by Stanley for Eulerian posets [13] and the h-vector of the Stanley ring
of cubical complexes introduced in [8]. Unfortunately none of them have been useful to prove
nontrivial inequalities about the f-vector of cubical complexes. Our result indicates that Ron
Adin’s cubical h-vector might be a good candidate for this purpose.

In Section 4 we give recursion formulas for the cd-indices of both semisuspended simplicial
and cubical shelling components. These formulas are useful in proving the results of Section 5.

Finally, in Section 5 we express the cd-index of the semisuspended cubical shelling components
in terms of reduced variation polynomials of signed augmented André* permutations. Unsigned
André* permutations may be obtained from André permutations by reversing the linear order of
the letters and reading the permutation backwards. This small twist allows one to handle the
signed generalizations more easily, as was first observed by Ehrenborg and Readdy in [6]. Our
signed André* permutations generalize both the signed André permutations introduced by Purtill
in [11] and studied in greater generality by Ehrenborg and Readdy in [6], and the signed André-
. permutations introduced by Hetyei in [9]. We prove not only a signed analogue of Stanley’s [14,
Conjecture 3.1], but as an auxiliary result we also obtain a new description of the cd-index of
semisuspended simplicial shelling components.

1 On the cd-index and shellings

Let P be a graded poset of rank n+1, that is, P is ranked with rank function p, and has minimum
element 0 and maximum element 1. The flag f-vector (a(S) : S C {1,2,...,n}) is defined by

oS) & {{6<x1<...<zk<f}gP : {p(xl),...,P(xk)}=S}l,

and the flag h-vector (also called the beta-invariant) is defined by the equation

B(S) = X () o).

TCS
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The ab-indez Up(a,b) = ¥(P) of the poset P is the following polynomial in the noncommuting
variables a and b:

Up(a,b)= S B(S)-us, (1)

SC{1.2,...;,n}

where us is the monomial u; - - - u, satisfying u; = b if ¢ € S and u; = a otherwise.

A poset P is Eulerian if it is graded and the Mdbius function of any interval [z,y] is p(z,y) =
(=1)?®)-#)_ Fine observed (see [3]) that the ab-index of an Eulerian poset can be written
uniquely as a non-commutative polynomial in the variables ¢ &£ a+band d £ ab + ba. For
an inductive proof of this fact see Stanley [14]. In this case we call ¥p(a,b) = ®p(c,d) = ®(P).

Stanley [14] introduced the polynomial Tp(a,b) £ ¥ «S)-us, and he observed that
Sc{1,...,n}

¥p(a,b) = Tp(a—b,b) and Tp(a,b) = ¥p(a+b,b). (2)

We associate to every chain ¢ = {ﬁ <z << < I} in P a weight w(c) = 21 2, Where

z =bifi€ {p(z1),...,p(zx)} and z; = a—b otherwise. By the first equation in (2), the ab-index
Up(a,b) is the sum of the weights of all chains in P,

¥(P) = Tp(a,b) =3 w(), (3)

c

where c ranges over all chains ¢ = {6 <z <<t < I} in the poset P.

A poset P is called near-Eulerian if it may be obtained from an Eulerian poset $ P by removing
one coatom. The poset %P may be uniquely reconstructed from P by adding a coatom z which
covers all y € P for which [y, 1] is the three element chain. Following Stanley [14] we call EP the
semisuspension of P. In this paper we focus on cubical posets, with an eye on simplicial posets.

Definition 1.1 A simplicial poset is a graded poset such that for all 0 <z <y<1 the interval
[z,y] is a boolean algebra. A cubical poset is a graded poset such that for all z < 1 the interval
[0, z] is the face lattice of a cube, and for all0 <z <y <1 the interval [z,y] is a boolean algebra.

When P is also a meet-semilattice then P — {1} is the face poset of a simplicial or cubical
complez, with a maximal element 1 added. They may both be realized as regular CW-complexes.
Following Bjorner [5] we call a poset P with 0 a CW-poset when for all z > 0 in P the geometric
realization |(0, z)| of the open interval (0, z) is homeomorphic to a sphere. By [5], P is a CW-poset
if and only if it is the face poset P({) of a regular CW-complex Q2. As Stanley does in [14], we
use P;(Q) to denote the face poset P({2) adjoined with 1. If Q is homeomorphic to a sphere then
P,(Q) is Eulerian. If Q is homeomorphic to a ball then P1(Q) is near-Eulerian. For a regular
CW-ball Q the semisuspension LP;(Q) of Py(Q) is of the form P,(X02) where £ is the regular
CW-sphere obtained from Q by adding an extra facet, the boundary of which is identified with
the boundary 99 of (2.

Stanley observed the following, see [14, Lemma 2.1]. Let {2 be an n-dimensional CW-sphere,
and o an (open) facet of Q. Let Q' be obtained from {2 by subdividing 7 into a regular CW-
complex with two faces oy and o3 , such that Oo remains the same and @7 N 77 is a regular
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(n — 1)-dimensional CW-ball I. Then we have
O(P(Y)) — B(P(R)) = @(A(ET)) ¢ — ®(P(IN)) - (c* — ). (4)

In particular, if we take another n-dimensional CW-sphere and subdivide it isomorphically, the
cd-index changes by the same amount.

Lemma 1.2 Let Q; and Q; be n-dimensional CW-spheres. Assume that we subdivide a facet o
of i (i = 1,2) into two facets o} and o} such that 8(o;) is unchanged and o} N o4 is a regular
(n — 1)-dimensional CW-ball T;. Then Pi(I'y) = P,(T'2) and P1(0T) = P1(0T'z) imply

(P () — (A()) = 2(A(Q)) — B(FA (k).

Fine [3, Conjecture 3] conjectured that the cd-index of the face lattice of a convex polytope
is nonnegative. Stanley proved this in greater generality [14, Theorem 2.2 for S-shellable, or
spherically shellable, regular CW-spheres.

Definition 1.3 Let  be an n-dimensional Eulerian regular CW-complez. We call Q or Pi(Q)
S—shellable (or spherically shellable) if either Q = {0} (and so Pi() is a two-element chain with
cd-indez 1), or else we can linearly order the facets (open n-cells) of Q Fy, F3,..., F;, such that
for all 1 <4 < r the following two conditions hold (both ~ and cl denote closure operation).

(S-a) OF; is S—shellable of dimension n — 1.

(S-b) For2<i<r—1,letT; = ol [0F - ((Fru-- L) Hiy ) NF;)]. Then Py(T;) is near-Eulerian
of dimension n — 1, and the semisuspension LT; is S—shellable, with the first facet of the
shelling being the facet T = 7; adjoined to I'; to obtain XT;.

As a consequence of Lemma 1.2, the cd-index of an S-shellable regular CW-sphere may be
computed from just knowing 0F; and the complexes T';.

The definition of S-shellability is different from the usual notion of shellability (given e.g. in
[5, Definition 4.1]), which is called C-shellability in [14]. It is trivially true, however, that the
two notions of shellability coincide for the geometric realizations of simplicial spheres. We show
in Section 2 that the same holds for cubical complexes. '

2 Shellable cubical complexes

Let C™ denote the complex of faces of an n-cube with vertex set V(C"). We may geometrically
realize any n-cube in R™ as the convex hull of the vertex set {0,1}". We call such a realization
¢ : V(C*) — R™ of a cube a standard geometric realization. By abuse of notation we also denote
by ¢ the map associating the convex hull of {¢(v) : v € o} to a face ¢ € C". Using ¢ we may
define the boundary dC™ as the inverse image under ¢ of the boundary of [0, 1]".
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Following Metropolis and Rota in [10], given a standard geometric realization ¢, we encode
the nonempty faces o of our n-cube with vectors (u1,us,...,u,) € {0,1,*}" such that for every
i € {1,2,...,n} we set u; = 0 or 1 respectively if the ¢-th coordinate of every element of ¢(o) is
0 or 1 respectively and u; = * otherwise. Using this coding, the facets of dC™ correspond to those
vectors (up,...,u,) for which exactly one u; is not the x-sign.

Definition 2.1 Let A? respectively A} denote the facet (ui,uz,...,un) with u; = 0 respectively,
u; = 1 and up = * for k # 1. Let {Fy,...,Fx} be a collection of facets of O(C™). Let r be the
number of indices i such that |{A?, A}} N {Fy,...,Fi}| = 1, and let s be the number of indices j
such that such that {A%, A1} C {F\,...,Fr}. We call (r,s) the type of {F1,..., Fi}.

Clearly the type does not depend on the choice of the standard geometric realization. The
following observation is originally due to Ron Adin and Clara Chan.

Lemma 2.2 Let {F},...,Fi} be a collection of facets of OC™ and ¢ a standard geometric realiza-
tion of C*. Then ¢(F1)U ¢(F3)U---U ¢(Fi) is an (n — 1)-sphere if and only if it has type (0,n)
and it is an (n — 1)-ball if and only if its type (r,s) satisfies r > 0.

It is easy to see by induction on the dimension that there exists a C—shelling of the boundary
of [0, 1]" starting with the facets {¢(F1), $(F2), ..., #(Fr)} if and only if ¢(F1)U@(F2)U---UH(Fy)
is an (n — 1)-sphere or an (n — 1)-ball. Thus we may rephrase the definition of C'-shellability for
finite cubical complexes in a purely combinatorial way as follows.

Lemma 2.3 Let C be an n-dimensional pure cubical complez (i.e. a cubical compler with equidi-
mensional mazimal faces). An enumeration Fi,..., Fn of the facets of C induces a C-shelling of
its geometric realization if and only if for every k € {2,...,m} the following two conditions hold:

(i) The set of faces contained in FyN (FLU---U Fi_1) is a pure complez of dimension (n —1).

(ii) The collection of the facets of OFy contained in F1U---U Fi_y has type (r,s) with r >0 or
s=n-—1.

Definition 2.4 We call the cubical complez of faces contained in Fi N (Fy U --- U Fx_1) the kth
shelling component, and the type (r,s) associated to it the type of the shelling component. The
empty cubical complez is also a shelling component of type (0,0).

We may also show by induction on the dimension that the boundary of [0,1]* has an S-
shelling and that, given a collection of facets Fi,..., Fy of C™ of type (r,s) with r > 0, the
semisuspension of ¢(F1) U --- U ¢(Fk) has an S-shelling starting with the facet which was added
to obtain XL(¢(F1) U --- U ¢(Fk)).

Corollary 2.5 Let () be the geometric realization of a cubical complez C as a regular CW-complez.
Assume that Q is an n-sphere. Then an enumeration F,..., Fy, of the facets of C induces a C-
shelling if and only if it induces an S—-shelling.
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In fact, in both cases we have the same types of allowed shelling components: for k € {2,...,m—1}
the type of the kth shelling component must be (r,s) with 7 > 0 and the last shelling component
must have type (n,0). Thus in the case of cubical spheres we may simply speak about shellings,
without any reference to C-shellings and S-shellings.

Definition 2.6 Given a shellable cubical n-sphere C and a shelling Fi,...,Fn of it, we denote
the number of shelling components of type (r,s) by grs. (In particular we have goo = gon = 1.)
We call the vector (..., Grs,-..) the g-vector of the shelling.

Similar to the way Stanley treated the simplicial case in [14], we may express the cd-index
of a shellable cubical sphere in terms of the numbers g¢; ;, and the cd-indices of (semisuspended)
shelling components of one dimension higher. For this purpose we introduce the following notation.

Definition 2.7 Let B, be the boolean algebra and C, the cubical lattice of rank n. That is, B, is
the face lattice of the (n — 1)-dimensional simplezx A™ while C,, is that of the cube C". We denote
®(B,) and ®(C,) by U, and V, respectively. In particular, for n =1 we have Uy = Vi = 1.

Given a collection Fjy,...,Fx of & < n — 1 facets of OA™ ! we denote the semisuspension of
the poset [0, Fy] U --- U [0, F] U {1} C By by Bn and its cd-index by Unx. Given a collection
Fi, ..., F. 2, of facets of C*! of type (r,s), where r is positive, we denote the semisuspension
[0, F,]U---U[0, Fryzs] U {1} € Cn by Ca,,s and its cd-index by Vo rs.

Proposition 2.8 Let C be an (n — 1)-dimensional shellable cubical sphere which has a shelling
with g-vector (...,grs,-..). Then the cd-indez of P,(C) is given by

<I>(P1(C)) = Vat110 + Zgr,s : (Vn+1.r+1,s = n+1,r,.1)' (5)

)
r>0

3 Ron Adin’s h-vector and the cd-index

Definition 3.1 Let P be a graded simplicial or cubical poset of rankn+1. For: = —1,0,...,n—1
we denote the number of elements of rank i + 1 in P by f;. The vector (f_1, fo,..-, fa) is called
the f-vector of P. When P is simplicial we define its h-vector by

n

Sk E Y fia- (-1
7=0

=0

From now on let C be an (n — 1)-dimensional cubical sphere. It is well known that for the face
poset of an (n — 1)-dimensional C—shellable simplicial complex, k; is the number of facets F; in
any shelling Fi, ..., Fi, for which F; N (Fy U ---U Fj_;) is a collection of ¢ facets of 9F;. In this
sense the g-vector of a shelling of a shellable C is an analogue of the h-vector. We have, however,
only the following straightforward nonbijective relationship between the f-vector and the g-vector.

n-1

> firzF=3 g2t (z4+1) (42T (6)

k=0 3
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By Lemma 1.2 we have V, 116 — Vars = Varstl — Vapprs forn > 1, 7 > 0, s 2 0 and
r+ s <n — 1. Repeated use of this equation allows us to obtain the following formula.

n—1
73 -1
®(Pi(C)) = Varrao+ ) ( > g_zr_ (l ' 1 3)) - (Vasr,10 — Vagr,n-1)-
1=1 9 S -

r>max(1,l—s)
Keeping in mind Stanley’s [14, Theorem 3.1], our last equality suggests to define hq < 1 and

def grs 7'—1
def L <] <n—
hi E 5 (l-—l—s) for1<i<n-1 (M

s
r>max(1,l—s)

to be the first n entries of the cubical A-vector. This, by goo = go,n—1 = 1, is equivalent to

n—1
(l+z)- > b2’ = l—z"—}-m-zgg:' (14z) -z°.
=0 7,8
n—1-—k
Proposition 3.2 For a shellable C we have ¥, %2 - (14+2)" - 2° = X320 fi- z*. (%ﬁ) ' , and

so the expression (7) is independent of the choice of the shelling.

Definition 3.3 Let P be an Eulerian cubical poset of rank n + 1, with f-vector (f-1, foy-- -, fa)-
We define the h-vector of P by the following polynomial equation.

n—1 n—1-k
g T E R ()
Z hl . Il d:'-:f k=0
1+z

1=0

The right hand side is a polynomial because of the Eulerian equation }-7__; f; (—1)? = 0. The
same equation allows us to show that for cubical (n — 1)-spheres, this h-vector is identical with
the 2-"*!-multiple of the “Jong h-vector” suggested by Ron Adin [1] for cubical complexes. By
Proposition 3.2, for a shellable C the ks given by this definition satisfy ho = 1 and equation (7).
Using this h-vector, we have the following cubical analogue of Stanley’s [14, Theorem 3.1].

Theorem 3.4 For an Eulerian cubical poset P of rank n + 1, with h-vector (ho, h1,..., k),

n—-1
®(P) = ho - Vayr0+ 2 ki (Vasr,10 — Vagrio1)  holds.

=1

By the proof of Stanley’s [14, Theorem 2.2], the differences V; 4111 — Vas1,1,-1 have nonnegative
coefficients. Hence the nonnegativity of the h-vector of an Eulerian cubical poset P implies the
nonnegativity of ®(P). Ron Adin asked whether the “long h-vector” of a Cohen-Macaulay cubical
complex is nonnegative ([1, Question 1]). Because of the analogy to the simplicial case we state
Conjecture 3.5. This conjecture, if true, implies the truth of [14, Conjecture 2.1] for cubical posets.

Conjecture 3.5 The h-vector of every Gorenstein® cubical poset is nonnegative.
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4 The cd-index of semisuspended shelling components

We wish to remind the reader of the following formulas (cf. [6, Section 3, equation (1) and
[Section 5, equation (3)] or [9, equations (5) and (16)].)

Proposition 4.1 We have forn > 1,

n n—1
Un+2 = Z (TZL) ) Ui ) d . Un+1—i + €= Un+1 and Vn+2 = Z (n> A ‘/i-’r‘l -d- Un—-i + Vn+1 ¥ G

=1 1=0 o

Proposition 4.1 gives the recursion formula for U, ,—1 = U, and V, 1 »—1 = V,. In the following
theorems these special cases will not be covered.

Theorem 4.2 For 2 < k < n we have

k-1 —-k+1
Unt2e = D, ( : ) (n ; ) * Vigir - d « Unesig =i

i<k—2 t J
1<n—k
k-1
+ Z : “Unto—kyi d - Ug—iy1 + Upyr - .
i<k—2 C

Proof: (Sketch) We calculate the total weight of the chains in Bnyak \ {0,1}. We assume that
B,.12,x Was obtained by adding an extra coatom E to the poset U, [0, {1,2,...,n+2}\ {s}Ju{1}.

The total weight of all chains ¢ of which every element is either £ or a set not containing 1 is
k-2 E—1 .
Un+1 +C — Z ( ; ) p Un+2—k+i -b- (a = b)k_l_z - b. (8)
1=0

From now on we may assume that every chain considered contains a set A with 1 € A. Let us
compute first the total weight of all chains containing a set A with 1 € A and n + 2 ¢ ). Their
total weight is

k=1\[n—k+1
Z ( : )(“ : ).Uz'+j+1'b'a'U"“‘j”‘""'1

i<k—2 ¢ J
<n-—k
J-k—2 k__ 1 . k=2 k -1 ) (9)
+2 ( ; ) Untz—kti-bra-Urmici + 3 ( ; ) +Unta-ki b+ (a=b)f 2. b,
1=0 1=0

For all remaining chains ¢ the smallest set A € ¢ with 1 € A contains n + 2. Their total weight is

k—1\(n—k+1
) ( ' )(” : ).Ui+j+1'a'b'U""""k_"—1

i<k—2 ? J

sk - (10)
+>° ( ; ) *Unya-kyi-a-b-Ug_i_.
1=0

Adding the weights (8), (9), and (10) we obtain the statement of the theorem. ]
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Theorem 4.3 For 1 <1 we have

t—1\[7\[k &g
Varziy = > ( ) < ) (k ) T i ST RICIRE. Y /S T

10,41,98 70 ke 20 21 tx J=
1g+1—1>0
11 +k—ka>0
i - 1 j j—j-
+ X - 2 )27 Vagemigwie—i - 4 Uighi—je + Vot - €
10.J= 20 J’“
t1g+1—3+>0

where k=n+1—1t—7.

The proof is similar to the one of Theorem 4.2 and is therefore omitted.

5 Augmented André* signed permutations

Let X be a finite (possibly empty) linearly ordered set with m elements and linear order A. A
permutation on X is a list (71,. .. ,Tm) such that every letter of X occurs exactly once. We say
that i € {2,...,m} is a descent of 7 if we have 7;_; > 7; (otherwise ¢ is an ascent). The descent set
Da(7) of 7 is the set Do(7) = {7 : i1 > 7} We say that 7 has a double descent if there is an index
i, where 2 < i < m—1, such that 7 has a descent at the ith and (¢4 1)st positions. In other words,
both i and i + 1 belong to D (7). Given a (possibly empty) subinterval [z, 5] € 152, 500y}, WE
define the restriction of T to [¢,j] to be the permutation 7| ; = (7i; Tit1, - - -, 3]

Definition 5.1 Let X be a finite linearly ordered set with linear order A. A permutation T =
(T1y---,Tm) on X is an André” permutation if it satisfies the following:

1. The permutation T has no double descents.

2 Forall2<i<j<m,ifriqa= maxp{ri-1, T, Tj-1,7j} and T; = ming {7i-1, T, Tj=1,Ti }»
then there ezists a k, with i < k < j, such that 7;_y <p Tk-

We call an André * permutation augmented if its first letter is miny X. We denote the set of
augmented André * permutations by A(X).

Observe that we obtain the usual definition of André permutations (as it is given in [7] or in
[11]) if we read the permutations backwards and reverse the linear order. In analogy with [11,
Corollary 5.6] we have the following recursive description of augmented André* permutations.

Proposition 5.2 Let X be a finite set with linear order A and |X| = n. A permutation T =
(1,...,Ta) on X is an augmented André * permutation if and only if for m = 771(maxy X) the
permutations T |[1,m-1] and T |[m+1,,,] are augmented André permutations and 1, = miny X.

Definition 5.3 Let N be a subset of P of cardinality n. Define —N = {—i : ¢ € N}. A (non-
augmented) signed permutation o on the set N is a list of the form (01,02,...,0,) such that
for all i, o; € NU =N and (|o1],102],-..,|on|) is a permutation on N. An augmented signed
permutation ¢ on N is a list (0,01,02,...,0,) such that (01,02,-..,0n) 15 a signed permutation
on N. We write oo = 0.
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As in the signless case, we use the notation Ul[i'j] to denote the restricted permutation o I["'ﬂ =

(U,‘, Titlye+> O'J').

Let A be a linear order on the set N U {0} U —N. The descent set of a signed permutation o
(augmented or non-augmented) with respect to A is the set Da(o) = {¢ : 0i-1 >a 0i}. Here
Dy(o) is a subset of {1,2,... ,n} for augmented permutations, and it is a subset of {2,...,n} for
non-augmented permutations. As before, we say that a signed permutation o as a double descent
if there is an 7 such that 2 <2 <n-—1 in the nonaugmented case and 1 <1 < n—1in the
augmented case, and both i and z + 1 are contained in the descent set Dj(c) of o.

Assume from now on that 2 >4 0 and i >4 —1 holds for all z € N.

Definition 5.4 Let N be a subset of the positive integers P of cardinality n. We say an aug-
mented signed permutation o = (0 = 00,01, ,0n) on the set N is an augmented André* signed
permutation if the following three conditions are satisfied:

1. The permutation o has no double descents.

92 Forall1<i<j<nm,ifoiq= maxa{0i-1,0:,0j-1,0} and 0j = ming{ci_1,0i,05-1,0;5},
then there exists a k, with i < k < j, such that oi_y <a O%-

9. Forz = max N, there ezistsl <m < n such that 0,, = z and that o ‘[O,m—l] is an augmented
André * signed permutation on the set J, where J = {lok] : 1<k<m-—1}

The permutation (0) is allowed to be an augmented André * signed permutation on the set N=0.
Observe that conditions 1 and 2 of Definition 5.4 are equivalent to the following:

1. (0 = 00,01,..-,0n) 15 an André* permutation on the set {0 = 09,01, .., 0.} linearly ordered
by the restriction of A.

A non-augmented signed permutation satisfying conditions 1 and 2 in Definition 5.4 is called
a non-augmented André * signed permutation. We denote the set of all augmented André* signed
permutations on the set N by AZ%(N) and the set of all non-augmented André* signed permutations
on the set N by N*(N). Furthermore, we denote the set of those non-augmented André* signed
permutations which begin with their smallest element (with respect to the linear order A) by
NE(N). That is, Ng°(N) & {(01,02,...,02) ENE(N) @ o1 = mina{01,02,...,0n}}

Examples

1. Let N % {1,2,...,n} and consider the linear order —n <4 —n+1 <p -+ <p =1 <a
0<p1<y --<an—1l<anon—NU{0}UN. Then A%(N), N%(N), and N§F(N) are
the same as the similarly denoted sets of augmented (respectively non-augmented) r-signed
André-permutations studied in [6] for r = (2,2,...,2). The set A*(N) may be obtained
from Purtill’s set of augmented signed André permutations defined in [11] by reversing the
permutations and replacing each entry k with —k.

2. Let N £ {1,2,...,n} and consider the linear order 0 <4 —1 <a 1 <a —2 <p 2 <a
... <5 —n <s non —N U {0} UN. Then A*(N) and N*(N) may be obtained from the
corresponding sets of augmented (respectively non-augmented) signed André permutations
defined in [9] on the set {1,2,...,n + 1} by reading each permutation backwards, and
replacing each letter k with n +1 — k, while keeping its sign.
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We define the variation U(r) of a signed or unsigned permutation 7 as U(r) = us, where S is
the descent set of = and us is the ab-word defined in Section 1. In the case when 7 contains no
double descents (e.g., when 7 is a signed or unsigned, augmented or non-augmented André-
permutation), the reduced variation of 7, which we denote by V(r), is formed by replacing each ab
in U(x) with d and then replacing each remaining letter by c. Given a set P of signed or unsigned
permutations, we denote the sums 3 ep U(r) and ¥ rep V() respectively by U(P) and V(P).

Note that the (reduced) variation of an unsigned André” permutation 7 is the reverse of the
(reduced) variation of the reversed permutation 7°" which is an André permutation with respect
to the reversed order. Hence we may reformulate Purtill’s [11, Theorem 6.1] as follows.

Proposition 5.5 U, = V (A({1,2,...,n})) holds for all n € P.

Corollary 5.6 We have V (J\/'Oi (N)) =Nl .

The following description of the polynomials Un k is analogous to Stanley’s [14, Conjecture 3.1].

Theorem 5.7 Let A, denote the set {r € A({0,1,...,n—1}) : Tn € {n-1,n-2,...,n—k}}.
Then we have Upr = V(Ank)-

Proof: (Sketch) Let us denote A({1,2,...,n}) by A,. Using Proposition 5.2 it is easy to show
that V(Antz,k) satisfies the recursion formula given in Theorem 4.2 for 2 < k < n. After this we
are done by induction, where our induction basis 1s formed by the following results:

e Proposition 5.5 which implies our statement for Upn-1 = Un and V(Ann-1) = V(Ar),
o The relations Uns11 = Un - € and V(Ans11) = V(Ana) - € which may be seen directly. 0O

Remark Observe that in terms of “usual” André permutations, Theorem 5.7 expresses the poly-
nomials U, x as the reduced variation of augmented André permutations starting with given letters,
while Stanley’s [14, Conjecture 3.1] ([9, Theorem 2]) partitions the augmented André permutations
depending on their second to last letter.

Proposition 5.2 has the following signed analogue.

Proposition 5.8 There ezists a bijection between the two sets

A +1]) and AX[]) U U AR x NEQD),
I+ J=[n]

where all the unions are disjoint and x is the Cartesian product.

Theorem 5.9 We have V, = V(A*([n])).

Proof: (Sketch) It is enough to show that V(A%([n])) satisfies the same recurrence as the one
given for V, in Proposition 4.1. This formula follows by the bijection given in Proposition 5.8. O

Finally, we describe the polynomials V5 ; in terms of the reduced variation of signed augmented
André * permutations.
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Theorem 5.10 Let N C P be an n-element set and A a linear order on N U —N U {0} such that
0 <p i and —i <p @ for alli € N. Assume that A and B are disjoint subsets of N such that
AUBU—B is an upper segment in NU—N, and all the elements of A are larger than the elements
of BU—B with respect to A. Let us denote |A| by ¢ and |B| by j, where we assumet >0 orj =n.
Then Vi1 s the total reduced variation of all those signed augmented André *-permutations
with respect to A which end with a letter from AU BU —B.
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