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Abstract

We show a cubical analogue of Stanley's theorem expressing the cd-index of an Eulerian simplicial
poset in terms of its /i-vector. Our result implies the cd-index conjecture for Gorensteia* cubical
posets follows from Ron Adin's conjecture on the nonnegativity of his cubical /i-vector for Cohen-
Macaulay cubical posets. We show a cubicaJ analogue of Stanley's conjecture about the connection
between the cd-index of semisuspended simplicial shelling components and the reduced variation
polynomials of certain subclasses of Andre permutations. The notion of signed Andre permutatioa
used in this result is a common generalization of two earlier definitions of signed Andre-permutatioas.

Resume

Nous demontroDS un analogue cubique du theoreme de Stanley, qui exp rime 1'index cd d'un en-
semble partiellement ordonne simplicial eulerien en fonction de son vecteur h. Notre resultat implique
que, si Ie vecteur h cubique de Ron Adin est positifpour les complexes cubiques de Cohen-Macaulay,
alors la conjecture de positivite de 1'index cd des ensembles partiellement ordonnes ayant la propriete
Gorenstein* est vraie dans Ie cas cubique. Nous montroas un analogue cubique d'une conjecture
de Stanley sur Ie rapport entre 1'mdex cd de la semisiispension des composants d'efFeuillage d'un
complexe simplicial, et les polynomes de VEuciatioa reduite de certEimes sous-classes des permutations
d'Andre. La notion de permutatioa d'Andre signee utilisee dans ce resultat est une generalisatioa
commune de deux definitions anterieures des permutations d'Andre signees.

Introduction

In [14] Stanley expressed the cd-index of an Eulerian simplicial poset in terms of its A-vector. He
conjectured that the cd-polynomials occurring in his formula are the cd-variation polynomials of
certain classes of Andre permutations. (This conjecture was proved by G. Hetyei in [9]. ) In this
paper we generalize Stanley's theorena dnd conjecture to cubical posets.

In Section 1 we recall the definition cind fundamental properties of the cd-index of a graded
poset, with a special focus on C'-shellable CW-spheres. We draw attention to Stanley's [14,
Lemma 2. 1] which allows us to greatly simplify the calculation of the change in the cd-index of a
CW-sphere when we subdivide a facet into two facets.
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In Section 2 we specldlize the results of Section 1 to shellable cubical complexes. We indicate
the reason why in this special case there is no difference between the usual notion of shelling (which
we call (7-shelling, following Stanley in [14]) and the notion of 5'-shelling or spherical shelling (also
introduced in [14]). Using a consequence of [14, Lemma 2. 1], we obtain a formula for the cd-index
of a shellable cubical sphere.

In Section 3 we use [14, Lenima 2. 1] to establish linear relations between the cd-indices of
semisuspended cubical shelling components. These relations dllow us to express the cd-index
of a shellable cubical sphere in terms of the "long /i-vector" suggested by Ron Adin in [1]. As
in Stanley's [14, Theorem 3. 1], every /i, is multiplied with a cd-polynomial with nonnegative
coefilcients. Ron Adin has asked whether the long /i-vector of a Cohen-Macaulay cubical complex
is nonnegative. An affirmative answer to his question would imply a uew special case of Stanley's
[14, Conjecture 2. 1] about the nonnegativity of the cd-index of Gorenstein* posets.

There are two other /i-vectors defined for cubical complexes which were studied before: the
tone /i-vector defined by Stcinley for Eulerian posets [13] a.s. d the A-vector of the Stanley ring
of cubical complexes introduced in [8]. Unfortunately none of them have been useful to prove
nontrivial inequalities about the /-vector of cubical complexes. Our result indicates that Ron
Adin's cubical A-vector might be a good cdndidate for this purpose.

In Section 4 we give recursion formulas for the cd-indices of both semisuspended simplicial
dnd cubical shelling componeuts. These formulas are useful in proving the results of Section 5.

FinaUy, in Section 5 we express the cd-index of the semisuspended cubical shelling components
in terms of reduced variation polynomials of signed augmented Andre* permutations. Unsigned
Andre* permutations may be obtained from Andre permutations by reversing the linear order of
the letters and reading the permutation backwards. This small twist allows one to handle the
signed generzdizations more easily, as was first observed by Ehrenborg ajid Readdy in [6]. Our
signed Andre* permutations generalize both the signed Andre permutations introduced by Purtill
iu [11] and studied in greater generality by Ehrenborg and Readdy in [6], and the signed Andre-
permutations introduced by Hetyei in [9]. We prove not only a signed analogue of Stanley's [14,
Conjecture 3. 1], but as cin auxiliary result we also obtain a new description of the cd-index of
semisuspended simplicial shelling components.

1 On the cd-index and shellings

Let P be a graded poset of rank n +1, that is, P is rajiked with rzink function /?, and hcis minimum
element 0 and mcLximum element 1. The flag f-vector (a(. S') : 5' C {1, 2,..., n}) is defined by

a(S) d^ \{{Q<x, <... <Xk<l}CP : {p{x^..., p{xk)}=S}\,
and the flag h-vector (also called the beta-invariant) is defined by the equation

0(S) d=( ^ (-1)1^1. ̂ (T).
TCS
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The ab-index ̂ p(a, b) = ^(P) of the poset P is the following polynomial in the noncommuting
variables a and b:

^p(a, b)= ^ ,3(5). us, (^
SC{l, 2,..., n}

where us is the monomial ui . . -u^ satisfying u; =b ifzG 5 and u. = a otherwise.

A poset P is Eulerian if it is graded and the Mobius function of anymterval [x, y] is /x(a;, y) =
(_l)P(y)-/'(r). Fine observed (see [3]) that the ab-index of ail Eulerian poset can be written
uniquely as a non-commutative polynomial in the variables c ^a+b and d ^ ab + ba- For
an inductive proof of this fact see Stanley [14]. In this case we caU 1rp(a, b) = $p(c, d) == $(P).

Stanley [14] introduced the polynomial Tp(a, b) ^f _E ^ a(5) . us, and he observed that

^p(a, b) =Tp(a-b, b) and

5C{l,...,n}

Tp(a, b)=^p(a+b, b). (2)

We associate to every chain c= {6 <a;i < ... < a;fc <T}inPa weight w(c) ̂  2-1 .. . 2-n, where
z. = bifi   {p(xi),..., /?(^fc)} and z. = a-b otherwise. By the first equation in (2), the ab-index
^p(a, b) is the sum of the weights of all chains in P,

^(P)=^p(a, b)=i:w(c), (3)
c

where c ranges over all chains c= {0<a;i < ... <a:fc < 1} in the poset P.

A poset P is called near-Eulerian if it may be obtained from an Eulerian poset SP by removing
one coatom. The poset £P may be uniquely reconstructed from P by adding a coatom-r which
covers all y   P for which [y, T] is the three element chain. Following Stanley [14] we call SP the
semisuspension of P. In this paper we focus on cubical posets, with an eye on simplicial posets.

Definition 1. 1 A simplicial poset is a graded poset such that for all 0 <, x <y <1 the interval
[x, y] is a boolean algebra. A cubical poset is a graded poset such that for all x < 1 the interval
[Q, x\ is the face lattice of a cube, and for allO <x <, y <i the interval [x, y] is a boolean algebra.

When P is also a meet-semilattice then P - {1} is the face poset of a simplicial or cubical
complex, with a maximal element T added. They may both be realized a5 regulaj- CW-complexes.
Following Bjorner [5] we call a poset P with 0 a CW-poset when for all a; > 0 in P the geometric
realization |(0, 3;)| of the open interval (0, a;) is homeomorphic to a sphere. By [5], P is a CW-poset
if and only if it is the face poset P{fl) of a regular CW^-complex ̂ . As Stanley does in [14], we
use Pi (n) to denote the face poset P(n) adjoined with T. K n is homeomorphic to a sphere then
Pi(n) is Eulerian. If ̂  is homeomorphic to a ball then Pi (H) is near-Euleri^. For a regular
CW-ball n the semisuspension S?i(n) of Pi (n) is of the form Pi (2^) where Sn is the regular
CW-sphere obtained from fl by adding an extra facet, the boundary of which is identified with
the boundary 9^1 o! fl.

Stanley observed the following, see [14, Lemma 2. 1]. Let Q be an n-dimensional CW-sphere,
and (T an'(open) facet of H. Let fl, ' be obtained from ̂  by subdividing ̂  into a regular CW-
complex with two faces o-i and 0-2 , such that Qa remains the same and oT n of is a regular
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(n - l)-dimensional C'l^-ball F. Then we have

$(?i(n/)) - $(?i(n)) = $(Pi(sr)). c - ^(Pi(^)). (c2-d). (4)
In particular, if we take another n-dimensional CW-sphere and subdivide it isomorphically, the
cd-index chdnges by the same amount.

Lemma 1. 2 Let I^i and ̂ 2 be n-dimensional CW-spheres. Assume that we subdivide a facet ai
of fl, i (i = 1, 2) into two facets a-[ and a^ such that 9{t7,) is unchanged and a[ C\ 0-2 is a regular
(n - l)-dimensional CW-ball F.-. Then Pi(Fi) = ^(Fz) <zn^ Pi{9r^ = ?i(OT2) imp^

$(?l(^)) - ^(-Pl("l)) = ^(^(^)) - ^(^ )).

Fine [3, Conjecture 3] conjectured that the cd-index of the face lattice of a convex polytope
is nonnegative. Stanley proved this in greater generality [14, Theorem 2. 2] for S-shellable, or
spherically shellable, regular CW-spheres.

II

Definition 1. 3 Let Q be an n-dimensional Eulerian regular CW-complex. We call ^ or Pi(f^)
5'-shellable for spherically shellable) if either fi, = {0} (and so Pi (^2) is a two-element chain with
cd-index 1), or else we can linearly order the facets (open n-cells) offl, Fi, F-i,... , Fr, such that
for all \ <i <^r the following two conditions hold (both ~ and cl denote closure operation).

[S-a.) 9f\ is S-shellable of dimension n - 1.

(5-b) For2^i^r-l, let F, ^f d [9Fi- {(FiU . . ._U'^i') n ^)]. Then Pi (F;) is near-Eulerian
of dimension n - 1, and the semisuspension SF. 15 S-shellable, with the first facet of the
shelling being the facet r = r, adjoined to F; to obtain SF,.

¥i

As a consequence of Lemma 1. 2, the cd-index of cin 5-shellable regular CW-sphere may be
computed from just knowing 9Fi dnd the complexes F,-.

The definition of 5-shellability is different from the usual notion of shellability (given e. g. in
[5, Definition 4. 1]), which is called C-shellability in [14]. It is trivially true, however, that the
two notions of shellability coincide for the geometric realizations of simplicial spheres. We show
in Section 2 that the same holds for cubical complexes.

2 Shellable cubical complexes

Let Cn denote the complex of faces of an n-cube with vertex set V(Cn}. We may geometrically
realize any n-cube in R" as the convex hiiU of the vertex set {0, l}n. We caJl such a realization
4>: V(Cn) - > R" of a cube a standard geometric realization. By abuse of notation we also denote
by <^ the map associating the convex huU of {<f>{v) : u   0'} toa face a   Cn. Using <f> we may
define the boundary QCn as the inverse image under (f> of the boundary of [0, 1]".
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Following Metropolis and Rota in [10], given a standard geometric realization (f>, we encode
the noaempty faces cr of our n-cube with vectors (ui, Uz,..., Un)   {0, 1, *}" such that for every
!"   {1, 2,... , n} we set u, = 0 or 1 respectively if the ?-th coordinate of every element of (f>{a) is
0 or 1 respectively and u, = * otherwise. Using this coding, the facets of QCn correspond to those
vectors (ui,..., Un) for which exactly one u, is not the *-sign.

Definition 2. 1 Let A° respectively A] denote the facet (ui, U2,... , "n) with u, = 0 respectively,
Ui = 1 and Uk = * for k -^- i. Let {Fi,..., Ffe} be a collection of facets of 9{Cn). Let r be the
number of indices i such that |{A°, A,1} n {Fi,..., Ffc}| = 1, and let s be the number of indices j
such that such that {A^, A}} C {F^,..., Fk}. We call (r, s) the type o/ {Fi, ..., Fk}.

Clearly the type does not depend on the choice of the standard geometric realization. The
following observation is originally due to Ron Adin dnd Clara Chan.

Lemma 2. 2 Let {F-i,..., Fk} be a collection of facets of 9Cn and <f) a standard geometric realiza-
tion ofCn. Then ^(J^i) U ^(^2) U .. - U <f>(Fk) is an (n - l)-sphere if and only if it has type (0, n)
and it is an (n - l)-ball if and only if its type (r, s) satisfies r > 0.

It is easy to see by induction on the dimension that there exists a (7-shelling of the boundary
of [0, lj" starting with the facets {<f>W, ̂ (^2),..., <^(^)} if and only if ̂ F^U^F^U-- -U(f>{Fk)
is an (n - l)-sphere or an (n - l)-ball. Thus we may rephrase the definition of C-shellability for
finite cubical complexes in a purely combinatorial way as follows.

Lemma 2.3 Let C be an n-dimensional pure cubical complex (i. e. a cubical complex with equidi-
mensional maximal faces). An enumeration F-i^..., Fm of the facets of C induces a C-shelling of
its geometric realization if and only if for every fc   {2,..., m} the following two conditions hold:

(i) The set of faces contained in Fk C\ {F-i U .. . U Fk-i) is a pure complex of dimension (n - 1).

(ii) The collection of the facets of 9 Fk contained m -FiU ... U Ffc-i has type {r, s) with r > 0 or
5 == n -1.

Definition 2.4 We call the cubical complex of faces contained in Fk n (1(i U .. . U Ffc-i) the kth
shelling component, and the type (r, s) associated to it the type of the shelling component. The
empty cubical complex is also a shelling component of type (0, 0).

We may also show by induction on the dimension that the boundaj-y of [0, 1]" has an S-
shelling and that, given a collection of facets F-i,..., Fk of 9Cn of type (r, s) with r > 0, the
semisuspension of ̂ (-Fi) U .. . U </>(Fk) has as. 5'-sheUing starting with the facet which was added
to obtain S(<^(Fi) U . .. U (^(Ffc)).

Corollary 2. 5 Let fl be the geometric realization of a cubical complex C as a regular CW-complex.
Assume that 0 is an n-sphere. Then an enumeration F-i,... , Fm of the facets of C induces a C-
shelling if and only if it induces an S-shelling.
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In fact, in both Ccises we have the same types of allowed shelling components: for fc   {2,..., m-1}
the type of the fcth shelling component must be (r, s) with r > 0 and the last shelling componeut
must have type (n, 0). Thus in the case of cubical spheres we may simply speak about shellings,
without any reference to C'-shellings and 5'-shellings.

Definition 2. 6 Given a shellable cubical n-sphere C and a shelling Fi,..., Fm of it, we denote
the number of shelling components of type (r, 5) by gr, s. (In particular we have ̂ 0, 0 = 9o, n = l.^
We call the vector (. . ., gr, s, . . . ) th, e ^-vector of the shelling.

Similar to the way Stanley treated the simplicial case in [14], we may express the cd-index
of a shellable cubical sphere in terms of the numbers gij, and the cd-indices of (semisuspended)
shelling components of one dimension higher. For this purpose we introduce the following notation.

Definition 2. 7 Let Bn be the boolean algebra and Cn the cubical lattice of rank n. That is, Bn is
the face lattice of the (n - l)-dimensional simplex An while Cn is that of the cube Cn. We denote
$(Bn) and ̂ (C'n) 6y (7n and Vn respectively. In particular, for n = 1 we have ̂ ,1=^=1.

Given a collection Fi,..., Fk oi k <, n - 1 facets of 3An-l, we denote the semisuspension of
the poset [0, Fi] U ... U [0, Fk} U {1} C Bn by Bn, k and its cd-index by Un, k- Given a collection
FI,. .., Fr+2s of facets of 9Cn~1 of type (r, ̂ ), where r is positive, we denote the semisuspeusion
[0, Fi] U ... U [0, Fr+2, ] U {1} C Cn by C'n, r,, and its cd-index by V^. r,,.

Proposition 2. 8 Let C be an (n - l)-dimensional shellable cubical sphere which has a shelling
with g-vector (... , 5'r,,,... ). Then the cd-index of Pi(C) is given by

$(Pl(C)) = Vn+i. 1, 0 + E^ . (y"+l^+l. < - ^+1, ^)- (5)
r.s

r>0

3 Ron Adin's ^-vector and the cd-index

Definition 3. 1 Let P be a graded simplicial or cubical poset of rank n+1. For i =
we denote the number of elements of rank i+l in P by /,-. The vector (/_i, /o, .
the /-vector of P. WTien P is simplicial we define its A-vector by

-l, 0,..., n-l
. ., /n) is called

E^.
«=0

X' d=fE^-r(2;-l)n-J-
3=0

From now on let C be an (n - l)-dimensional cubical sphere. It is well known that for the face
poset of an (n - l)-dimensional C-shellable simplicial complex, hi is the number of facets Fj in
any shelling FI,. .., -Fm, for which F, n (Fi U ... U Fj-i) is a collection of i facets of 9Fj. In this
sense the ̂ -vector of a shelling of a shellable C is an analogue of the /i-vector. We have, however,
only the following straightforward nonbijective relationship between the /-vector and the ̂ -vector.

n-l

EA
fc=0

xk='Zg^-xs. {x+l)r-{x+2) n-l-r-s (6)
r,a
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By Lemma 1. 2 we have Vn.r+i., - 14,,,, = Vn,r,,+i - Vn,r+i,, forn > l, r > 0, 5 > Oand
r + s <; n - 1. Repeated use of this equation allows us to obtain the following formula.

$(P, (C)) = y^,.o + E | E gil -(ir^^)}~{vn +w ~ yn+l-l''-l)-
;=1 \r>m»x(l, l-,)

Keeping in mind Stanley's [14, Theorem 3. 1], our last equality suggests to define ho = 1 and

A'" S |?-(, ;7^) fo. 1^^-1 (7)
r>max(l, l-a)

to be the first n entries of the cubical A-vector. This, by ̂ 0, 0 = 5ro, n-i = 1, is equivalent to

{l+x). ^h,. xl=l-xn+x.^g-^-{l+xY-x3.

Proposition 3.2 For a shellable C we have Er,, a^--{1+xY . x3 = E^ fk-xk- (l^£)n- , a"^

so the expression (7) is independent of the choice of the shelling.
Definition 3. 3 Let P be an Eulerian cubical poset of rank n + 1, with f-vector (/_i, /o, . . . , /n).
We define the A-vector of P by the following polynomial equation.

^ . , i+^+ElA.. t«(l?)"-'-t
i;'"-''='--"^-fc=0

(=0 1+x

The right hand side is a polynomial because of the Eulerian equation E^=-i fj . (-1)'7 = 0- The
same equation allows us to show that for cubical (n - l)-spheres, this /i-vector is identical with
the 2-n+l-multiple of the "long h-vector" suggested by Ron Adin [1] for cubical complexes. By
Proposition 3. 2, for a shellable C the hi's given by this definition satisfy /io = 1 and equation (7).
Using this /i-vector, we have the following cubical analogue of Stanley's [14, Theorem 3. 1].

Theorem 3. 4 For an Eulerian cubical poset P of rank n + 1, with h-vector (ho, h-t,..., hn),
n-1

$(P) = ho . Vn+1,1,0 +Y, hr (^+1, 1,, - Vn+i^-i) W<fo.
;=1

By the proof of Stanley's [14, Theorem 2. 2], the differences Vn+i. i, ; - Vn+i, i, i-i have noimegative
coefficients. Hence the nonnegativity of the A-vector of an Eulerian cubical poset P implies the
nonnegativity of $(-P). Ron Adin asked whether the "long /i-vector" of a Cohen-Macaulay cubical
complex is normegative ([1, Question 1]). Because of the analogy to the simplicial case we state
Conjecture 3.5. This-conjecture, if true, implies the truth of [14, Conjecture 2. 1] for cubical posets.

Conjecture 3. 5 The h-vector of every Gorenstein* cubical poset is nonnegative.
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4 The cd-index of semisuspended shellittg components
We wish to remind the reader of the following formulas (cf. [6, Section 3, equation (1) and
[Section 5, equation (3)] or [9, equations (5) and (16)].)

Proposition 4.1 We haae for n ) L,

Un+z = D U;'d'Un+t-i * c.Un+r and, Vn+z
n-l
»j=0

2n-' 'V+t ' d' Un-t * W+t ' c
n

i=1.

Proposition 4.1 gives the recursion formula for Un,n-t - [/,, and W1,n-r - W. In the following
theorems these special cases will not be covered.

Theorem 4.2 For2 < k 1 n we haoe

(;)(;)

. {Jn*z-k*i. b . (" - b)k-;-z . O.

(s)

(10)

From now on we may a,ssume that every chain considered contains a set .\ with 1 g ,\. Let us
computefirst the total weight of all chains containing a set Ä with 1¤ ) and n+2 /.\. Their
total weight is

»
i<Ä-2
lSn-kk-2+»

i=0

(-; ')

(-;')

(" - :* ') rJ;+i+t.b .a -(Jn-i-i,k-i-r

. rJn*z_k+i. b. a . r,*;_t. H (- ; 
t)

For allremainingchains cthe smallest set ) e cwith 1¤ Ä contains n{2. Theirtotal weight is

»
i<ß-2j3n-k

k-2+»
i=0

(-;') (

(-;')

n-k+7
j U;+i+r' a' b' Un-i-i,k-i-t

Un+z-b+i.a.b.U*-;-t.

Adding the weightr (8), (9), and (10) we obtain the statement of the theorem
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un+z,k _ ,F, (* ; 
t) 

f -:. t) . e*,*, . d.rrn-;-i,&-i-1
iso_ft

+ ,F, (n ; ') (Jn+2-kti ' d'(Jx-;+r * {Jn+t' c-

Proof: (Sketch)W. 
"u,l"ulate the total weight of the chains ir 8na,2,11 \ {O,i}. We assume that

Bn+2,h was obtained by adding an extra coatom E to the poset Uf=r0, {1,2,...,n*2} \ {ii]U {i}.
The total weighi of all chains c of which every element is either E or a set not containing 1 is

k-2 /t"-l\
(Jn+r. c- f {'" . - l.Un+z-k+n.b.("-b)r-;-2.O. (S)

=ö\ 
?' /
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Theorem 4. 3 For 1 <i we have

v^.... = _£ , (;, 7, ;j (J. ) (y . 2'-"+l-t- . ̂ . ^ . d . ̂-,. -,. -^, -,.is,,^., k. Vo ?i!-/ V*/ \K»/
.o+J-J*>°
il+*-fc«>0

+ E f 7_ )(J) . v~3' . y"+2-.o+.. -. . d . ̂o+. -,. + K+l . C.
.̂ r. v io )\i^

>0+J-J*>°

where k=n+l-i-j.

The proof is similar to the one of Theorem 4. 2 and is therefore omitted.

..d:.

^

5 Augmented Andre* signed permutations
Let X be a finite (possibly empty) linearly ordered set with m elements and linear order A. A
permutation on X Is a list (ri,... , r^) such that every letter of X occurs exactly^once. We say
that i   {2,. .., m} is a descent of r if we have T;_i > r, (otherwise i is an ascent). The descent set
DA (r) of r is the set D^r) = {i .. T.-I > r. }. We say that r has a (foui^e Jescenf if there is an index
t, where 2 <z < m-1, such that r has a descent at the zth and (i + l)st positions In other words,
both i and z' +1 belong to D^r). Given a (possibly empty) subinterval [ij] ̂  {1, 2,..., m}, we
define the restriction of T to [i, j\ to be the permutation r |[, j] = (r,-, r,+i, ..., Tj).
Definition 5. 1 Let X be a finite linearly ordered set with linear order A. A permutation r =
(TI, ... , Tn>) on X is an Andre"' peraautation if it satisfies the following:

1. The permutation r has no double descents.
2. For all2<i < j <m, if n-i = maxA{T. -i, T., T7-i, 7'j} and rs = minA{r, -i, T,, Tj-i, r,'},

then there exists a k, with i <k < j, such that r, _i <A Tk-

We call an Andre * permutation augmented if its first letter is mm/^X. We denote the set of
augmented Andre * permutations by A{X).

Observe that we obtain the usual definition of Andre permutations (as it is given in [7] or in
[11]) if we read the permutations backwards and reverse the linear order. In analogy with [11,
Corollary 5. 6] we have the following recursive description of augmented Andr^* permutations.

Proposition 5. 2 Let X be a finite set with linear order A and \X\ = n. A permutation T =
(TI, . . ., Tn) on X is an augmented Andre * permutation if and only if for m 2£ r-l(maxA X) the
permutations r [i,m-i] and r [m+i, n] are augmented Andre permutations and TI = minA^..

Definition 5. 3 Let N be a subset of P of cardinality n. Define -N = {-i : i  . N}. A (non-
augmented) signed permutation <7 on the set N is a list of the form (a^cr-i,... , crn) such that
/or a// i, <T,   ̂  U -IV and (|o-i|, jo-al, ..., |o-n|) is a permutation on N. An augmented signed
permutation a on N is a list (0, (7i, <72,..., o-n) suc/i ̂ af (o-i, 0-2,... , o-n) is a s^ned permutation
on N. We write o-o = 0.
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As in the signless case, we use the notation cr [;j] to denote the restricted permutation cr
(cr,, CTi+1, - .., CTj}-

[',J'l =

Let A be a linear order on the set N U {0} U -N. The descent set of a signed permutation a
(augmented or non-augmented) with respect to A is the set D\{cr) = {i : cr;_i >A o-;}. Here
DA (o") is a- subset of {1, 2,... , n} for augmented permutations, and it is a subset of {2,.. ., n} for
non-augmented permutations. As before, we say that a signed permutation a as a. double descent
if there is an i such that 2<z^n-lin the nonaugmented case cind 1 <i ^n-1 in the
augmented case, and both i and i + 1 are contained in the descent set D^cr) of a.

Assume from now on that i >A 0 and i >A -i holds for al\ i e. N.

Definition 5.4 Let N be a subset of the positive integers P of cardinality n. We say an aug-
mented signed permutation cr = (0 == o'oiO'i, ... , o'n) o" ^e sef TV zs an augmented Andre* signed
perinutation if the following three conditions are satisfied:

1. The permutation a has no double descents.
2. For all 1 <i< j -^n, i/o-. -i = maxA{o-, -i, <7,-, <7-j_i, <7j} an<f <7y = minA{<7;-i, o-;, cTj-i, o-j},

then there exists a k, with i < k < j, such that a-i-i <\ a-k.
3. For x = Ta. a.x. N, there exists 1 <^ m <, n such that a-m = x and that cr [o, m-i] is an augmented

Andre * signed permutation on the set J, where J = {\a'k\ '. 1 <. k <^m -1}.
The permutation (0) is allowed to be an augmented Andre * signed permutation on the set -/V = 0.
Observe that conditions 1 and 2 of Definition 5. 4 are equivalent to the following:

1'. (0 = (TO, CTi,. . . , 0-n) 15 an Andre* permutation on the set {0 = o-o, o-i,..., a-n} linearly ordered
by the restriction of h.

A non-augmented signed pennutation satisfying conditions 1 and 2 in Defmition 5. 4 is called
a non-augmented Andre * signed permutation. We denote the set of all augmented Andre* signed
pennutations on the set N by A±(N) and the set of aU non-auginented Andre* signed permutations
on the set N by ̂ f±(N). Furthermore, we denote the set of those non-augmented Andre* signed
permutations which begin with their smallest element (with respect to the linear order A) by
^f^(N). That is, Af^N) ^{ {(cri, <T2,.. ., <7n)   ̂ (^V) : <n = imnA{<n, <72,... , <7n}}.
Exainples

1. Let N = {l, 2,..., n} and consider the linear order -ra <A -n +1 <A . "<A -1 <A
0 <A 1 <A ... <A n-l <A non -^U{0}UAr. Then A±(N), M±W, and ̂ {N) are
the same as the similarly denoted sets of augmented (respectively non-augmented) r-signed
Andre-permutations studied in [6] for r = (2, 2,..., 2). The set A±(N) may be obtained
from Purtill's set of augmented signed Andre permutations defined in [11] by reversing the
permutations dnd replacing each entry k with -fc.

2. Let JV ^ {l, 2,..., n} and consider the linear order O<A -1 <A 1 <A -2<A2 <A
... <A -" <A" on -N U {0} U N. Then ^±(^") and ^±(N) may be obtained from the
corresponding sets of augmented (respectively non-augmented) signed Andre permutations
defined in [9] on the set {1, 2,... , n + 1} by reading each pennutation backwards, and
replacing each letter k with n+1 - k, while keeping its sign.

170



We define the variation U[v} of a signed or unsigned permutation TT as U^} = "5, where S is
the descent set of TT and us is the ab-word defined in Section 1. In the case when TT contains no
double descents (e. g, when TT is a signed or unsigned, augmented^ or non-augmented Andr^-
permutation)7the 'reduced variation of TT, which we denote by V^), is formed by I'ePlacinS each ab

in (7(7T) with d and then replacing each remaining letter by c. Given a set -P of signed or unsigned
permutations, we denote the sums E.e^ U^) and E,g^ ̂(TT) respectively by U{P) and V(^).

Note that the (reduced) variation of an unsigned Andre* permutation r is the reverse of the
(reduced)'variation of the reversed permutation Tr" whlch ^ a^AndI'e Pel'I^uta^n^with respect

to'"the reversed order. Hence we may reformulate Purtill's [11, Theorem 6. 1] as follows.
Proposition 5. 5 Un = V {A{{1, 2,.. ., n})) holds for all n ^ P.

Corollary 5. 6 Wt have V (^ {N)) = 2lNl . Un.
The following description of the polynomials Un, k is analogous to Stanley's [14, Conjecture 3. 1].

Theorem5. 7 Let An, k denote the set {r   A({0, ^... ,n-l}) : r^ C {n-l, n-2,... , n-k}}.
Then we have Un. k = V{An, k)-

Proof: (Sketch) Let us denote ̂ ({1, 2,... ,n}) by A.^Usmg Proposition^S^t is easy^show
^hat~y(A+2^)vsatisfies the recursion formula given m Theorem 4. 2 for 2<k^ n After this we
are done by induction, where our induction basis is formed by the foUowing results:

. Proposition 5. 5 which implies our statement for Un,n-i = Un and V{An,n-i) =v^n)1

. The relations ̂ +1,1 = <7n . c and V(-4,+i,i) = V(^, i) . c which may be seen directly. D
Remark Observe that in terms of "usual" Andre permutations, Theorem 5. 7 expresses the poly-
nomials ̂ ".fc as the reduced variation of augmented Andre permutations starting with given letters,
while Stanley's [14, Conjecture 3. 1] ([9, Theorem 2]) partitions the augmented Andre permutations
depending on their second to last letter.

Proposition 5. 2 has the following signed analogue.

Proposition 5. 8 There exists a bijection between the two sets
A±{[n+l]) and A±{[n}) U U A±{J)x^{I),

I+^=["l
T^9

where all the unions are disjoint and x is the Cartesian product.

Theorem 5. 9 We have Vn = V(A±{[n})).
Proof: (Sketch) It is enough to show that V(^±([n])) satisfies the same^recurrence as the one
given for* Vn m Proposition 4. 1. This formula follows by the bijection given in Proposition 5. 8. D

Finally, we describe the polynomials Vn,ij in terms of the reduced variation of signed augmented
Andre " permutations.
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Theorem 5. 10 Let N C P be an n-element set and A a linear order on N (3 -Nu{0} such that
0 <A i and -i <A i for all i   N. Assume that A and B are disjoint subsets of N such that
AU-BU-B is an upper segment in N^-N, and all the elements of A are larger than the elements
ofB^-B with respect to A. Let us denote \A\ by i and \B\ by j, where we assume i> 0 orj = n.
Then Vn+i, ij is the total reduced variation of all those signed augmented Andre *-permutations
with respect to A which end with a letter from A U 5 U -B.
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