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Resume

Dans cet article nous etudions des questions extremales pour Ie treillis r-cubique. Pour cela,
nous g^n^ralisons 1'index cd da treillis cubique a un index r-cd, que nous appellons $(r). Les
coefficients de ̂ (r) denombrent les permutations d'Aadre r-signees augmeutees, geaeralisant d'une
mamere naturelle les resultats de Purtill qui mettent en rapport 1'index cd du trellis cubique et les
permutatioas d'Andre. Le nombre de permutations d'Andre r-signees augmentees est doane par une
fonction generatrice trigonometrique. Nous determinons les configurations extremales maximisant la
fonction de Mobius sur les ideaux rang-selectionnes. Nous prouvons egalement que la coafiguratioa
extr^male maximisant la fonction de Mobius pour les selections de rangs arbitraires est Ie systeme
des rangs alterneints impairs, {1, 3, 5,...}.

Abstract

In this paper we study extremal questions for the r-cubical lattice. To do this we generalize the
cd-index of the cubical lattice to an r-cd-lndex, which we call $(r). The coefficients of$(r) enumer-
ate augmented Andre r-signed permutations, a uatural generalization of Purtill's results relating the
cd-index of the cubical lattice and Andre permutations. The Qumber of augmented Andre r-signed
permutations is given by a trigonometric generating function. We determine the extremal configura-
tioiis for maximizing the Mobius function of rank-selected upper and lower order ideals. Also we find
the extremal configuration which maximizes the Mobius function of arbitrary rank selections is the
odd alternating ranlcs, {1, 3, 5,...}.
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Figure 1: The Hasse diagrams of the poset Mr with r = 2 and r = 5.
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1 Introduction

The main purpose of this paper is to study extremal questions on the r-cubical lattice Cr. This
lattice is a natural generalization of the cubical lattice, that is, the face lattice of a cube. The
cubical lattice Cn of order n may be described by taking the nth power of the first poset in Figure 1
and then adjoining a minimal element. The r-cubical lattice is similarly constructed, where we
instead take a product of posets Mr, described in Figure 1. Such a lattice was first studied by
Metropolis, Rota, Strehl, and White in [9]. They were interested in Dilworth compositions of the
r-cubical lattice.

A number of authors have recently been interested in extremal questions with the Mobius
function of a subposet of a fixed poset. The boolean algebra Bn and the lattice of subspaces of
an n-dimensional vector space over GFq have been studied in [16], while the face lattice of an. n-
dimensional octahedron and face lattices of convex polytopes have been studied in [14, 15]. As au
example, for arbitrary rajik selections from Bn, the Mobius function in absolute value (equivalently,
the beta-lnvariant) is maximized by taking every other rank from. the poset [16]. The techniques
of Sagan, Yeh, and Ziegler used the fact that for rank selections from the boolean algebra one
can instead study permutations in the symmetric group with certain descent sets. Their work for
ajbitrary rank selections is equivalent to results of Niven [11] and de Bruijn [5], who determined
that the largest class of permutations in the symmetric group having a fixed descent set are the
alternating permutations.

The cd-index of dn Eulerian poset is a non-commutative polynomial which encodes the flag
/-vector. Purtill proved that the cd-index of (7n has non-negative coefficients. By an observation
of Stanley, this fact implies that among arbitrary rank selections from Cn, the alternating rank
selection maximizes the Mobius function. Uniqueness of the alternating rzink configuration for the
arbitrary rank selection case follows from. elementciry properties of the cd-index (see [15]). This
extremal technique motivated our definition of a more general cd-index for the r-cubical lattice,
which we call ^r(Cf r). We use this r-cd-index to solve the arbitraj-y rank selection question for the

r-cubical lattice.

After giving an ̂ 2-labeling of the r-cubical lattice, we define the notion of augmented r-signed
permutations. This A-labeling enables us to study the question of inaximizing the 5'-rajik-selected
beta-invaricint, /3{S), over rank-selected ideals from. the r-cubical lattice in tenns of these permu-
tations. We find that for rank-selected lower order Ideals from the r-cublcal lattice of rank n +1,
the beta invariant attains a maximum when we take roughly the ranks 1 through ^-^^+1^ of the
poset. Similajrly for rank-selected upper order ideals, the beta invariant attains a maxiiauin. when
we take roughly the rajiks r+1 through n of the poset.

Purtill [13, Sections 5 and 6] studied the non-negativity of the coefi&cients of the cd-index for
the Booleaa algebra and the cubical lattice by showing its coefficients count a class of permuta-
tions, called augmented Andre permutations and Andre signed permutations, respectively. Using
Andre permutations he obtained recurrences for their respective cd-indexes. We instead prove
these recurrences by a direct combinatorial argument (see equation. (1) dnd Proposition 5.2). Li
Section 7, we extend Purtill's notion of Andre signed permutations to what we call augmented
Andre r-signed pennutations. This natural generalization enables us to show that the coefficients
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of ̂ (r) enumerate augmented Andre r-signed permutations.

Finally, in Section 8 we maximize the beta invariant of the r-cubical lattice over arbitrary rank
selections. We do this by showing that the ab-index of Crr, ^r(C"'), has the strictly increasing
alternating property. That is, we prove that the coefficient of the ab-word vw is larger than the
coefficient of the ab-word vw* when v ends in a different letter than w begins with and where w*
is obtained from w by uniformly exchanging the a's and b's. Niven established similar inequalities
when he proved the descent set having the most permutations is the alternating one [11]. Our
inequalities imply that the coefficient of the alternating ab-word baba . . . in ^(CT ) is the largest.
In other words, the set of ranks {1, 3, 5,... } is the unique extremal configuration for the r-cubical
lattice.

We would like to thank Gabor Hetyei, Jacques Labelle, and Richard Stanley for reading pre-
liminary versions of this paper.

2 The ab-index

In this section we give a brief introduction to the ab-index and the cd-index. For all terminology
£ind notation related to the cd-index, we will follow [18].

Let P be a finite, graded poset of rzink n + 1 with 0 and 1. Denote the rank function of P
by p. For 5' C [n] = {1, 2,... , n}, we define the S-rank-selected subposet to be P(S) = {x eP :
p(x)   5} U {0, 1}. Let a(5') = ap(-S') denote the number of maximal chains in P(S) and let the
beta invariant P(S) == ftp{S} be defined by ^[S} = Eyc5(-l)lsl ~TI^(T)-

To encode the beta invariant of the poset P, we begin by defining a monomial in the non-
coinmutative variables a and b by us = Ui .. - Un, where u, is a. ifi ^ S and u; is b if z £ 5'.
(Later when we work with permutations, it will be helpful to think of a as "ascent" and b as
"descent". ) As an example, if n = 5 and S = {1, 4, 5}, then us = baabb. Form a non-
commutative polynomial, called the ab-index, by

^(P) = ^ ^(5)us.
SC[n]

The degree of both a and b is defined to be one so that ^{P) is homogeneous of degree n.

For as. ab-word w we denote its length by |w|. Also the complement of the word w is the word
formed by uniformly exchanging the letters a and b. We denote the complement of w by w*.

Fine (refer to [2]) observed that if P is an Eulerian poset, then ^(-P) can be written uniquely
as a polynomial in the non-commutative variables c = a+ b cind d = ab + ba. This polynomial is
called the cd-index. See Stanley [18] for an elementary proof of the existence of the cd-index for
Eulerian posets. Since both c and d are symmetric in a and b, this implies the well-known property
that for an Eiilerian poset P of rank n + 1, ̂ p(5>) = Pp(S), where ~S denotes the complement of
S in the set [n]. In terms of a word w and its complement, this means that the coefficient of w is
equal to the coefficient of w* in ̂ (P).
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D
Stanley observed that if the cd-index has non-negative coefficients, then the two alternating

words aba--- and bab . . . maximize the coefficients of the ab-index [15]. This motivates the
following definition.

Definition 2. 1 Let C be a linear combination of Stb-words of length n, i. e. C = S, : |^|=n 0(2) . z.
We say L has the weakly increasing alternating property if the following two conditions hold:

1. If v and w is a pair of words so that the last letter of the word v is different from the first
letter of the word w and \v\ + \w\ = n, then c(vw) > c(vw*).

2. If w is a word of length n that begins with b, then c(w) ^ c(w*).

If all of the inequalities above are strict then we say C has the strictly incredsing alternating
property.

It is easy to see that if C, has the strictly and K. has the weakly increcising alternating property
theu their sum £ + )C has the strictly increasing alternating property. Observe that £ having the
strictly increzising alternating property implies the largest coefficient in L is the coefficient in front
of the alternating word baba . . ..

We say that a linear combination of ab-words, ^ = Ez: \z\=n c(z) " .zi is self-complementary if
for all words w, c(w) = c(w*).

Lemma 2. 2 If a linear combination C of ab-worrfs of length n can be expressed as a cd-index
with non-negative coefficients then C has the weakly increasing alternating property and is self-
complementary. Moreover, if C can be expressed as a cd-index with positive coefficients then the
inequality c(uw) > c(vw*), where the last letter of the word v differs from the first letter of the
word w, is a strict inequality. Hence, the ab-words with largest coefficient are the two alternating
words aba . . . and bab . . ..

Lemma 2.3 Let C be a linear combination ofab-words of length n and fC be a linear combination
of Sib-words of length m. If both C, and fC have the weakly increasing alternating property and 1C
is self-complementary, then £. . 1C also has the weakly increasing alternating property.

3 I?-labelings

An edge-labeling A of a locally finite poset P is a map which assigns to each edge in the Hasse
diagram of P an element from some poset A. For us A will always be a linearly ordered poset. In
this case we say that A is a linear edge labeling (see [6] for a further study of linear edge labelings).
If x and y is an edge in the poset, that is, y covers x in P, then we denote the label on this
edge by \{x, y). A maxima! chain x =XQ ^ x^ -< . . . -< Zfc = t/inan interval [x, y] m P is
called rising if the labels are weakly increasing with respect to the order of the poset A, that is,
A(a;o» ̂ i) ^A -^(a;i, -^2) ^A . .. ^A ^{xk-i, Xk). An edge-labeling is caUed an R-labeling if for every
interval [x, y} in P there is a unique rising maximal chain in [x^y].
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Let P be a poset of rank n + 1 with ̂ -labeling A. For a maximal chain c= {0= .FO -< 2:1 -<
^ a;n+i = 1} in P, the riescenf sef of the chain c is P(c) = {i : A(a-. -i, 2;;) >A A(a;;, 2;,+i)}.

Observe that D(c) is a subset of the set [n].

A result of Bjorner and Stanley [4, Theorem 2. 7] says if P is a graded poset of rank n+ 1^,
S C [n], and P admits an ̂ -labeling, then ft{S) equals the number of maximal chains m P
having descent set S with respect to the given ̂ -labeling X. A consequence of this result and the
definition of the ab-index is we may compute the ab-index by considering an ̂ -labeling of the
poset.

Lemma 3. 1 Let P be a graded poset of rank n+1. If X is an R-labeling of P, then the ab-index
of P is equal to

^(-P)=E^(C),
c

where the sum is over all maximal chains c.

As an example, we give the standard ̂ -labeling for the boolean algebra. Viewing Bn as the
poset of all the subsets of [n] ordered by inclusion, label the edge AcB with the unique element
m B - A. Observe the maximal chains in Bn correspond to permutations of the set [n]. It is now
easy to give a recursion for the ab-index of the boolean algebra. Consider permutations on the
get [n + 2], and let i + 1 be the position where the element 1 or n + 2 occurs first reading from
right to left. Note there are i elements from the set {2,.. n+ 1} to the right of this position If
i=0 then these permutations are enumerated by <Ir(B^+i) . c. If I ^i <:n, they are enumerated
by (^) . ̂ (5, +i_. ). d . ̂ (B. ). Thus

^(Bn^) = ^(B.+i) -C +E (n) . ̂ (-Bn+l-.-) . d . ̂ (^-),
7=[ V.

(1)

where ̂ (Bi) = 1. This formula was established by Purtill in [13, Corollary 5. 8] using Andr^
permutations.

Hence, by equation (1) we may compute

^>w == c'
^W = c22 + d,

^(^4) = c3+2. cd+2-dc,
^(Bs) = c4+3-c2d+5-cdc+3-dc2+4. d2.

By the recursion (1) it is easy to see that the coefficients of each cd-monomial in ̂ (Bn) are
positive. Thus by Lemma 2. 2 we conclude

Theorem 3. 2 (Sagan, Yeh, and Ziegler [16]) For arbitrary rank selections S from the boolean
algebra Bn, the two unique extremal configurations for maximizing the beta invariant ft{S) are the
following rank selections:

{1, 3, 5,... }n[n-l] and {2, 4, 6,... } H [n - 1].

This theorem is implicit in the work of Niven [11] and de Bruijn [5], who studied permutatious
with a given descent set.
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4 The r-cubical lattice

For r a positive integer, let Mr denote the poset formed from an r-element antichain and a maximal
element 1, where each element of the antichain is covered by the maximal element 1. See Figure 1
for two examples. For a sequence of positive integers r = (ri,... , 7'n), define the (multi-indexed)
r-cubical lattice Cr to be Mr, xM^x-'-x M^ U{6}. This is a graded poset of rank n+1. Indeed,
this is a lattice since it is a finite join-semilattice. When r = (2,.. ., 2) the r-cubical lattice will
be the cubical lattice Crn, that is, the face lattice of the n-dimensional cube.

Another way to view the r-cubical lattice is to cousider infinite sequences A = (Ai, A2, ... ) of
subsets from the set [n] = {1, 2,... , n}, such that Aj n Afc = 0 when j ^ k, and z ^ Aj when
j > n. Define the order relation byA < 5 if A, ̂  B. for all z = 1,.2,..., and adjoin a minimal
element 6. The Whitney numbers of the second kind for Cr are given by elementary symmetric
functions. That is, the number of elements of rank n+1 - k m the r-cubical lattice is the fcth
elementary symmetric function in the variables 7-1, r^, ..., r^, for fc = 0,..., n: efc(ri,..., rn).

The r-cubical lattice has a very nice A-labeling described as follows: for the cover relation
A -^ B, where A 7^ 6, label the corresponding edge in the Hasse diagram by (z, a), where i
is the unique index such that A; -^ B;, and let a be the singleton element in A. - B.. Also,
for the relation 6 ^ B let the label be the special element G. Hence, the set of labels Tn are
{G}U{{iJ) : l^J^n^l^i^r, }.

So far we have not given a linear order on the set of labels Tn. We now do this. Choose any
linear order of A which satisfies the following condition

(iJ)<\G=^i<rj, and {iJ)>/,G ! = 7'j. (2)

That is, the labels above the element G in the ordering of A are those of the form (rj, j)-

Lemma 4. 1 Let A &e a linear order on the set Tn satisfying condition (2). Then the above-
described edge-labeling for the r-cubical lattice is an R-labeling.

5 Augmented r-signed permutations
Definition 5. 1 Let N be a finite set of cardinality n and let T be a vector indexed by the set N,
that is, T = (r, ):e7V. An augmented r-signed permutation a on the set N is a list of the form

(G', (!l, Jl), (?2, j2),..., (in, Jn)),

where 1 <: im ^ ^m and (jiiJs, . . . , Jn) !s a permutation of the elements in the set N. We will
write 0-0= G and a-k = (ikiJk)-

We view the elements ?i,... , Zn as signs; hence the name r-signed permutation. Since we list
the special element G first, we say that the permutation is augmented. Thus if we exclude the
special element C?, we may say that the permutations is non-augmented. UsuaUy, we wiU consider
the set N =[n} = {l, 2,..., n}. ForO <i ^j ^ nwe let [z, j] = {i, i + 1,... , j}. We use the
notation cr|[. j] to denote the restricted permutation a'\[i, j] = {^i-i o'.'+i,... , <7j).
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Let A be a linear order on the set Tn. The descent set of an augmented r-signed permutation,
cr = {G = o-o, o-i,..., o-n), with respect to A is the set Df,(a) = {i : o-z-i >A <T-. }. The same
definition also applies to non-augmented r-signed permutations.

The maximal chains in the r-cubical lattice correspond to augmented r-signed permutations
on the set [n]. Thus the number of augmented r-signed permutations having a certain descent set
is equal to the number of maximal chains with this same descent set.

We denote the ab-index of the r-cubical lattice by ^(C"") = <Ir(r) = ^(r-i,... , r^). For a
vector r = (ri,..., rn) and a positive integer s, we write (r, s) for the vector (ri,..., rn, 5). Let
^ = a+(5-l)b, andd, =ab+(5-l)ba. For A^ a finite subset ofP = {1, 2 . } define the vector
FN by (r.mi ; . . -i' rnn

where N = {mi,. .. , mn}. Another useful notation is H(A/') = I[meNrm-

Proposition 5. 2 The ab-index of the {r, s)-cubical lattice satisfies the following recurrence:

^r(r, 5)=^(r). c, + ^ H(J)-^(rj)-d,. ^(5|, i),
J+-'=("]

1^*

where r={r^r2,..., rn) anJ ^(Cf 0) = 1.

The idea of the proof is to sum over all augmented r-signed permutations, and see where the
element n + 1 occurs. Before this element there is an augmented r^-signed permutation, and after
it there is a non-augmented rj-signed permutation.

With the above recurrence we may compute:

^{C9) = 1 ^{Cp'q) = CpC, +p-d,_
\S{CP) = cp ^(C'p'?'r) = CpCgCr+p-dgCr+p-Cydr+q-Cpdr+pq-drC.

When we set r = (2,..., 2) in Proposition 5. 2, we obtain

^(C. +i) = ^!{Cn) . c+^ (n) . 2t . ̂ (^-. ) . d . ̂ (B. ),
i=l \'t

(3)

where ̂ (C'o) = 1. This identity was first established by Purtill [13, Corollary 5. 12]. Specializing
to the cubical lattice we obtain

^r(C'o) = 1 1r(C>2) = c2+2.d
^r(C'i) = C ^(C'3) = c3+4-cd+6-dc.

By the recursion (3) it is easy to see that the coefEcients of each cd-monomial in ̂ {Cn) are
positive. Thus by Lemma 2. 2 we conclude

Theorem 5. 3 (Readdy [15]) For arbitrary rank selections S from the cubical lattice Cn, the
two unique extremal configurations which maximize the beta-invariant /3{S) are the following rank
selections:

{l, 3, 5,... }n[n] and {2, 4, 6,... } n [n].

llii
ii-
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6 Rank-selected ideals

Let P be a bounded poset of rank n + 1. Recall that a lower order ideal is a subset Z of P
such that if a- 6 Z and y < x then y   Z. An upper orJer ideal is similarly defined with ^
replaced by ^. A rank-selected lower order ideal is a lower order ideal of the form -P(5'), where
S = [li ^] C [nj. Likewise, we can define a rank-selected upper order ideal. In this section we are

interested in maximizing /3{S) over rank selections S of the form [1, fc] and [k, n} from the r-cubical
lattice. This problem is equivalent to maximizing the Mobius function (in absolute value) over
rank-selected lower order ideals and rank-selected upper order ideals, respectively.

Theorem 6. 1 For rank selections [!, &] C [n] from the r-cubical lattice C^ of rank n +1, where

r > 2, /3([l, fc]) attams a maizmum when we fa^e & to be [(r^(ni+l)J or [(r-2^(.ni+l)1 .
To prove the necessary inequalities in this theorem, consider the bipartite graph on the vertex

set B^[l, k - 1}U B^[l, k}. Say that two permutations are adjacent if by moving an element we
can obtain one permutation from the other. Now by enumerating the edges in the graph, the
inequalities follow.

We can also consider the question of m.dximizing ,3(5') of the r-cubical lattice over rank-selected
upper order ideals. Via an argument similar to that for Theorem 6. 1, we find:

Theorem 6. 2 For rank selections [k, n\ C [n] from the r-cubical lattice of rank n+1, where r >2,
/9([&, n]) attains a maximum when we take k to be [nd^±2- or 2±^J- .

As a remark, numerical calculations strongly suggest that in Theorem 6. 1, P{[l, k}') attains a
unique maximum when we take A; to be ^_}^ . When r = 2, it is known that /3([1, k]) attains
a unique mckximum when we take k to be ^ , see [15, Lemma 2. 2. 1]. In fact, for arbitrary lower
order ideeils (i. e., not necessarily rank-selected) from the cubicai lattice the same configuration
mziximizes the Mobius function in absolute value [15, Theorem 2. 0. 1]. It would be interesting to
see if the same extremal result holds for aj-bltrary lower order ideals from the r-cubical lattice.

7 Andre permutations
Purtill showed a relation between the cd-index of the cubical lattice and Andre signed permu-
tations [13]. In this section we define augmented Andre r-signed permutations and obtain a
relation between these permutations and the r-cd-index of the r-cubical lattice. We study two
sets of r-signed permutations, ^4r and J^. The set Ar corresponds to the r-cubical lattice and
the set Af^ to the boolean algebra. The proofs of the two fundamental identities in this section
(Proposition. 7. 2 aad Theorem 7. 3) follow by showing both sides of each identity satisfy the same
recurrence. We also enumerate the number of auginented Andre r-signed permutations. When we
set r = (2,..., 2) the results of this section specialize to PurtiU's work.

Define the set Tto be T = {(i, j) : j £IP, 1 $i ^r, }U {<?}. Observe that the entries
of r-signed permutations are elements of T. Throughout what follows in this section we fix A, a
linear order on the set T. Define G <A (^i)l) <A (^2»2) <A "... Order the labels of the form
(t, 7'), where i < r,, by (ii, ^"i) <A (t2, J'2) if Ji > J2, or if ji = jt and ti < 12. FinaUy say that
(i, j) <A G if and only if i < rj. The linear order A satisfies condition (2).
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Definition 7. 1 Let r be a vector indexed by a finite set N with |Ar| = n > 0, i. e., r = (ri), 6N-
We may assume N Cy>. We say an augmented r-signed permutation o- = (G = o'o, o-i, - . . » crn) on
the set N is an augmented Andre r-signed permutation if the following conditions are satisfied:

1. The permutation a has no double descents, that is, there is no index i such that cr has a
descent at the ith and (i + l)st positions.

2. For alll <i <j ̂ n, z/o-.-i = maxA{o-. -i, cr,, o-j-i, ^-} an^ o-.; = minA{o-. -i, o-n o-^_i, o-j},
then there exists a k, with i < k < j, such that o-. -i <A o"fc.

3. For x = max N, (r^, x) = o-m for some 1 <, m <n and (T\[o, m-i] is an augmented Andr^ rj-
signed permutation on the set J, where J ={y   N : (z, y) = o-^ for some 1 ^k<, m-l}.

The permutation (G) is allowed to be an augmented Andrer-signed permutation on the set N =^.

A non-augmented r-signed permutation satisfying conditions 1 and 2 in Definition 7. 1 is called
an non-augmented Andre r-signed permutation. (Note that for the non-augmented case we need
to reformulate the beginning of condition 2 as, "For all2 $z <j < n ... ". ) We denote the set of
all augmented and all non-augmented Andre r-signed permutations respectively by -4r and .A/*r-
Furthermore, we define the set of all non-augmented Andre r-signed perinutations which begin
with its smallest element (with respect to the linear order A) by ̂ . That is,

A/^ = {((7i, (T2,..., 0-n)  ^r : (7i =minA{o-i, 0-2,..., 0-n}}.

We will mainly work with the sets ̂  and M^.

For <7 a non-augmented Andre r-signed permutatiou of an n-set, the variation of a is given
by U(a) = us, where 5' is the descent set of a- taken with respect to A and "5 is the ab-word
defined in Section 2. The reduced variation of cr   ̂ , which we denote by V{a), is formed by
replacing each ab in U(a) with d and then replacing each remaining a by a c. Observe that
this is always possible since an element in A/? does uot begin with an descent and cannot have
any double descents. We recursively define the reduced variation V{a) for an augmented Andr^
r-signed permutation a on the set Ar. Assume that N has cardinality n. If (7m = (^i-c) = (.s>a:))
where x = mdx^V, then

V(<7)=
^(O-|[0, ni-l]) . d, . y(o-|[^+i, n]) if m < n
V(o-|[o, n-i]) . c, if m = n,

with V(G) = 1. This definition makes sense since o-|[m+i,n] belongs to the set A/JJ.

Proposition 7. 2 For r = (ri,..., r»), the following equality holds:

^ V{a) = U{N) . ̂ (Bn).
^ ^nr

We denote this sum by V(J^).

181



Theorem 7. 3 There exists a bijection between the two sets AT '3 and Ar U U-4r'r xA^/, where the

union ranges over all I +J = [n] with J 7^ 0, all the unions are disjoint, and x is the Cartesian
product. Moreover, the following equality holds:

^(r) = i: V(<r).
o-e^r

Denote this sum by V(AT) and call it the non-commutative augmented Andre r-signed polynomial.

Theorem 7. 4 Let r = (r,..., r). Then the exponential generating function of the number of
augmented Andre r-signed permutations is

?. !;''^=yT^si
n>0 sin(ra;)

with 5n
r(z) ^

Sy ^i_, f2ry
. n~i . ( - ) . n.l.

7T

8 Arbitrary rank selections
In this section we consider the problem of maximizing the beta invariant of the r-cubical lattice
over arbitrary rank selections. We will do so by showing that x5{Crrf) has the strictly increasing
alternating property. We will assume that ri, r2, . .. are all positive integers greater than or equal
to 2. Let N = {mi,..., m^} be a finite subset of P of cardinality n. For an ab-word w of length n
we define /3 (w, A^) to be the coefficient of w in the ab-index ̂ r(C'r^). Thus /9 (u;, Ar) is a symmetric
function in the variables r^i,. . ., Tmn- Also, we let PB (w) be the coefficient of w in the ab-index
of the boolean algebra, ^(5|u, |+i). Thus we have the two identities:

^(CrN) =^?{w, N)- w, and ^(B^i) = ^^ (w) . w,
w w

where w ranges over all ab-words of length n. Observe that since the coefficients /3 (10, N) enumer-
ate augmented r-signed pennutations, we know that they are nou-negative. One can also conclude
that /3 (w, N) may be written as a linear combination of the elementary symmetric functions in the

r^n. Thus /3(w, N), viewed as function of r^., will be a polynomial of degreevariables r
one.

ml ?

Since the cd-index of the boolean algebra has positive coefficients (this may be verified by
equation (1)), we deduce the following strict inequality:

/?B (VW*) > /?5 (uw) when y((D) = y, (l).

This fact will be useful to us later. Similarly, for the cubical lattice, that is wheu r = (2,... , 2);
we also know that the cd-index has positive coefficients. Thus the same strict inequality holds.
Since the cubical lattice is Eulerian, we know that /3 (w, [n]) attains a maximum exactly when w
is alternating. That is, when w = baba ... or w == abab . . . with \w\ = n.

Theorem 8. 1 Let r = (ri,..., r^), where ri,... , 7-n ̂  2, and at least one entry is ̂  3. Then the
ab-index of the r-cubical lattice Cr has the strictly increasing alternating property.
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Corollary 8. 2 Let r = (ri,..., rn), where ri,..., rn > 2, and at least one entry is ^ 3. For
arbitrary rank selections S C [n] of the r-cubical lattice CT, ,3(5) attains a unique maximum when

we take S to be {1, 3, 5,... } n [n].

When r ^ (2,... , 2) the lattice C'r is the cubical lattice Cn. As was observed in Theorem 5. 3,
this lattice has two extremal configurations, namely {1, 3, 5,... } n [n] and {2, 4, 6,... } D [n].

Proof of Theorem 8. 1: The proof is by induction on n. Assume that the theorem holds for all
values less than or equal to n, and we would like to prove it for n + 1. Say that r-n+i = .s. Consider
the (ri,..., rn, 5)-cubical lattice, where 5 > 2. Let 1C denote the coeiBcient of the linear term in
s in the expression ^(r, s). Then we may write ̂ {r, s) = '?(r, 2) + (s-2) . )C. The theorem will
follow once we are able to show that ^(r, 2) has the strictly increasing alternating property and
/C has the weakly increasing alternating property.

We begin by showing that ^(r, 2) has the strictly Increasing alternating property. Recall the
recursion formula for ^(r, s) in Proposition 5. 2. We have that

^(r, 2)=^(r). c+ ^ n(7). ^(r^). d. ^(B|, i) (4)
i+J=W

i^e

By Lemma 2. 3 we know that each term in equation (4) has the weakly increasing alternating
property. Hence this sum has the weakly increasing alternating property. By a refined argument,
which we omit, one obtains that ^(r, 2) has the strictly increasing alternating property.

Recall that K, = [s]^(r, s), where [s\ denotes the coefficient of the linear term in the variable
s. By the recursion formula in Proposition 5. 2 we have

X;=^(r). b+ ^ n(J). ^(rj). ba. ^(5|, |).
i+J=W

j^e

The proof that fC has the weakly increasing alternating property follows from the induction hy-
pothesis by a non-trivial aj-gument, which we omit. D

The exponential generating function for the number of augmented r-signed permutations with
ab-word bab . . . (set hn = ? (bab . -., ["])) and the asymptotics are given by (see [6])

E^n
n>0

n
X'

n!
sin((r - l)a;) + cos(3;)

cos (ra;)
and A. ~i

7T
cos ^)

2r/ 7̂T
n!.

9 Concluding remarks
There are many related problems to study. For instance, are there other posets which have an
r-cd-index? More generally, are there other extensions of the cd-index? The authors have found
an example of a poset other than the r-cubical lattice which has aji r-cd-index. In fact, it has
the same ab-index as C^. What other classes of posets will have their ab-index satisfying the
strictly increasing alternating property? A poset that seems to fulfill a similar condition is the
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partition lattice Tin. Our data suggests the ab-word with the largest coefficient in ̂ (Hn) is the
word bab .. . b of length n - 2.

Stanley proved the cd-index of Gorenstein* lattices has non-negative coefficients [18, Theorem
2. 2]. This includes face lattices of convex polytopes. From this he observed the beta invariant
will reach its maximum value, for arbitrary rank selections, by taking alternating rank selections.
However, uniqueness of this result does not follow from his observation. By Lemma 2. 2 it would
be enough to show the cd-index of the face lattice of a convex polytope has positive coefficients.
Stanley has conjectured that among all Gorenstein* lattices of rank n, the boolean algebra Bn
minimizes all the coefficients of the cd-index [19, Conjecture 2. 7].

The exponential generating function ̂ /YJ^ enumerates r-multipermutations, see [12]. Notice
that both this generating function and the one for the number of augmented Andre r-signed
permutations are of the form ̂ /f{rx), where f(x) is an exponential generating function. Is there
a theory which explains generating functions of this form?
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