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Abstract

We present a unified theory for permutation mterpretations of the length function,
the weak order and the Bruhat order of aU the infinite faimlies of finite and affine
Coxeter groups.

Resume

Nous presentons un theorie unifie pour interpreter Ie fonction de longueur, 1'ordre
faible et I'ordre de Bruhat de toutes les families infimes de groupes de Coxeter fiais
et affines.

1 Introduction

The aim of this paper is to present a unified theory for Coxeter group aspects on permu-
tation representations of the finite groups An, Bn, Cn, £>n, and the affine groups An, Bn,
C'"'JD"- . . . ..."

The symmetric group 5'n, thatis, thegroupofpemiutationsof{l, 2,..., n}, ise?
well studied. If Sn is viewed as the group generated by adjacent transpositions, it is
isomorphic to the Coxeter group An_i, and Coxeter group concepts such as length, weak
order and Bruhat order have nice interpretations in permutation language.

Also the other families of finite Coxeter groups, Bn and Dn, have well-known represen-
tations by "signed" permutations; here, though, the meaning of length, weak order and
Bruhat order is less well-known, although it has been aroimd for a while, see e.g. Proctor
[9] and Bjoraer and Brenti [2].

In his 1994 thesis [5], H. Eriksson presented representations of aU the affine groups
by infinite periodic permutations (though some of these had been part of folklore before,
known to people like Lusztig and Stanley). A permutation interpretation of the Bruhat
order on An will appear in the forthcoming book by Bjorner and Brenti [2].
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We will here, in a unified way, describe the permutation interpretations of the length
function, the weak order and the Bruhat order of all the families of finite and infinite
Coxeter groups. Well, with one exception: the Bruhat order criteria for Bn and Dn are
not described.

2 The affine groups as infinite permutations

The classification of finite and affine Coxeter groups (due to H. S. M. Coxeter himself in
1935) features the four infinite families defined by the Coxeter graphs in the table below.

An a---- -o

Bn -0

Cn 0--

Dn
-0

A.

Bn

Cn

(X^
Dn ^ T°

Table 1: ABCD-families of irreducible finite and affine Coxeter groups

Our theme is permutation representations of these groups, generalizing the ordinary
model of A^-i as permutations TT of the set {!,..., n}, with the i-th generator 3. corre-
spending to the adjacent transposition (7T;, 7T^.i). Though we confine ourselves here to the
ABC D-giovLps, it should be mentioned that similar things can be done with the sporadic

EFGH-types as well as many other nameless groups, see [5] for details. For precise defini-
tions and for Coxeter group theory in general, we refer to the book [7] by J.E. Humphreys.

2. 1 The finite case: Bn, C'n, £>n.

Instead of representing the elements of these groups by signed permutations, we shall
use symmetric permutations of the set of integers [-n,..., n]. As sketched in Figure 1,
the generator s,-, for i = I,..., " - 1, transposes not oiily (7T., 7r,+i) but also (7T_, 7T^_i).
The action of the last generator Sn is different in Bn and Dn but symmetric in both
cases, therefore only symmetric permutations will occur in the represeutations. In Bn, the
generator Sn transposes (7r_i, 7Ti); in £>", the generator Sn transposes (TT-I, ^) as well as
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Figure 1: The actions of 53 and 34 in B^, and D^

(-7r_2, 7Ti). In particular, zero is a fixed point and the symmetric action can be envisioned
ds a mirror at .r = 0.

As a concrete example, consider 3364, read from left to right. In £4, this permutes the
identity (-4, -3, -2, -1, 0, 1, 2, 3, 4) as follows:

^,3 (-3, -4, -2, -1, 0, 1, 2, 3, 4) -. " (-3, -4, -2, 1, 0, -1, 2, 3, 4).

In 1)4, on the other hand, the permutation. action of 5354 on (-4, -3, -2, -1, 0, 1, 2, 3, 4)
IS:

^ (-3, -4, -2, -1, 0, 1, 2, 3, 4) -. " (-3, -4, 1, 2, 0, -2, -1, 3, 4).

2. 2 The affine case: An.

For our representation of An_i, we shall use n-periodic permutations, that is permutations
of Z generated by periodic transpositions 5i,... , 5n. Here, 5, is the adjacent transposition
(z, z+1) together with all its n-translates (kn+i, kn+ i+1} for fc   Z.

-14 -13 -12 -II -10 -9-8-7-6-5-4-3-2-101 2 34 5 678910 11 12 13 14
-^7- -^7- -^7- XZ7--^ZT-

Figure 2: The action of 5i   A4 as transpositions on Z.

A natural mechamcal m.odel for this structure is a pile of n rulers, each with a protruding
pin at every nth mark. The pinheads are round and so large that when a ruler is put on
top of another, the plus must occupy diflE'erent positions. In the complete ruler pile, the
only movement possible is switching two neighbour pins by sliding their rulers one unit
relative to the pile. The pinheads of ruler 1 are marked ..., l-2n, 1-n, 1, l-|-n, l+2n,... etc,
so a consecutive sequence of n pinhead niimbers has got aU congruence classes modulo n
in it. Also, the sum of this cousecutive sequence is invariant, for the only transposition
that changes the set of numbers in the sequence is between the nilers of the leftmost and.
rightmost pins, but it increases the contribution from the first ruler by n and decreases the
contribution from the second by the same amount.

The following characterization is more or less obvious by this pins and rulers model.

Proposition 1 An infinite integer vector (..., a;_i, a-oi 3;ii ...) is au n-periodic permutation
if cuad only if three conditions are satisfied
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1 2 n-1

1. Xi+n = x, +n for all i

2. ri,... , 2-n belong to different congruence classes module n

3. a;i+--- +3:n =n(n+l)/2

The group of n-periodic permutations is isomorphic to the Coxeter group An-i:
This isomorphism is easily established via the numbers game, analysed by K. Eriksson [6].
In this game, numbers are to be placed on the nodes of the Coxeter graph, so on node z,
we put the number x^ - x,. The rules of the game say that node i can be fired by adding
its number to the neighbouring numbers and then reversing the sign of the number on
node i. But, as is easily verified, this is exactly what happens when the transposition s.
is performed. Also, the characterization in Prop. 1 implies a bijection between n-periodic
permutatlons and numbers game positions. However, as shown in [6], the numbers game
positions correspond bijectively to the elements of the Coxeter group, so we have the
following.

Proposition 2 The group of n-periodic permutations is isomorphic to An-i.

Note. The n-vector 2:1,... , a;n determines the whole infinite permutation, so what we have
here is an n-dimensional linear representation in disguise. By forgetting Sn, we retrieve the
ordinary representation of the finite subgroup A^i as permutations of 1,... , n, so Z may
be viewed as countably many copies of the interval [l, n], glued together by the action of

2. 3 The affine case: Bn, Cn, Dn.

Before we move on to the affine groups Bn, Cn, Dn, recall that the corresponding finite
Coxeter groups Bn, Cn, £>n were represeuted as syinmetric permutations of the set of inte-
gers [-n,... , n] and that the symmetric group action could be envisioned as a mirror at
a;=0.

To obtain the affine groups, we start with the corresponding finite case and erect a
second mirror at a; = n+1. The transpositions Si,... , Sn now get infinitely many mirror
images, all along Z, with a period of 2n+2. These intervals of length 2n+2 are glued
together by the action of the extra node, Sn+-i, which is the single transposition (n, n+2)
for Cn and the pair of transpositions (n-l, n+2), (n, n+3) for £?" and Dn. Thus, in Cn,
both mirrors use the same glue as the mirror of C'n; similarly, in £>", both mirrors use the
same glue as the mirror of Dn. But in -Bn, the two mirrors use different glue.

With these defmitious of 5, as infinite collections of transpositions, it is evident that 5.
commutes with mirror reflection and that therefore the following properties stay true for
all infinite permutations obtained by application of the 5;.

X-i == -Xi ,

X2^2-i = 2n+2 - a;. .
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Figure 3: The actions of 51, 54, 55    4 as transpositions on Z.

Note that as a consequence of these two mirror relations, the (2n+2)-translative property
X2nV2+i =2n+2+x, holds!

It is now possible to characterize the infinite permutations that can arise.

Proposition 3 The infinite permutation vectors (..., a;-i, a;o, ̂ i, . . . ) obtainable by appli-
cation of the s, in the (7n-case are exactly those that satisfy the mirror conditions

1. a;_, = -.r, for all i.

2. a;2n+-2-t = 2n+2 - a-; for all i.

For Bn dnd Dn there is one more condition, nam.ely

3. Among a;i,... , 2;n, an even number have odd [2^3 J. (Bn only)

3. Among a;i,... , a;n, an even number have odd [^-J. (-Dn only)

PROOF. (Sketch) We first check that the conditions are invariant, then assume that there
are vectors outside the representation and satisfying the conditions, select such a vector
with minimal (.EI,. .., a;n)-span and derive a contradiction. D

Remark 1 It is clear that Bn is C'n-like at one end and Dn-like at the other. Depending
on which end goes to 0 and which goes to n+1, we get diiferent representations. The reader
should have no difficulty in finding big-endian versions of the little-endian ones given here.
For instajice, in the third condition above, the fraction is modified to [£^^-J .

Proposition 4 The groups Bn, Cn, Dn are isomorphic to the groups of infinite permuta-
tions defined in Proposition 3.

PROOF. Again, the easiest connection goes via a numbers gajne. The details are omitted
in this extended abstract but can be found in [5]. D
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3 Length, class inversions, and weak order

The length of a group element w is the length of the shortest word for w in the generators 5,.
As we shall see, given the permutation corresponding to w, it is easy to compute its length
l{w): it is the number of "class inversions", as will be defined below. Closely connected
to the length function l{w) is the weak order, in which w ^ u if there is a factorization
w == uv with l(w) = l{u) + /(u). For a general Coxeter group, deciding whether w > u
involves computing u-lw and its length, but for our permutations, we can give a direct
criterion. 11

3. 1 Class inversions in the finite case: An, Bn, C(n, -Dn.

For an ordinary permutation TT, the length is of course the number of inversions TT; > TTJ, i<j.
Something similar is true for the symmetric permutations in £>n, but now inversions occur
in pairs. For instance, if TTi > ^2, then necessarily TT^ > TT_I. Another such pair would be
7T_i > 7T2 and T-2 > TTi. If we agree to count an inversion and its mirror inversion as one,
then it is clear that every 5, iu a reduced word for w will produce exactly one inversion,
so l(w) will be the number of inversions, exactly cis in An. Note that inversions between
an element and its mirror image, such as TT_I > ?TI are not counted at all, since they do not
appear m pairs.

For the groups Bn and Cn, the only diflFerence is that inversions of the form TT_, > TT; must
now be counted, otherwise the action of 3n would go unnoticed in the length Ccdculation.
In order to claj-ify these slightly diflFerent inversion concepts and give them a form that
carries over to the infinite permutations, we introduce the notion of class inversion. A
class consists of an element and its mirror images, so An-i has n single-element classes
while B^Cn, -Dn have n two-element classes. The cldss consisting of zero only may be
considered ds as. artificial class.

Definition. An inversioa between two elements together with all its mirror images
constitute a class inversion between the classes of these elements.

Note two things: First, inversions within a class never have to be considered; instead one
Ccin look at inversions between this class and the artificial zero class. Second, between two
classes, there may be two class inversions. For exaxaple, in (..., 2, 1, 0, -1, -2, ... )   Dn
the pair 2, 1 and -1, -2 constitute one clciss inversion cind the pair 2, -1 and 1, -2 a second
class inversion between the same classes.

Proposition 5 The length of an element in An, Bn, Cn or Dn is the number of class
inversions in the corresponding permutations. For Bn and Cn, one shoiild consider zero as
a class in counting class inversions.

Other versions of length formulds, not introducing cldss inversions, have been given by
Deodhar and Brenti.
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Example. What is the length of (3, 2, 1, 0, -1, -2, -3)   B^. There are double class
inversions between all three classes and each class also has an inversion with zero, so the
length is 9.

3.2 Class inversions in the aflftne case: AmBn, Cn, Dn.

In. the affine groups, if x^>Xj, i<j is an inversion pair, so are infinitely many other pairs,
namely those generated by n-translations in the An_i-case and those generated by mirror
reflections in the other cdses. In analogy with Bn, Cn, Dn above, if we couut such an infinite
set of translated or mirrored pairs as one class inversion, the length function will again
be the inversion count. Note that a pair of classes may contribute arbitraj-ily much to the
class inversion count, as illustrated below. In the second case, (5, 1) and (5, 4) are two
different class inversions.

For An, it is clear that a translated inversion is still an inversion, e. g. 2>1=»5>4=»
8 > 7 in the first example, but in the mirror models, this is less evident. Can we be sure
that a;_2>.ri => .r-i >a;2) for exdmple? Yes, the mirror conditions of Prop. 3 imply this!

For Bn and Cn, Sn creates an inversion within a class. Instead of counting these, we
can clearly count inversions between that class cind the artificial class ..., -c, 0, c, 2c,...,
where c = 2n+2. The same trick can be used for class-internal inversions brought about
by 5n+i in Cn.

Proposition 6 The length of an element in An-i, Bn, Cn or Dn is the number of class
inversions in the corresponding infinite permutation. By translations or mirror reflections,
a;i,... , a;n define one cldss each, and these are the classes used for A^-i and Dn- For Bn
and Cn, the clciss generated by 0 should also be considered in counting cldss inversions dnd
for Cn also the class generated by n+1.

PROOF. The proof is omitted in this extended abstract, but can be found in [5]. D

3. 3 Weak order

Generalizing the case of the symmetric group, the weak order is encoded by the sets of
class inversions:

~1I1
213546879 11
± I I I

-1I T
513846 11 79
JI L

Figure 4: Single and double class inversion in As.
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Proposition 7 For any one of the groups An, Bn, £»n, An, Bn, C'n, and £>n, we let 7(7r)
denote the set of class inversions in the infinite permutation corresponding to TT. Then
TT > o- in the weak order if and only if 7(7r) D /(o-).

PROOF. First assume that TT > o- in the weak order, so TT = a-s^s^ . . . s^ with /(TT) =
l{a) + k. Then each multiplication by a generator introduces a new class inversion, but the
class inversions already in J(o-) are still there when we reach TT, so J(7r) D I(a).

For the converse, assume that J(7r) ̂  I(cr) and show that there is a factorization TT = TT 5
with I(TT} = I(TC') + 1 and Jr(7T/) D /(o-); induction would then give TT ̂  o-. Let (7T., 7Tj) be a
representative of a class inversion in J(7r) \ 7(o-), such that TT, > TTJ, i < j, and the difference
j - i \s minimal among such inversions. By considering the possible configurations, it is
easy to see that (TT,, ^-) then must be "adjacent", that is, the transposition (TT,, ^-) is a
generator s. (Sometimes, as we have seen, this means that j = z+2 or even j = i + 3.)
Hence TT = ?r/5 will do as factorisation. D

Finally, we look at the interpretation of descent in our permutation models. In an
ordinary permutation, a descent is any occurrence of a:, > a;t+i, but for an element w of an
arbitrary Coxeter group, the descent set is defined as

D{w) = {5, | /(w5. ) < /(w)}.

In the terminology of permutations, we can say that the descent set consists of all 3, that
resolve an inversion. For most s;, this simply means that a;, > a;,+i, but for Sn and 5n+i,
the interpretation is different for different groups. For example, in Cn we have 5n   D(w)
if a;_i > zi, but in Dn we have Sn   D(w) if z-i > 3:2.

4 Bruhat order

In this concluding section of the paper, we are going to present a generalization of the
tableau criterion for the Bruhat order in the symmetric group to all the finite and affine
groups that we have been considering.

hi general Coxeter group theory, conjugates of generators are called reflections. A
reflection can always be written as a palindrome t = s^ . . . s'^s^ . . . s',,, with 3/;   5'. In
the symmetric group, a reflection is a transposition, uot necessarily adjacent. The weak
order, generated by w < ws, where 565' ajid l{ws) == /(w) 4-1, can be expanded to the
Bruhat order, generated by w < wf, where t is any reflection such that l{wt) = l{w) + 1.
For permutations, the following criterion can decide whether a permutation TT precedes
another permutation cr in Bruhat order. It is due to Ehresmann [4] and cdn be seen as a
special case of Deodhar's criterion [3] for general Coxeter groups.

Tableau criterion: Let Tr. j be the element obtained by sorting
the first j symbols of TT in increasing order and then picking the
z'th symbol. Then v <, a- m Bruhat order if and only if TT,, < cr.j
whenever 1 <:i <:j <:n-
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Example. Let a = (2, 1, 3, 4) and TT = (3, 1, 4, 2). We have l{a) == 1 and /(7r) = 3 and
a transposition chain (2, 1, 3, 4) i-^ (3, 1, 2, 4) i->- (3, 1, 4, 2) demonstrating that cr < TT in
Bruhat order. (But there is no such chain using adjacent transpositions, so no weak order
relation exists. ) The tableau criterion involves sorting all initial segments and comparing
them: (2)^(3), (1, 2) < (1, 3), (1, 2, 3)^(1, 3, 4), (1, 2, 3, 4)^(1, 2, 3, 4). The conclusion
is that o- < TT. The dual tableau criterion is equivalent, it sorts final segments instead:
(4)^(2), (3, 4)^(2, 4), (1, 3, 4)>(1, 2, 4), (1, 2, 3, 4)^(1, 2, 3, 4).

In all cases, a reflection element t = wsw~1 is a not-necessarily-adjacent transposition,
together with its symmetric transpositions. This is clear, as the action is permute, trans-
pose, unpermute". So the Bruhat order can be described combinatorially easily enough.
But is there a generalization also of the tableau criterion? Yes, there is; the following result
is due to Proctor [9]:

Proposition 8 [Proctor] For a finite Coxeter group of type C'n, represented as permuta-
tions of -n,... , ra, the Bruhat relation (T < TT holds when the following criterion is satisfied.
Any initial segment (cr-n, . .. , ^i), i = -n,..., -1, sorted in increasing order must be com-
ponentwise less than or equal to the corresponding sorted initial segment of TT.

For £>", the sorted initial segments of o- and TT must additionally satisfy that no pair
of corresponding subsegments (of length, say, k) both constitute a signed permutation of
!,..., & such that the number of negative elements is odd in one segment and even in the
other.

We would like to extend the result to the infinite perinutations, but there seem to be
complications. Is it possible to sort an infinite interval? Yes, it is! Assuming that the
Z-axis has ben. cut in two between XQ and 3:1, the right half-axis is sorted by putting its
smallest element in a:i, its next smaJlest in 3:2 etc. And the left half-axis sorts its largest
elenaent into a;o, its next largest into a;_i etc. Thus, it is possible to formulate Bruhat order
criteria ajiaiogous to the tableau criteria of the finite groups. For An dnd (7n, it looks cis
the simple criterion for An and Cn-

Proposition 9 For an affine Coxeter group of type An or C'n, represented cis mfimte
permutations of Z, the Bruhat relation o- < TT holds when the following criterion is satisfied.
Any initial half-infinite segment (... , cr, ), sorted in increasing order must be componentwise
less than or equal to the corresponding sorted initial segment of TT.

PROOF. In this extended abstract, we just sketch the proof: The necessity is simple,
for a transpositiou that creates inversions replaces some numbers by greater numbers in
some of the initial segments. The sufficiency is proved roughly as follows: find a suitable
transposition r that resolves an inversion, and check that the criterion is still satisfied with
cr dnd TTT. D

Remark 2 Another combinatorial Bruhat order criterion for An has been developed by
Bjomer and Brenti [2J.

Remark 3 For Bn and Dn, the criteria are more complicated, as can be understood from
Proctor's criterion for Dn.
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