
Combinatorics of Fulton^s ranked essential

set (extended abstract)

KlMMO ERIKSSON1 AND SVANTE LlNUSSON2

1 Department of Mathematics, SU, S-106 91 Stockholm, Sweden
2 Department of Mathematics, KTH, S-100 44 Stockholm, Sweden

Abstract

For any permutation, Fulton introduced its ranked essential set. We give a new
elementary proof of the fact that the ranked essential set of a permutation w deter-
mines w. We then characterize the -class of rauked sets that arise as ranked essential

sets of permutations by giving necessary and sufficient conditions. Several classes of
permutations are chaj-acterized in terms of their essential set. Various enumerative
residts, on the number of elements of given rank, are obtained.

La notion d'ensemble essentiel gradue d'une permutation a ete introdmte par Ful-
ton. Nous donnons une preuve nouveUe et elementaire du fait que 1'ensemble essen-
tiel gradue d'une permutation w deterinme w. Nous donnons ensuite des conditions
aecessaires et suffisantes pour qu'un ensemble gradue soit 1'ensemble essentiel d une
permutation. Plusieurs classes de permutatious sont caracterisees en termes de leur
ensemble essentiel. Nous obtenons aussi plusieurs resultats enumeratifs conceraant
Ie nombre delements de rang donne.

1 The ranked essential set

The combinatorial object that we are studying is the essential set of a permutation, together
with its rzink function, as introduced by Fulton [4], 1992. They are defined as follows. First,
let every pennutation w   5n be represented by its dotted permutation matrix, regarded as
an n x n-collection of squares in the plane, where square (z, w(i)) has a dot for all z"   [l, n],
and all other squares are white, so there is exactly one dot in each row and column.

We get the diagram of the permutation by shading the squares in each row from the
dot and eastwards, and shading the squares in each colmnn from the dot and southwcirds.
Thus, we now have shaded squares and white, that is unshaded, squares. (To be precise,
the diagram is what is made up of the white squares.)

We call a white square a white comer if it has no white neighbor either to the east or to
the south. In other words, the white comers aie the southeast comers of the components
of the diagram. The essential set £{w) of a permutation w is defined to be the set of white
comers of the diagram of w.
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For every white corner (z, j) of w, its rank is defined by

r^{ij) d2f #{ dots northwest of (?, ;. )} = #{(^/) with dot : z/ ̂  z, j/ ̂  j}
The name "raitk" stems from the fact that ru, (i, j) is equal to the matrix rank of the i by j
upper left submatrix of the ordinary perinutation matrix of w, where the dots are replaced
by ones and the blank squares are zeros. Indeed, the ranked essential sets describe the
irreducible loci of spaces of matrices where the upper left i by j submatrices have rank not
greater than r'w(. i', J)-

Figure 1: Diagram and ranked essential set of the permutation 4271635.

The fundamental property of the ranked essenticd set is the following.

Proposition 1. 1 (Fulton) A permutation w   5'n is determined by its ranked essential
set.

Fulton's proof is very short, but aJgebraic. We give here an elementary algorithm
for explicitly determining the permutation from its ranked essential set, thereby giving a
combinatorial explanation of the result.
Retrieval algorithm: Let B be a, permutation matrix. Let Bo be a copy of B where we
have forgotten about the dots, but instead every square in the essential set of BQ is labeled
by its rzink. We shall, dot by dot, recover B by constructing a sequence of labeled shapes
BQ, BI, Ba,..., such that the labeled squares of every Bk will be the ranked essential set of
the restriction of the dots of B to the subshape Bk. For i from 1 to r:

Step 2i - 1: The labeled shape Bii-i is obtained from Bs. -z by removing every square
c such that c ^ c/ where c/ 6 By.i-'i is a squajre labeled zero. In these squares, there cannot
be any dot in J3, so no labels should be changed.

Step 1i: After the previous step, Bz. -i has no square labeled zero. We can now be sure
that every minimal square of B-a-'i must have a dot in B. We now obtain B-a by removing
from 52,-i, for every ininimal square c, all slices containing c (since c has a dot, none of
the other squares in a slice can have a dot in a proper dotting), and decreasing the label
by one for every labeled square d ~^ c (since the removed c had one of the dots counted
by these labels). Since we are removing squares that would have been shaded, the set of
white comers is unchdnged.
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Figure 2: A run of the algorithm on the essential set of the permutation in Figure 1. Bo,
Bio-B2 and Bs depicted, with the revealed dots Indicated. ̂ 4 will then be a single square
that must have a dot.

2 Characterization of ranked essential sets

Fulton [4] posed the problem of finding a characterization of what ranked essential sets that
can arisej from arbitrary permutations. In this section we present such a characterization.

Define 2?(7, j)(t/, /) to mean the rectangle with comers (z, j), (i, /), (t/, j), (»', /).

Theorem 2. 1 (Main Theorem) Let E C [l, n] x [l, n] be a set of squares with rank
function r{iJ). E is the essential set of an n x n permutation matrix if and only if:
Cl. For each (z, j) 6 £> we have

(a) r{ij) >. Q and
ft) r{ij)+n^i+j.

C2. For every distinct pair (ij), (i/, /)   E such that i ̂  i', j < j' and E n [z/, i} x [j, j1} =

{(iJ), (i'J')} we have

i-i'>r(ij}-r(i'j')>j-j'

C3. For every pair (ij), {i', j')   E such that i < i', j < j' and E C\ [i+ 1, i'} x \J+^3'} =
{i', J'}}, let (z ̂ ' ) ^ E be the squaTe. ̂  E. with t!te lar9est z s<^tis^9., [ <^\'

f>j''JandE<-\[i"^i] x [j', j"} = {(^", J//)} (if no such square exists letr(i", j")-=Q);
"symmetrically, let (it", j7")'be the square of E with the largest j'" satisfying ^' ^j,
V""^it"andE^[i', i"r}x\j"l, j} = {{i'"J"l)}(ifno such square exists letr{i'"J'") = 0;.
We have

r{i'J') + r^3) ̂  i - i" + 3 - 3'" + ̂ "^"^ + r(iw'^//)- a

Sometimes it is interesting to consider the situation where we do not have full rank
and" the'matrix might be a rectangle. The proof of Theorem 3. 2 (omitted here) gives
immediately the following useful corollary.
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Corollary 2. 2 Given k<, m <^n, let E C [m] x [n\ be a set of squares with rank function
r(i, j). Augment {0, n +m - k) and [n + m - k, Q), to E both with rank zero. E is the
essential set of a properly dotted m x n rectangle with k dots if and only if conditions
l(a), 2(a), 2(6) and 3 of Theorem 3. 2 are fulfilled and for every square (?, j) ^ E we have

n+m-k-i-j+ 'r{i, j) > 0.

In the proof we need to consider also three alternative rank functions, namely 7-ne(i, j) =
i - r(z, j), rsw(t, j) d£fj - r{ij) and r3e(z, j) d£=f n - i-j+r[ij). Clearly, if w   Sn, then

for any 2, 7 6 [1, n] we have the following Interpretation of the rank funtions:

r^^J} = #{ dots northeast of (i, j)} = #{(z/, /) with dot : z/ ̂  i, j/ > j}

r3J{iJ) = ^{ dots southwest of (i, j)} = #{(i'J') with dot : if > ij' ^ j}

<e(^J") = #{ dots southeast of (2, 7)} = #{(?', /) with dot : ?' > z, / > j}

It obviously suffices to know ru, (z, j") but it is convenient to work with all four rank
functions.

3 Corabinatorial aspects and enumerative results

We will here discuss the combinatorial medning of white squares and white comers, and
then state and prove some enumerative results on the distribution of white coraers with
certain rank.

As mentioned in Macdonald's book [5], the white squares of the diagram of a permu-
tation w correspond exactly to the inversions of w: (i, j) is a. white square exactly when
both w(z) > j and i < w (j). As observed by Fulton, every row with a white corner
corresponds to a descent: if (z, j) is a white comer, then w(i + 1) ^ ^' while w(i) > j, so
w(i + 1) < w(i); conversely, if w{i + 1) < w(i), then the square (z, w(i + I)) must be white,
so there must be a white corner in row i.

3. 1 No restrictions

We shall begin by studying the distribution of ranks of white comers for permutations in Sn
without restrictions. Define Pn(x) to be the polynomial that keeps track of the distribution
of rajiks:

PM ̂  E £ ^w(c)
w65n ce£(u)

Define P^e(a;), P^"{x) and P^e(. z) in the analogous way, that is, with the rank function taken
to be r^,-, r^w and r^c respectively. One can prove that Pn(x) = P^(x] and P^w(x) = P^e(. z;)
by considering the two involutions w i-»- w-l (transposition of the permutation matrix) and
w t-r rtw (rotation of the matrix 180°).
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Proposition 3. 1 The total number of white comers in Sn is

(n31)+6ft)
^(l)=(n-l)!v3 y ' "v2 7.

Note that by dividing with n\, the number of permutations in Sn, we obtain ([ 3 } +

6(^))/(6n) as the average number of white squares.
Another curious result in this context:

Proposition 3. 2 Let £'(w) be the set of white comers of w that are the last white corners
of their rows. Then

^ ( # o/c  £'(w) : <e(c) = <) = (n- t)(n - 1)!
ue5n

Observe the interpretation in terms of descents that follows from

r^{ij)=#{k<i:w{k)>w{i)}.

For a given descent i in a permutation w, that is, w{i) > w(i + 1) we have that r^{i, j)
counts the number of inversions having w{i) as the smaller element. So, looking at all
possible descents in all permutations of Sn, the number of them having exactly t larger
predecessors is (n - t)(n - 1)!.

3. 2 Vexillary permutations

Let Vn denote the set of vexillary permutations in Sn- By summing only over permutations
in Vn we get cinother polynomial:

Vn(x)d^ E E ^rw(c)
w Vn c £(w)

As we did for Pn(x) in the Sn case, define V^e(x), V^(x) and V^{x) in the analogous way.
In analogy with the previous case, we have Vw{x) = V^e{x), and V^(x) = Vn(x).
We would like very much an expression for Vn(l), the total number of white corners

of permutations in Vn, but it has eluded us; maybe there is none. At least, we have
obtained some partial results. Let Vn denote |Vn|, the number of permutations in Sn that
are vexillary. The number sequence {un}n^i starts 1, 2, 6, 23, 103, 513,.. . There is no exact
formula known for Un, but an asymptotic, see Macdonald [5].

Proposition 3.3 In Vw{x}, the coefficients of xn~1 and xn~2 is Un_i and 2un_i respec-
tively.

From the data we have computed, the following statement seems to hold.

Conjecture 3. 4 For fixed integer k >, 2 and variable n, the coefficient of xn~k in Vn{x)
can be expressed as a polynomial in n of degree k -2.
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3. 3 321-avoiding permutations

As the last item in this section we shall discuss 321-avoiding permutations. We say that w
contains a 321-pattern if there are indices z'i < 23 < is such that w(?i) > w(^) > ^(ts)), and
we say that w is 321-avoiding if it does not contain a 321-pattern. Define An (a;) (and A^e{x)
etc. in analogy) by summing the ranked white squares over all 321-avoiding permutations.
It should be quite obvious that the property of being 321-avoiding is invariant under
transposition and rotation, so once again we need only study the two polynomials An(a-)
and A^e{x).

n

8

~^e\x)
la;
3a; + la;2
~Wx+ 5x2 + la;3
35-r + 21x2 + 7x3 + lx4
126a; + 84a;2 + 36a;3 + 9a;4 + la-5
462.E + 330a;' + 165a;3 + 55x4 + llx5 + lxs
1716. C + 12S7x2 + 715a;3 + 286a;4 + 78a;5 + 13.E6 + lx-

In the table above one quickly recognizes binomial coefficients from every other row of
Pascal's triangle. We have the following theorem:

Theorem 3. 5 The coefficients of A^e{x) come from the last half of row 2n-3 of Pascal's
triangle, that is,

n^ ( 2ra-3
^^AM=g^:-:-'2, X'

By summing these binomial coefficients, we immediately get the following appealing
result.

Corollary 3. 6 The total number of white comers in '321-avoiding permutations in Sn is

A.(l) = A^e(l) = 22n-4.

4 Essential sets of certain classes of permutations

An important example of characterization by essential set is Fulton's description of the
vexillary permutations as having no white comers (?, j) and {i', j') such that i < i' and j <
/. His proof is algebrcdc in nature, but we would like to point out here that the result can
be obtained elementarily from the alternative characterization of vexiUary permutations as
2143-avoiding, see Macdonald [5].

In a siinilctT way we shall prove some other connections between certain shapes of
essential sets and permutations avoiding certain patterns. Let 2(41)3 denote the pattern
2413 where the two elements corresponding to 4 and 1 are neighbors in the permutation,
that is, there are uo elements inbetween in the word-fonn.
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Proposition 4. 1 A permutation w is 2(4:}. )3-avoiding if and only if it has at most one
white comer in each row.

Now, let us return to 321-avoiding permutations. Billey, Jockush and Stanley [1] ob-
tained a "curious" enumerative consequence of their ajialysis of the Schubert polynomials
of 321-avoiding permutations: the number of w   5'n that are both vexillary and 321-
avoiding is 1 +2(2" - (n+ 1)) - ("^) (when written in a suitable form). By characterizing
these permutations in terms of the essential set, we can give an immediate interpretation
of each of these terms.

Proposition 4. 2 A permutation w is 321-avoiding and 214:3-avoiding (vexillary) if and
only if it has all its white comers either in one single row or in one single column.

The identity permutation is both 321-avoiding and yexillary, so it takes care of the first
term, 1, in the expression 1 + 2(2n - (n + 1)) - (n^1). All other permutations have at
least one white corner. Having all white corners in one single row is equivalent to having
exactly one descent. The number of permutations with one descent is easily seen to be
2" - (n + I): choose any subset of [l, n] except for Intervals [!, &], A; = 0, 1,..., n, dnd
order it in increasing order, then continue with the complement in increasing order. By
transposition, there are equally many permutations with all white corners in one single
column, so this takes care of the second term, 2(2" - (n + 1)). We must now subtract
the number of permutations that have been added twice; they are those with only one
white square all together. As is most eaaily seen from the picture (Figure 3), these are the
permutations of the word-form

l... i(j+l)... k(i+l)... j{k+l)... n.

We can choose i <j < k aj-bitrarily in the interval [0, n], so this tdkes care of the last term,
(n~^1), of the expression.

Figure 3: Pennutation with only one white corner: the dots lie in four diagonal slopes,
northwest, east, south, and southeast of the white area.

Let us conclude this section with a discussion of antivexillary permutations. By an-
tianalogy with the vexillaxy case, we define a permutatiou to be ajitivexiUary if it has no
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white corners (z, j) and {i', j') such that i < i' aud j > j'. Thus, an antivexillary permuta-
tion hds its white corners spread iu the northwest-southeast direction, while the vexillary
permutations have their white corners spread in the southwest-northeast direction. The
antivexillary permutations admit a surprising characterization in terms of forbidden pat-
terns:

Proposition 4. 3 A permutation w is antivexillary if and only if it is 321-avoiding and
351624:-avoiding.

5 Remarks

All the results in this paper, and a few more, with details and proofs, are available in our
two preprints [2] and [3]. We thank Dan Laksov for drawing our attention to this problem.
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