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Abstract. This paper presents an operator calculus approach to computing with non-
commutative variables. First, we recall the product formulation of formal exponential series.
Then we show how to formulate canonical boson calculus on formal series. This calculus is used

to represent the action of a Lie algebra on its universal enveloping algebra. As applications,
Hamilton's equations for a general Hamiltonian, given as a formal series, are found using a
double dual representation, and a formulation of the exponential of the adjoint representation

is given. With these techniques one can represent the Volterra product acting on the enveloping
algebra. We illustrate with a 3-step nilpotent Lie algebra.

I. Introduction

The foundations of a theory of non-linear causal functionals were laid by M. Fliess [8] using
aon-commutative indeterminates and formal power series. The observability of a class of
systems for which the state space is a Lie group and the output space is a coset space
was studied recently by D. Cheng, W.P. Dayawansa, and C. F. Martin [3]. H. Hermes [12]
investigated structiiraUy stable properties associated with systems described by real ana-
lytic vector fields approximated by appropriately chosen nilpotent systems. Finite Volterra
series which admit Hamiltonian realizations were studied by P.E. Crouch and M. Irviug
[4] with the help of nilpotent endomorphisms on symplectic vector spaces. For aspects
relating to controllability see Sussmana [14] aud Jakubczyk and Sontag [13]. Calculations
with enveloping algebras have been considered by Duchamp and Krob [5].

In this paper we present ELD. operator calculus approach to these problems, particularly
in the Lie context based on representations on the universal enveloping algebra. The paper
is orgamzed as follows. Section II recalls the product formulation of Volterra series. In
§111, we consider the case of abelian (commuting) increments. Next we formulate the
boson calculus on formal series. §V shows how to represent the action of a Lie algebra on
its imi versa! enveloping algebra in terms of canonical boson operators. As applications,
Hzimilton's equations for a general Hamiltonian, given as a formal series of monomials
in the enveloping algebra, are found in terms of the double dual, then it is shown how
to compute the exponential of the adjoint representation. Of particular note is the fact
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that the calculations can be done readily using matrix realizations and thus can be readily
implemented using a package such as MAPLE. We remark that one cein use the double
dual for representing the Volterra product acting on the enveloping algebra. §VI illustrates
these methods with some calculations for a 3-step nilpotent algebra.

II. Products and iterated sums

A (discrete) Volterra series in the variables {Xi, -X'2,... } is of the form
^v"Jn(Xi, X2,... ), where the In are iterated sums of the variables Xi. This has been
studied since the time of Volterra as the basic construction. The principal connection is
between the series and the product, which is a generic form of the exponential function.
The generic exponential is of the form

n(i+^, )=^v"^(xi, x2,...)

Recently a fairly complete exposition has been given by Gill and Johansen, ajid Gill [10] [11]
indicating the basic convergence theorems and showing applications to some statistical
problems.

III. Abelian processes

First we consider the case where the variables X, all commute. If X, takes two values

{ a, ,3 }, then you can write

IJ(1 + vX, ) = (1 + Qy)(^-^)/(°-^)(i + ^(X-Na)W-a)

If Xi takes values {cri,... , ttr }, use the Lagrange interpolation formula as follows. Write

pW=H(X-a.)

Denote by n, the number of times the value a;, is tziken, ^ n, = N. Observe that

? )
i/r/v/

while

Thus

^ p/(a.-)(X, - a,)

". = £ .^pw)

== 1

p/(a.. )(.Y, - a.)

^. , P.W)
J](l + vX,) = I](l 4- aiv)^ ?'(". )(^-°-.)

II

II
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If Xi take three values, { cr, /3, 7 }, then, e. g.,

^X]-{a+0)^X, +aBN
n-y =

72 - (ct + ,3)7 + ^

which depends on the power sums Y =^i Xj and X = ^ Xj.

In general, we can write, a denoting the values taken by the X,,

H(l + vX, ) = H(l + va)^ s(x}~a) = fl(l + va^

=eS, "»108(l+I'a) =e^E^los(l+ua)

^N f log(l+va) f(a) da

where / is the density function for the distribution of Xj.
Another approach is to use power sums:

H(l + .Z, ) = eE^(^"^-) = e^' E. (-^)fc^/^
This form is convenient for evaluating asymptotic behavior.

Remark. This formulation is already interesting in the case of independent random vari-
ables, where it gives a class of basic orthogonal functionals of the process, see [7]. For
general semimartingales, it gives the exponential martingale of Doleans-Dade ([11]).

TV. Operator calculus and formal series

Given a finite number of non-commuting indeterminates {-X'i,... , Xd}, one caji consider
formal series in monomials they generate. Assuming that raiiltiplication is zissociative
and linear with respect to an underlying set of scalars (possibly a commutative ring) one
effectively has the tenser algebra. We consider the case where monomials of the form (n
denoting the multi-index (ni, ̂ 2,..., "d), "i > 0)

ndi;[n}=^[n,, n^..., nd]=X^---X^d

are the basis for the associative algebra generated by the X;, such as the case where they
generate a finite-diinensional Lie algebra, according to the Poincare-Birkhoff-Witt theorem
(cf. [5]). A formal series of interest is of the form

^c[n]^[n]
n

Denote the basic multi-index having a single 1 in position i and zeros elsewhere by e,, so
that n = ^n, e,.
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The operator calculus on these series is given on the basis V'[n] by the boson operators,
which we denote by 7?. ; and V;:

TZi^[n] = y;[n + e. ] , V, ^[n] = n, ^[n - e,j

The vector space, say over C, generated by the action of the operators 71; acting on
i/»[0] is called in physics terminology the boson Fock space (usually considered in the case
where there are a countably infinite number of variables). These operators satisfy the
commutation relations

[V^, }=S,,I
where J denotes the identity operator. The idea is to use these operators to represent the
action of left (or right) multiplication, in the associative algebra, by the basis elements -X',,
and hence to write the algebra in terms of these operators acting on ̂ [O], often denoted
by ft, and called the vacuum state.

A basic fact is that any matrix Lie algebra has a boson realization in terms of the
Jordan map, namely, we have the Lie isomorphism

A=(A, y) ^ ^HaA^Vp
a, /?

(4. 1)

as is readily verified. Another way to interpret this is to use the natural correspondence

Q
.Ri^ Xi, V,^

Qx,

acting on smooth functions /(a;i ,... , a;j) with Xi/(a;i,..., Xd) == Xzf{x\,..., . r^). In this
case, the Jordan map gives a realization of matrix algebra as an algebra of vector fields.

For finite-dimensional Lie algebras, using duality for the universal euveloping algebra.
one can compute representations for the algebra. This is explained in. detail in the next
section. (One can find representations of quotients of the enveloping algebra and of the
group as weU. See [6].)

V. Dual representations

The "splitting technique" which is basic to the approach was developed from a difFerent
point of view by Wei and Normaii [16] [17] in the sixties. Here we start from a choice of
basis for the Lie algebra considered as generators for the universal enveloping algebra. In
general, a basic feature is a factorization of the Lie group into subgroups.

Reinark. We denote partial derivatives by subscripting <9, e. g., QA = 9/9A.

3
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5. 1 REPRESENTATIONS ON ENVELOPING ALGEBRAS

Let {^i,... , ^} be a basis for a Lie algebra. Let A be the corresponding universal
enveloping algebra. Denote the c?-tuple (^i,... , ^) by <^. As basis for A and as basis for
polynomials in commuting variables A = (Ai,..., A;;) we use

^(0-C1 ---^, ^(A)=A^... A^/(ni!... nrf!)

respectively. Note that products involving ^j are ordered.

The elements of the group near the identity may be expressed as products of one-
parameter subgroups generated by the ^,. I. e., let

g(A, 0=eAl<leA2s2 ... eAd^

This may be expanded in the form

g(A, 0=^c. (A)^(0
and interpreted variously as:

1) a generating function for the {^n},

2) a generating function for the {en} with non-commutative variables as coeffidents,
and

3) as a pairing (C, ̂ } of the sequences C = {cn}, ^! = {^n}-
By duality we have a Lie homomorphism ^ ->. ^ which is determined on the basis

elements via

{C^, )=^C^}
where ^^- denotes the sequence with components {tpn ^j }. The right action by multipli-

cation of ̂  on a basis element ^n is re-expressed in terms of the i/>'s. The action may be
calculated using the generating functious g(A, ^):

^(A, 0^, =^(A,0

where ̂  is a differential operator acting on functions of A. To see this, denote eA'$i by
E,. Then we use the relations

[EkEk^ ... E^}=Y, EkEk+i .' . . [Er, ̂ }Er+,... ^
r

E^=={eAk!id^^Ek
where (ad ̂ )^- = [^fc, ^]. The idea is to commute ^ uext to the factor Ej m E^ . "Ed.
Each appearance of ̂ , £'1 is replaced by the differential operator QA. = 9/9Ai. This efFec-
lively computes ^, giving a realization of the Lie algebra as a Lie algebra of vector fields,
which we call the right dual representation.

Similarly, we have a Lie anti-homomorphism, the left dual, ̂ j ̂ - ̂ J, by acting on the
left

<c, ^, ^=^+c,^
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5. 2 COORDINATES OF THE SECOND KIND

Group elements in a neighborhood of the identity can be expressed as

^(a) = ea^" = g(A) = eAl$l eA2<2 . . . eAdsd (5. 2. 1)

The a, are called coordinates of the Grst kind and the A,, coordinates of iiie second idiid
The dual representations denote realizations of the Lie algebra as vector fields in terms of
the coordinates of the second kind acting on the left or right respectively. I.e., define the
left (respectively, right) principal matrices, 7rf(A) (respectively, TT*(A)) according to:

^ ff(A) = ^(A)^g(A), g(A)^ = 7T;, (A)9^(A)

where here and in the following ^ = 3/9A^. We write the dual representations:

^=^(A)5,, ^=^(A)^

If A depends on a parameter 5, then we have, for any function /(A), the flow

/ = A^9,f

So, let X = a^^ and consider group elements

g(A(. )) = e3 x 
= e3a^'i (5. 2. 2)

These form a one-parameter abelian subgroup. First, we have, acting by X on the left,

g=Xg= a^p, g = a^g = a^^Q^g

And from the right,
g=gX =g a^v. = a^g = a^]^9,,g

Since, as remarked above, we have in general g = A^Q^g, we see the result:
5.2.1 Lemma. Splitting Lemma
Denote by 7r(A) either the left or the right principal matrices. Then we have

Afe = a\TT\k(A)

with iaiticd values Afc(O) = 0.

(These equations are a constant-coefficient version of the basic equations studied by
Fhess [8] [9]. ) In particular, evaluating at 5 = 1 gives the coordinate transformation

~A= A(a) corresponding to .(5. 2. 1). With nonzero initial conditions, this yields the group
law, equivalently^ the matrix elements for the group, which we have shown how to calculate
recursively in [6].
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5. 3 PROPERTIES OF DUAL REPRESENTATIONS

Differentiating (5. 2. 1) directly, we have

Xg=^eA^ ... eA-ls-lA, ^eA-$i . , AdSd (5. 3. 1)

Evaluating at 5= 0 in (5. 3. 1) yields, with g(0) the identity,
X=a, ^=A, W^

Thus, Afc(O) = crjc, i. e.,
A(0) = a

And letting 5 = 0 in Lemma 5. 2. 1, we thus have
7r(0) = identity

The right dual mapping ̂  ->- ̂  gives a Lie homomorphism, i. e., [^)^']* == [lf,*^j]' while
the action on the left reverses the order of operations, giving a Lie antihomomorphism
K»^j]+ = K^J]- In terms 0^ the adJoint representation, we thus have, for the Lie bracket
of the corresponding vector fields:

Right dual Taking commutators and then evaluating at A = 0:
7T^^7rJfc - ^]fi9^k = ^ij^k

5. 7T;, (0)-9, ^(0) =Cfc,
(5. 3. 2)

Left dual Similarly, we have

^Q^]k-^A^k=c^lk
4.

(5. 3. 3)
9i^W - ^tk W = ^

As well, we see that by construction, the left and right actions commute, so that we have
Combined Commuting the left and right yields

^^7rjfc 
= 7I-^^^

3, ^(0) = 5, ^(0)
Combining this last relation with (5. 3. 2), we have

a.^(O)-3, ^(0) =4.
the transpose of the adjoint representation. This can be summarized in the phrase: the
transposed adjoint representation is the Unearization of the difference between the right
and left duals. We thus define the extended adjoint representation. as the difference of the

and left duals:
^ -yt

;J - ^j ~ ^j

which gives a representation of the Lie algebra, since ̂  -f -^] gives a Lie homomorphism,
the-niinus sign reversing the commutators. And we set the corresponding TT:

7T(A) == 7T*(A) - 7T+(A) (5. 3.4)
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5.4 DOUBLE DUAL

Expanding out equation (5. 2. 1) in series, we have

9W= E ^-S^-^=E^^ <5A1)
"l,..., "d ' ~ n

using multl-index notation, n = (ni,... , nd). I.e., the group element is the generating
function for the monomials ̂ n. Now we observe the action of the operators of multiplica-
tion by Aj and 9j , differentiation with respect to Aj on g{A) dualized to acting on the basis
^n: A^('A) is the same as mapping ̂ n -> n^n-e,, and <9, g(A) is the same as mapping
^, ^ _). ̂ ^+e . AS in §IV, we define operators 7?. j, Vj, on ̂ n, thus

T^j^n = 0n+e; , V^n = "J^n-e,
Now we can take the right and left duals acting on functions of A and convert them to
operators acting on the enveloping algebra, and 'functions of ̂, ' eg., exponential functions,
and by extension to Fourier integrals. Thus, the left and right double duals

^=^.w. §=^AW
where we drop the dagger for the left double dual and just call it the 'double dual. ' For the
left action, the double dual thus gives a Lie homomorphism. These give the left and right
multiplication by the basis elements ̂  on the enveloping algebra in terms of the basis ̂ n.
I. e,

We set

so that

^. -0n = ^n,

7i-=(^)(,

^n^- = ^n

y=w

^=^^, (V), ^=-RA(V)

We can formulate this in terms of vector fields. We apply the algebraic version of
Fourier transform, interchanging variables A with their derivatives QA, cf., the duality
A^V, QA^^ to the left dual. We use (yi,... , ^/d) as variables with the corresponding
meamng 9j = 9/9yj. For polynomials /, we have, as well as [^, /(^)] = f'(yj),

[fm, y, }=f\9,)
And similarly for /(^i,.. ., Qd)- These extend directly to smooth functions. Now, we form
dual to a vector field X = a^(y)9^

X = y^a^Q)

We have, with Y = y^b^{Q\ subscripts preceded by a comma denoting partial derivatives,
[Y, X\=[yMQ\y^{Q}\

= y, (ax{9)b^{Q) - b^9)a^9))
=[X, Y^

For ̂ + = TT^^, we have, with y as a row vector multiplying from the left,
^ = y^(^)
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5. 4-^ Orbits for general Hamilionians

We can use the double duals to find 'Hamilton's equations' for the Lie algebra. Let J?(^)
be a function on ̂ , given as a formal series of monomials ^>n. We want to solve

Qu
^=lff-ul

for functions of ̂ . Consider .u(O) = ^'. We have

^ = [H. ̂ } = H^ - ^H = (^; - ^}H
= ^7T, ^(V)ff

cf., equation (5. 3. 4). Note that this involves exponentiation of the difference between the
right and left duals, which coininute, so that one can exponentiate them separately, then
multiply the results together.

5. 4-2 Coadjoint orbits

For calculating the coadjoint orbits, or effectively what is the same, to calculate the
exponential of the adjoint representation, the matrices TT are sufficient. Denote the matrices
of the adjoint representation in the basis ^ by <fi. Define TT to be the matrix of the group

element g given by exponentiating the adjoint representation. Then we have,

5. 4. 2. 1 Theorem. The expoiiential of the adjoint representation, g(A, ̂ ) is given by the
relation

^(A,0

i. e.,

7T*

^. ==7T-lr

Proof: Start with

9^j =^9 = 7i^j^9

for some matrix 7. We know that such exists, since

7^^ = 9^]9~^ = ^(A, adQ(^)

On the other hand

7w^5 = 7w^^

so that 7^. ^ = ^;. Or,
7^7r^^ = -"'J<^

i. e., TT* = 7t7T^' and the result follows upon taking transposes.
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5. 5 VOLTERRA PRODUCTS ON ENVELOPING ALGEBRAS

Using the double dual representation, we have the form of the product ̂ [{1+vX^ acting
on the enveloping algebra as

[11(1+^')] ̂ "
and similarly for acting on a formal series as in § IV. One can consider limit theorems for
increments by suitably scaling the Xj. For example, if there are dilation automorphisms
of the Lie algebra, then these can be Implemented and then a limit of the corresponding
product taken.

VI. Example of representations on enveloping algebras

Consider the 3-step nilpotent Lie algebra (cf. [9]) generated by the operators dfdx and
X2/2, acting on smooth functions f(x). Identifying these two operators as ̂ 4 and ^
respectively, we can formulate the corresponding abstract Lie algebra with commutation
relations

[^4, 6]=^, [^4^2]=^

with other commutators (among the basis elements) zero. A matrix realization is given by

X = a^i + ,5^ + 7^3 + 6^ =

. O 6 0 a'
0 Q S P
0007

. 0000.

with corresponding Jordan map, cf. (4. 1),

 

l=^lV4, ^2=^2^4, ^3=^3^4, ^=^1^2+^2^

At this point one can compute directly with matrices. Calculate $r(A, B, C, D; $) as the
product of exponentials of the corresponding matrices ^, as follows

9=

'1 D D2/2 A-
0 1 D B
0 0

. 0 0

A direct exponentiation of X gives

1

0

c

1

'1 8 <52/2 62-f/6+6?/2+a
0 1 6 <?7/2+ ,3
001 7

.000 1

which yields the coordinates of the second kind directly:

A^a+^S+^82, B=f3+^^  '=7, D=8

II

*1
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As well, one can calculate with the adjoint representation. Or one can compare -Yg with g
and use the splitting lemma. The resulting dual representations are given by the following
table

^1
^2
^3
^

t

QA
QB
9c
9o + BQA +  QB

Thus the TT matrices are given by

7T' =

9A
QB + DQA
QcJrD9BJr{D2WA
QD

1

D

0

1

£»2/2 D 1 0
0 001

7T =

yi
V2
ys
y4 +yi<92 +y2 ^3

VII. Concluding remarks

This approach gives a theoretical basis for expUcit computation of representations of Lie
algebras and Lie groups. At the same time, the operator calciilus presented in this paper
iswell-suited for for symbolic computations. Besides applications in control theory, we are
employing these methods in probability theory and stocha^tic analysis.
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