Canonical Bases for the Birman-Wenzl Algebra

Susanna Fishel

Abstract

In this paper, which is a summary of work with Grojnowski [FG], we construct canonical bases for the Birman-Wenzl algebra $B W_{n}$, the q analogue of the Brauer centralizer algebra, and so define left, right and two sided cells. We describe these objects combinatorially (generalizing the Robinson-Schensted algorithm for the symmetric group) and show that each left cell carries an irreducible representation of $B W_{n}$. In particular, we obtain canonical bases for each representation, defined over Z. As a side effect of our techniques we give a particularly simple description of the representations of $B W_{n}$, which seems to be new. This description is independent of the results on the bases.

Résumé

Dans ce travail, nous construisons des bases de Kazhdan-Lusztig pour l'algèbre de Birman-Wenzl $B W_{n}$, et nous définissons ainsi des cellules gauches, droites, et bilatères. Nous donnons une description combinatoire de ces objets, au moyen d'une généralisation de l'algorithme de Robinson-Schensted (pour le groupe symétrique) et nous montrons que chaque cellule gauche est le support d'une représentation irréductible de $B W_{n}$. En particulier nous obtenons pour chaque représentation des bases canoniques, définies sur Z.

1 Introduction

In the second section of this extended abstract, we define Brauer diagrams and statistics $l(d)$ and $h(d)$ on Brauer diagrams, tangles, and the Birman-Wenzl algebra $B W_{n}$. Also in the second section we define a standard basis for $B W_{n}$ and an involution on $B W_{n}$. In the third section, we define the Kazhdan-Lusztig basis for $B W_{n}$. In Section 4 we define left, right, and two-sided cells, obtain the irreducible representations and characterize these irreducibles, and in Section 5 we describe a Schensted algorithm which characterizes them combinatorially. For full proofs, see [FG].

2 The Birman-Wenzl Algebra

2.1 Brauer diagrams

Let F be a finite set and R a ring. We write $R F$ for the free R-module with basis F; so an element of $R F$ is a map from F to R, usually denoted $\sum_{f \in F} n_{f} f$.

If $n \in \mathbf{N}$, write $2 n!!=1 \cdot 3 \cdot 5 \cdots(2 n-1)$; and if S is a set, write $|S|$ for its cardinality.

A "Brauer diagram on n letters" is a partition of the set $\{1, \ldots, 2 n\}$ into two element subsets. Write $B=B_{n}$ for the set of Brauer diagrams, so $|B|=2 n!!$. If $d \in B$, we represent d by a diagram in the plane where there are n dots

numbered $1, \ldots, n$ in the top row; n dots numbered $2 n, \ldots, n+1$ in the bottom row, and the vertex i is joined to the vertex j if $\{i, j\} \in d$. We can draw this picture so two edges intersect at most once, there are no self-intersections, at most two edges intersect at any point, the only critical points of the functions representing the edges are the \max (resp. min) of horizontal edges, etc. Call such a diagram nice.

If $d \in B$, write $\ell(d)$ for the number of pairs $\{i, j\},\{k, l\}$ in d such that $i<k<j<l$. In our nice diagram representing d, this is just the number of crossings of edges.

Also for $d \in B$, write $h(d)$ for the number of pairs $\{i, j\}$ in d with $i \leq n$ and $j \leq n$. This is just the number of horizontal edges in the top row of the diagram of d; clearly this is also the number of horizontal edges in the bottom row. The symmetric group on n letters, S_{n}, is isomorphic to the elements of $\left\{d \in B_{n} \mid h(d)=0\right\}$.

2.2 Tangles

A "tangle on n letters" is an equivalence class of certain pictures in the plane with $2 n$ marked vertices $1, \ldots, 2 n\left[\mathrm{Ka}\right.$. Denote \mathcal{T}_{n} for the set of n-tangles. A picture t in the plane with lines between the vertices $1, \ldots, 2 n$ (arranged as in a Brauer diagram), with over and undercrossings indicated and with some number of closed loops, represents a tangle t. If two such pictures differ only in the neighborhood of a crossing, where they are respectively of the form

RII

RIII

(or any diagram obtained by rotating these), then they represent the same element of \mathcal{T}_{n}; and the set of such pictures mod the equivalence relation generated by these two "Reidemeister moves" is \mathcal{T}_{n}.

If $t_{1}, t_{2} \in \mathcal{T}_{n}$, then we define $t_{1} t_{2}$ to be the (equivalence class) of the tangle obtained by concatenating t_{1} and t_{2} (place t_{1} above t_{2} and join the dots). With this product, \mathcal{T}_{n} is a monoid.

Let x, q, and r be indeterminants and let \mathcal{A} be the ring

$$
\mathcal{A}=\mathrm{Z}\left[r, r^{-1}, q, q^{-1}, x\right] /\left((1-x)\left(q-q^{-1}\right)+\left(r-r^{-1}\right)\right)
$$

and $\mathcal{A}^{\prime}=\mathrm{Z}[x]$. Write $\widetilde{B W V}_{n}$ for the quotient of $\mathcal{A} \mathcal{T}_{n}$ by the relations generated by

Q1

Q3

Q4

Here, by Q1 we mean that if t is a tangle with some crossing which looks like

and t^{\prime} (resp. $t^{\prime \prime}, t^{\prime \prime \prime}$) represents the same tangle with this crossing modified to

(resp.

then $t=t^{\prime}+\left(q-q^{-1}\right) t^{\prime \prime}-\left(q-q^{-1}\right) t^{\prime \prime}$ in $\widetilde{B F_{n}^{\prime}}$. (These relations really do descend to \mathcal{T}_{n}). Similarly for Q2-Q4.

For example,

$$
0=p+\left(q-q^{-1}\right) 0 \quad-\left(q-q^{-1}\right)
$$

whence $\left(r-r^{-1}\right)=\left(q-q^{-1}\right)(x-1)$ by Q2,Q3, and Q4.
Define elements $T_{s_{i}}, T_{s_{i}}^{-1}$, and $T_{e_{i}}$ in \mathcal{T}_{n} by
$T_{s_{i}}=\underbrace{i}_{\cdots}$
$T_{s_{i}}^{-1}=\left.\right|_{\cdots} ^{\mathrm{i}} \mathrm{i}+1$
$\left.T_{e_{i}}=\ldots\right]_{\cdots}^{i}$

Define $B W=B W_{n}$ to be the submonoid of $\widetilde{B W}_{n}$ generated by $T_{s_{i}}, T_{s_{i}}^{-1}, T_{e_{i}}$ for $1 \leq i<n$. This is a \mathcal{A}-algebra, the "Birman-Wenzl" algebra, and may be defined explicitly in terms of these generators and some relations. (See [BW]).

If $d \in B_{n}, T_{d}$ is the picture obtained from a nice diagram for d by requiring $\{i, j\}$ to pass over $\{k, l\}$ if $i<k<j<l .\left\{T_{d}\right\}_{d \in B_{n}}$ is a basis for $B W_{n}$ [HR], which we call the standard basis.

If t is a picture representing a tangle, write \bar{t} for the picture obtained from t by interchanging every over and under crossing. It is clear that - respects Reidemeister moves, and so this operation on pictures descends to tangles.

Also write - : $-\mathcal{-} \rightarrow-\mathcal{f}$ for the Z -linear ring homomorphism defined by

$$
r \mapsto r^{-1}, \quad q \mapsto q^{-1}, \quad x \mapsto x
$$

This is an involution.
It is clear from Q1-Q4 that the \mathcal{A}-antilinear involution $-: \mathcal{A} \mathcal{T}_{n} \rightarrow \mathcal{A} \mathcal{T}_{n}$, $\sum n_{t} t \mapsto \sum \overline{n_{t}} \bar{t}$ descends to an involution - : $B W W_{n} \rightarrow B W W_{n}$. Further, $\overline{t_{1} t_{2}}=$ $t_{1} t_{2}$ whenever we can concatenate tangles t_{1} and t_{2}; i.e. - is an algebra homomorphism whenever this makes sense.

Observe that if d is a Brauer diagram,

$$
\begin{equation*}
\overline{T_{d}}=T_{d}+\sum_{d^{\prime}: \ell\left(d^{\prime}\right)<\ell(d)} r_{d^{\prime} d} T_{d^{\prime}} \tag{1}
\end{equation*}
$$

for certain $r_{d^{\prime} d} \in \mathrm{Z}\left[\left(q-q^{-1}\right)\right]$. This follows from Q1 by a straightforward induction.

3 Canonical Bases

We use the following lemma of [KL] to define our canonical basis for $B W_{n}$.
Lemma 1 Let M be a free $\mathrm{Z}\left[q, q^{-1}\right]$-module, with a given basis $\left(e_{i}\right)_{i \in I}$, I some index set. Suppose also given a semilinear involution ${ }^{-}: M \rightarrow M$ such that $\overline{q m}=q^{-1} \bar{m}, \overline{m+m^{\prime}}=\bar{m}+\bar{m}^{\prime}$, and a partial order \leq on I such that $\{j \mid j \leq i\}$ is finite and

$$
\overline{e_{i}}=\sum_{j \leq i} r_{j i} e_{j}, \quad \quad r_{j i} \in \mathrm{Z}\left[q, q^{-1}\right] \text { and } r_{i i}=1
$$

Then there is a unique basis $\left(b_{i}\right)_{i \in I}$ of M such that $\left.i\right) \bar{b}_{i}=b_{i}$, and

$$
\text { ii) } b_{i}=\sum_{j \leq i} P_{j i} e_{j}, \quad \text { with } P_{i i}=1, \text { and } P_{j i} \in q^{-1} Z\left[q^{-1}\right] \text { if } j<i
$$

This basis is called the "canonical" (or Kazhdan-Lusztig) basis of M.
We apply the lemma to $B W_{n}$, and to the involution ${ }^{-}$, the standard basis T_{d}, and the partial order $d^{\prime} \leq d$ if $\ell\left(d^{\prime}\right)<\ell(d)$ or $d=d^{\prime}$. We may do this by (1). We denote the new basis by C_{d}

Observe that the polynomial $P_{d^{\prime} d}$ are in $\mathbf{Z}\left[q^{-1}\right]$, that is they do not depend on r and x. For example, $C_{e_{i}}=T_{e_{i}}, C_{1}=1, C_{s_{i}}=T_{s_{i}}+q^{-1}-q^{-1} T_{e_{i}}, 1 \leq i<n$.

4 Cells

Let $h_{x y}$ be the structure constants for multiplication in $B W_{n}$ with respect to the canonical basis; i.e.

$$
C_{x} C_{y}=\sum_{z \in B_{n}} h_{x y z} C z \quad \text { for } x, y \in B_{n}
$$

Let \leq_{L} (resp. \leq_{R}) be the preorder on B_{n} generated by the relations $z \leq_{L} y$ (resp. $z \leq_{R} x$) if there exists an $x \in B_{n}$ (resp. $y \in B_{n}$) such that $h_{x y z} \neq 0$. Let $\leq_{L R}$ be the preorder generated by the relation $x \leq_{L R} y$ if $x \leq_{L} y$ or $x \leq_{R} y$. Write $x \sim_{L} y$ if $x \leq_{L} y$ and $y \leq_{L} x$; similarly for $\sim_{R}, \sim_{L R}$. The equivalence classes for $\sim_{L}, \sim_{R}, \sim_{L R}$ are called respectively left, right or two sided cells. Observe that if $x \sim_{L} y$, then $h(x)=h(y)$. If π_{1} and π_{2} are elements of S_{k}, write $\pi_{1} \sim_{L_{s}} \pi_{2}$ if π_{1} is left equivalent to π_{2} as in [KL]. It turns out that if x and y are elements of B_{n} and $h(x)=h(y)=0$, so that x and y may be considered elements of S_{n}, then $x \sim_{L} y$ if and only if $x \sim_{L_{s}} y$.

If Γ is a left cell in B_{n}, then if we set

$$
F^{\Gamma}=\mathcal{A}\left\{C_{x} \mid x \leq_{L} \Gamma\right\}
$$

F^{Γ} is a left ideal in $B W_{n}$. Write $F^{<\Gamma}$ for the sum of the $F^{\Gamma^{\prime}}$ such that $\Gamma^{\prime} \leq_{L} \Gamma$, $\Gamma \neq \Gamma^{\prime}$; and write $g r^{\Gamma}=F^{\Gamma} / F^{<\Gamma}$. This is a left $B W_{n}$ module. Similarly, for Γ a right or two sided cell, the analogously defined F^{Γ} are right (resp. two sided ideals), and $g r^{\Gamma}$ is a right module (resp. $B W_{n} \times B W_{n}^{\circ}$ module).

Our main result is an explicit description of the equivalence classes \sim_{L}, and hence an explicit construction of bases in the irreducible modules for $B W_{n}$ with structure constants in \mathcal{A}. In order to describe these classes, we need to decompose tangles into dangles and elements of the symmetric group.

A "flat (n, k) dangle" is a subset of $\{1, \ldots, n\}$ of size $2 k$, which is partitioned into k 2-element subsets. Write $D^{k}=D_{n}^{k}$ for the set of flat (n, k)-dangles, so $\left|D_{n}^{k}\right|=\binom{n}{2 k} k!!$. If $d \in D^{k}$, we can represent d by a diagram in the plane

such that i is joined to j if $\{i, j\} \in d$ and there is a vertical line from i if $i \notin d$. We can insist that two edges intersect at most once, and no vertical edges intersect, etc. Elements of D_{n}^{k} represent the tops of Brauer diagrams. Define ${ }^{\circ} D_{n}^{k}$ to be D_{n}^{k}, but draw the pictures dangling upward rather than down,
and label the vertices $2 n, \ldots, n+1$. These represent the bottom part of Brauer diagrams.

We define a map $D_{n}^{k} \times S_{n-2 k} \times{ }^{\circ} D_{n}^{k} \rightarrow B_{n}$, by concatenation, e.g.

Note that $D^{k} \times S_{n-2 k} \times{ }^{\circ} D^{k}$ bijects to $\left\{d \in B_{n} \mid h(d)=k\right\}$. Write $d \mapsto$ $(\tau(d), \pi(d), \beta(d))$ for the inverse map.
Theorem 1 We have $d \sim_{L} d^{\prime}$ if and only if $h(d)=h\left(d^{\prime}\right), \beta(d)=\beta\left(d^{\prime}\right)$, and $\pi(d) \sim_{L_{s}} \pi\left(d^{\prime}\right)$ in $S_{n-2 h(d)}$. Further, if Γ and Γ^{\prime} are two left cells in the same two sided cell, then $g r^{\Gamma}$ is isomorphic to $g r^{\Gamma^{\prime}}$ as a $B W_{n}$-module with basis. Finally, let F be a field, $\alpha: \mathcal{A} \rightarrow \mathcal{F}$ a homomorphism of rings, and suppose $B W_{n} \otimes_{\mathcal{A}} F$ is semisimple. Then each representation $g r^{\Gamma} \otimes_{\mathcal{A}} F$ is irreducible.
In the course of the proof of Theorem 1, we observed the following simple result, which seems to be new.

Let V be an irreducible representation of $S_{n-2 k}$. Then one can give $A D_{n}^{k} \otimes V$ the structure of an irreducible representation of $B W_{n}$ in a unique way. Further, representations constructed in this way are distinct, and exhaust the representations of $B W_{n}$. For the proof of these results, see [FG].

5 Combinatorial Description of the Cells

We now describe an algorithm, due to Sundaram [S], for bijecting Brauer diagrams B_{n} onto pairs (p, q) of up-down paths of length n in Young's lattice. The paths p and q begin at the same shape, end in the empty partition, and each partition differs from its predecessor by one square. In this language, if $d_{1}, d_{2} \in B_{n}$ and $d_{1} \rightarrow\left(p_{1}, q_{1}\right)$ and $d_{2} \rightarrow\left(p_{2}, q_{2}\right)$, then the first sentence of Theorem 1 translates to $d_{1} \sim_{L} d_{2}$ if and only if $p_{1}=p_{2}$. This is a generalization of the relationship between tableaux and cells for the symmetric group. $[\mathrm{KL}],[\mathrm{K}]$.

Throughout this section, let

Here are the steps, for $d \in B_{n}$ with $h(d)=k$.

1. In this section, number the top row 1 to n and the bottom row from $n+1$ to $2 n$, both from left to right.

2. Let $\pi=\pi(d)$ be the permutation defined by the vertical edges of d, as in Section 4. Define two $2 \times k$ arrays L_{τ} and L_{β}. For each horizontal edge in the top row $\{i, j\}, 1 \leq i<j \leq n$, add the column

$$
\binom{j}{i}
$$

to L_{τ}. For each horizontal edge in the bottom row $\{i, j\}, n+1 \leq i<j \leq$ $2 n$, add the same column to L_{β}

$$
L_{\tau}\left(d_{1}\right)=\binom{5}{4}, L_{\mathcal{\beta}}\left(d_{1}\right)=\binom{9}{7}
$$

3. Use the Robinson-Schensted correspondence to obtain a pair of tableaux (P, Q) from π. The labels in P will be from the bottom row of D and the labels in Q will be from the top row of d.

$$
\left(\mathrm{P}\left(\mathrm{~d}_{1}\right), \mathrm{Q}\left(\mathrm{~d}_{1}\right)=\left(\left.\begin{array}{|l|l|}
\hline \hline & 11 \\
\hline 10 & 12 \\
\hline & 1 \\
\hline
\end{array} \right\rvert\,\right.\right.
$$

4. U-sing $P(d)$ and L_{B}, we proceed inductively as follows to build a path $p(d)=\left(\lambda^{n}, \lambda^{n-1}, \ldots, \lambda^{0}\right)$ in Young's lattice. Let $P_{n}=P(d)$ and let λ^{n} be the shape of $P(d)$. Suppose we have the standard Young tableau P_{j} of shape λ^{j} at the j th step. If $n+j$ is a label of a square in P_{j}, delete that square. We now have the standard Young tableau P_{j-1} of shape λ^{j-1}. If $n+j$ is not a label in P_{j}, then it appears in the top row of $L_{3}(d)$, in a column

$$
\binom{j}{i}
$$

with $i<j$. In this case, column insert $n+i$ into P_{j} to obtain P_{j-1} of shape λ^{j-1}.
i

| \begin{tabular}{l\|l|}
\hline
\end{tabular}
8 11 10 12

5
4
3
2
1
0
7
P_{i}

8	11
10	

8

8

78

λ^{i}
$(2,2)$
$(2,1)$
$(1,1)$
(1)
(2)
(1)
()
5. Using $Q(d)$ and $L_{\tau}(d)$, follow the same procedure as above, replacing P with Q, β with $\tau, n+j$ with j, and $n+i$ with i.

$$
q\left(d_{1}\right)=((2,2),(2,1),(2,1,1),(2,1),(2),(1), \emptyset)
$$

If

then,

$$
p\left(d_{2}\right)=p\left(d_{1}\right)
$$

$$
\begin{aligned}
& q\left(d_{2}\right)=((2,2),(2,1),(1,1),(2),(1), \varnothing) \\
& p\left(d_{3}\right)=((3,1),(3),(2),(1),(2),(1), \emptyset) \\
& q\left(d_{3}\right)=((3,1),(2,1),(2,1,1),(2,1),(1,1),(1), \varnothing)
\end{aligned}
$$

So we see that $d_{1} \sim_{L} d_{2}$ and that d_{3} is in a different two-sided cell from d_{1} and d_{2}.

References

[BW] J. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math Soc.313(1989), 249-273.
[FG] S. Fishel and I. Grojnowski, Canonical bases for the Brauer centralizer algebra, Math. Res. Lett. 2 (1995), 15-26.
[HR] T. Halverson and A. Ram, Characters of algebras containing a Jones basic construction, to appear, Adv. in Math.
[Ka] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math Soc. 318 (1990) 417-471.
[KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
[K] D. E. Knuth, The Art of Computer Programming, volume 3, AddisonWesley, Reading, MA, 1975.
$[\mathrm{S}] \quad$ S. Sundaram, On the combinatorics of representations of $\operatorname{Sp}(2 n, \mathrm{C})$, Thesis, MIIT (1986).
[W] H. Wenzl, On the structure of Brauer's centralizer algebras, Ann. of Math,128 (1988),173-183.

