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Abstract

In this paper, which is a summary of work with Grojaowski [FGj,
we construct canonical bases for the Birmaa-Wenzl algebra BWn, the q-
analogue of the Brauer centralizer algebra, and so define left, right aad two
sided cells. We describe these objects combmatorially (generalizing the
Robinson-Schensted algorithm for the symmetric group) and show that
each left cell carries an irreducible representation of BWn. In particular,
we obtain canonical bases for each representation, defined over 2. As a
side effect of our techniques we give a particularly simple description of
the representations of BWn, which seems to be new. This description is
independent of the results on the bases.

Resume

Dans ce travail, aous construisons des bases de Kazhdaa-Lusztig pour
1'algebre de Birman-Weiizl BWn, et ROVS definissons ainsi des cellules
gauches, droites, et bilatferes. Nous doxinons une description coinbiaa-
toire de ces objets, au moyen d'une generalisation de 1'algorithme de
Robmson-Sciiensted (pour Ie groups symetrique) et nous moatrons que
chaque cellule gauche est Ie support d'uae representation irreductible de
BWn. En particulier nous obtenons pour chaque representation des bases
canoniques, definies sur Z.

1 Introduction

In the second section of this extended abstract, we define Brauer diagrams and
statistics l(d] and h(d) on Brauer diagrams, tangles, and the Birman-Wenzl
algebra BWn. Also in the second section we define a standard basis for BWn
and an involution on BWn. In the third section, we define the Kazhdan-Lusztig
basis for BWn. In Section 4 we define left, right, and frwo-sided cells, obtain the
irreducible representations and characterize these uredudbles, and in Section
5 we describe a Schensted algorithm which characterizes them combinatorially.
For fiiU proofs, see [FG].

2 The Birinan-Wenzl Algebra

2. 1 Brauer diagrams

Let F be a finite set and R a ring. We write RF for the free JZ-module with
basis F; so an element of RF is a map from F to ̂ i, usually denoted ̂  ̂ g^. n//.
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If n 6 N, write 2n!! = 1 -3 . 5---(2n - 1); and if 5 is a set, write |5| for its
cardinality.

A "Brauer diagram on n letters'' is a partition of the set {1,... , 2n} inio two
element subsets. Write B = Bn for the set of Brauer diagrams, so |B| = 2n".
Ifd 6 5, we represent d by a. diagram in the plane where there are n dots

numbered 1,... , n in the top row; n dots numbered 2n,.. ., n+l in the bottom
row, and the vertex i is joined to the vertex j if {i, j}   d. We can draw this
picture so two edges intersect at most once, there are no self-intersections, at
most two edges intersect at any point, the only critical points of the functions
representing the edges are the max (resp. min) of horizontal edges, etc. Call
such a diagram nice.

If d 6 B, write i{d) for the number of pairs {i, j}, {k, l} in d such that
i <k <j <l. In our nice diagram representing d, this is just the number of
crossmgs of edges.

Also for d e B, write h(d) for the number of pairs {i, j} in d with t" ^ n
and j $ n. This is just the number of horizontal edges in the top row of the
diagram of d; clearly this is also tlie number of horizontal edges in the bottom
row. The symmetric group on n letters, 5n, is isomorphic to the elements of
{d   Bn I /i(d) = 0}.

2. 2 Tangles

A "tangle on n letters" is an equivalence class of certain pictures in the plane
with 2n marked vertices 1,... , 2n [Ka]. Denote 7n for the set of n-tangles. A
picture t in the plane with Imes between the vertices 1,... , 2n (arranged as
in a Brauer diagram), with over and undercrossings indicated and with some
number of closed loops, represents a tangle t. If two such pictures differ only in
the neighborhood of a crossing, where they are respectively of the fonn

RII RIII

x-x x x
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(or any diagram obtained by rotating these), then they represent the same ele-
ment ofTn; and the set of such pictures mod the equivalence relation generated
by these two "Reidemeister moves" is 7n.

If ti, t2 e 7n, then we define ti^ to be the (equivalence class) of the tangle
obtained by concatenating t^ and t^ (place fi above (3 and join che dots). With
this product, 7n is a monoid.

Let x, q, and r be indeterminants and let A be the ring

A = Z[r, r-\q, q-\x}/((l - x)(q - g-1) + (r - r-1))

and A' = Z[3:j. Write BWn. for the quotient of AT n by the relations generated
by

Ql x-x +(q-q-1 ) 11- (q-q-1 )-I
^^

Q2 C<--'I
Q3 0<-
Q4 0 °

Here, by Q I we mean that if ̂  is a tangie with some crossing which looks
like

^
y

and f (resp. t//, t/") represents the same tangle with this crossmg modified to

\^ (resp. 11
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then t = t' +(q- q-i)t" - (q - q~l)t" in B\Vn. (These relations really do
descend to 7n). Similarly for Q2-Q4.

For example.

?-}?. (q-q-^ -(q-q-})^
whence (r - r-1) = (g - q~l}(x - 1) by Q2.Q3, and Q4.

Define elements T,,, T^1, and Te. in 7n by

i i+1

I- I X I - I

T.-l=

i i+1

I- IXI-1

T<.= I
i i+1

Define BW = BWn to be the submonoid of BWn generated by T, ;, T,7l, Te, for
1 ^z < n. This is a A-algebra, the "Birman-Wenzl" algebra, and may be
defined explicitly m terms of these generators and some relations. (See [BW]).

Ifd 6 Bn, Tj is the picture obtained from a nice diagram for d by requiring
{i, j} to pass over {k, l} iii <k <j <l. {Td}deBn is a basis for BW^ [HR],
which we call the standard basis.

If t is a picture representing a tangle, write t for the picture obtained from
t by interchanging every over and under crossmg. It is clear that ~ respects
Reidemeister moves, ajid so this operation on pictures descends to tangles.
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Also wrice - : A ->-.4 for the Z-linear ring homomorpliisni defined by

r i->- r-I q^q
-1 X.

This is an involution.
It is clear from Q1-Q4 that the A-antiiinear involution ~ : AT n ->. AT n,

^nft i-^- ̂ ritt descends to an mvolution - : BW^ -^ BWn. Further, t^t-z =
tits whenever we can concatenate tangles ti and t-j; i. e. - is an algebra homo-
morphism whenever this makes sense.

Observe that if d is a Brauer diagram,

Td =Td+ y, Td'dTd'
d':t{d')<t{d)

(1)

for certain r^'d   Z[(g - g-l)]. This follows from Ql by a straightforward
induction.

3 Canonical Bases

We use the following lemma of [KL] to define our canonical basis for BWn.

Lenuna 1 Let M be a free 7.[q, q~l}-module, with a given basis (e«)i's/, I some
index set. Suppose also given a semilinear involution ~ -. M -> M such that
qfn = q~lm, m +m' == m + m', and a partial order ̂  on I such that [j \ j -^i}
is finite and

e-, =^r,. e,,
3^i

rji   Z[<7, g-1] <27!(i r,. = 1.

Then there is a unique basis (&i)te/ o/M such that i) 6; = ii, a"^

ii) 6, = ^ PjiCj, with Pa = 1, and Pj, 6 ?-IZ[<7-X] if j < i.
]^.'

This basis is called the "canonical" (or Kazhdan-Lusztig) basis of M.

We apply the lemma to BWn, and to the involution -, the standard basis
Td, and the partial order d' ̂  d if l{d'} < t[d') OT d = d'. We may do this by
(1). We denote the new basis by Cd

Observe that the polynomial P^'d are in Z[g-l], that is they do not depend
on r and x. For example, C<, = T<;, Ci = 1, C,, = T,, +g-1 -g~lT<, ; , 1^z <n.
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4 Cells

Let h^y^ be the structure constants for multiplication in B\\'n with respect to
the canonical basis; i. e.

CsCy= ^ Ai^C"; for3:, y Bn.
.:es»

Let <, L (resp. <. R) be the preorder on Bn generated by the relations z <L y
(resp~ z <:RX) if there exists an a: 6 Bn (resp. y   Bn} such that hyy^ -^ 0. Let
<LR be the preorder generated by the relation x <, LR y'^x <, L y o^ x <-R V-
Wnte x -LV'^X <:L'y and y ^L x; similarly for ~R, ~LR- The equivalence
classes for-~^, ~fi, ~Lfi are called respectively left, right or two sided cells.
Observe that if x ~£ y, then h(x) = /i(y). If TTI and ̂  are elements of Sk, write
TTi ~£, 7T2 if TTl is left equivalent to ̂  as in [KL]. It turns out that if x and
y are elements of -Bn and A(3:) = /i(y) = 0, so that x a.ad y may be considered
elements of Sn, then 3: ~L y if and only if x ~i, y y.

If F is a left cell in Bn, then if we set

Fr = A{(7, | z ^j. F}

F1' is a left ideal in BWn. Write F<r for the sum of the Fr such that F' <. L F_,
r /-r; and write ffrr =Fr/F<r. This is a left BFV^ module Similarly, for F
a right'or two sided ceU, the analogously de&ied .F'f are right (resp. two sided
ideals), and grr is a right module (resp. BWr, x BW^ modiile).

Our main result is" an explicit description of the equivalence classes ~£,
and hence an explicit construction of bases in the irreducible modules for BW^
with structure constants in A. In order to describe these classes, we need to
decompose tangles into dangles and elements of the symmetric group.

A "flat (n, k) dangle" is a subset of {1,. .. , n} of size 2k, which is partitioned
into k 2-element subsets. Write Dk = Dkn for the set of flat (n, fe)-dangles, so
\D<^[ = {^)kl\. If d G D&, we can represent d by a diagram in the plane

such that i is joined to j if {i. j}   d and there is a vertical line from i if
z ^ d. We can insist that two edges intersect at most once. and no vertical
edges intersect, etc. Elements of Dhn represent the tops of Brauer diagrams.
Define °£>^ to be D^, but draw the pictures dangling upward rather than down,
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and label the vertices 2n. ... , n- 1. These represent the bottom part of Brauer
diagrams.

We define a map D^ x Sn-2k x °-D^ -^ 5n, by concatenation, e.g.

^T( 1 /
./

^ I

Note that Dk x Sn-2k x aDk bijects to {d 6
(r(d), 5r(d), /3(cf)) for the inverse map.

Bn | h(d) = &}. Write d ^

Theorem 1 We. have d ~£ d' if and only if h(d) = h(d'}, 0{d) = 0{d'), and
7r(d) ~i. g 7r(rf/) t'n 5'n_2h(d). Further, if F and F' are two left cells in the same
two sided cell, then grp is isomorphic to grr as a BWn-madule with basis.
Finally, let F be a field, a: A-> ^ a homomorphism of rings, and suppose
BWn <S>A F ts semisimple. Then each representation grr <S>^ F is irreducible.

In the course of the proof of Theorem 1, we observed the following simple result,
which seems to be new.

Let V be an irreducible representation of5n-2fc- Then one can give AD^'8>V
the structure of an irreducible representation of BWn in a unique way. Further,
representations constructed in this way are distinct, and exhaust the represen-
tations of BW^. For the proof of these results, see [FG].

5 Combinatorial Description of the Cells

We now describe an algorithm, due to Sundaram [S], for bijecting Brauer di-
agrains Bn onto pairs (p, q) of up-down paths of length n in Young's lattice.
The paths p and q begin at the same shape, end m the empty partition, and
each partition differs from its predecessor by one square. In this language, if
di, ds   Bn and di -+ (pi, qi) and ̂ 2 -^ (p'i; '72), then the first sentence of The-
orem 1 translates to <fi ~^, d-i if and only if pi = p-;- This is a generalization of
the relationship between tableaux and cells for the symmetric group. [KL], [Kj.

Throughout this section, let
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Here are the steps, for d e Bn with h(d) = k.

1. In this section, number the top row 1 to n and the bottom row from n-1
to 2n, both from left to right.

d =
1

10 11 12

2. Let TT = 7r(d) be the permutation defined by the vertical edges of d, as in
Section 4. Define two 2 x fc arrays Lr and Lg. For each horizontal edge
in the top row {i, j}, l<, i < j <. n, add the column

to Lr. For each horizontal edge in the bottom row {i. j}, n+l<. i < j <,
2n, add the same column to Lg

£, (d0=^), ^(di)=^)
1 2 3

3r(dp=

8 10 II 12

3. Use the Robinson-Schensted correspondence to obtain a pair of tableaux
(P, Q) from TT. The labels in P will be from the bottom row of D and the
labels in Q will be from the top row of d.

(P(dp, Q(dp = ( ICf
II
1^
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4. Using P{d) and Lg, we proceed inductively as follows to build a path
p(d) = (An, An-l,..., A°) in Young's lattice. Let Pa = P{d) and let A"
be the shape of P(d). Suppose we have the standard Young tableau Pj of
shape \j at the jth step. Ifn -j is a label of a square in Pj, delete that
square. We now have the standard Young tableau P;-i of shape \j~'i. If
n+ j is not a label in Pj, then it appears Ln the top row of £.^(d), in a
column

J

with i < j. In this case, column insert n +i into Pj to obtain Pj-i of
shape \j~1.

0

8

101
u

121
|8
licl

X' (2, 2) (2, 1) (1, 1) (D (2) (D 0

5. Using Q(d) and £r(d), follow the same procedure as above, replacing P
with Q, 0 with r, n+j with j, and n + i with t.

q{d,) = ((2, 2), (2, 1), (2, 1, 1), (2, 1), (2), (1), 0)

If

x and

d3 =

then,

p(di} = PW
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q(d-i) = ((2, 2), (2. 1). (1. 1), (2), (I), (3)
p ) = ((3, I), (3), (2), (1), (2), (1), 0)
q(d,) = ((3, 1), (2. 1), (2, 1, 1), (2, 1), (1, 1), (l), fl)

So we see thai di ~L d-z and that dy is in a different two-sided cell from di and
da.
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