Canonical Bases for the Birman-Wenzl Algebra

Susanna Fishel

Abstract

In this paper, which is a summary of work with Grojnowski [FG], we construct canonical bases for the Birman-Wenzl algebra BW_n , the qanalogue of the Brauer centralizer algebra, and so define left, right and two sided cells. We describe these objects combinatorially (generalizing the Robinson-Schensted algorithm for the symmetric group) and show that each left cell carries an irreducible representation of BW_n . In particular, we obtain canonical bases for each representation, defined over Z. As a side effect of our techniques we give a particularly simple description of the representations of BW_n , which seems to be new. This description is independent of the results on the bases.

Résumé

Dans ce travail, nous construisons des bases de Kazhdan-Lusztig pour l'algèbre de Birman-Wenzl BW_n , et nous définissons ainsi des cellules gauches, droites, et bilatères. Nous donnons une description combinatoire de ces objets, au moyen d'une généralisation de l'algorithme de Robinson-Schensted (pour le groupe symétrique) et nous montrons que chaque cellule gauche est le support d'une représentation irréductible de BW_n . En particulier nous obtenons pour chaque représentation des bases canoniques, définies sur Z.

1 Introduction

In the second section of this extended abstract, we define Brauer diagrams and statistics l(d) and h(d) on Brauer diagrams, tangles, and the Birman-Wenzl algebra BW_n . Also in the second section we define a standard basis for BW_n and an involution on BW_n . In the third section, we define the Kazhdan-Lusztig basis for BW_n . In Section 4 we define left, right, and two-sided cells, obtain the irreducible representations and characterize these irreducibles, and in Section 5 we describe a Schensted algorithm which characterizes them combinatorially. For full proofs, see [FG].

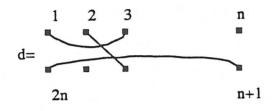
2 The Birman-Wenzl Algebra

2.1 Brauer diagrams

Let F be a finite set and R a ring. We write RF for the free R-module with basis F; so an element of RF is a map from F to R, usually denoted $\sum_{f \in F} n_f f$.

If $n \in \mathbb{N}$, write $2n!! = 1 \cdot 3 \cdot 5 \cdots (2n-1)$; and if S is a set, write |S| for its cardinality.

A "Brauer diagram on *n* letters" is a partition of the set $\{1, \ldots, 2n\}$ into two element subsets. Write $B = B_n$ for the set of Brauer diagrams, so |B| = 2n!!. If $d \in B$, we represent *d* by a diagram in the plane where there are *n* dots



numbered $1, \ldots, n$ in the top row; n dots numbered $2n, \ldots, n+1$ in the bottom row, and the vertex i is joined to the vertex j if $\{i, j\} \in d$. We can draw this picture so two edges intersect at most once, there are no self-intersections, at most two edges intersect at any point, the only critical points of the functions representing the edges are the max (resp. min) of horizontal edges, etc. Call such a diagram *nice*.

If $d \in B$, write $\ell(d)$ for the number of pairs $\{i, j\}, \{k, l\}$ in d such that i < k < j < l. In our nice diagram representing d, this is just the number of crossings of edges.

Also for $d \in B$, write h(d) for the number of pairs $\{i, j\}$ in d with $i \leq n$ and $j \leq n$. This is just the number of horizontal edges in the top row of the diagram of d; clearly this is also the number of horizontal edges in the bottom row. The symmetric group on n letters, S_n , is isomorphic to the elements of $\{d \in B_n \mid h(d) = 0\}$.

2.2 Tangles

A "tangle on *n* letters" is an equivalence class of certain pictures in the plane with 2n marked vertices $1, \ldots, 2n$ [Ka]. Denote \mathcal{T}_n for the set of *n*-tangles. A picture *t* in the plane with lines between the vertices $1, \ldots, 2n$ (arranged as in a Brauer diagram), with over and undercrossings indicated and with some number of closed loops, represents a tangle *t*. If two such pictures differ only in the neighborhood of a crossing, where they are respectively of the form

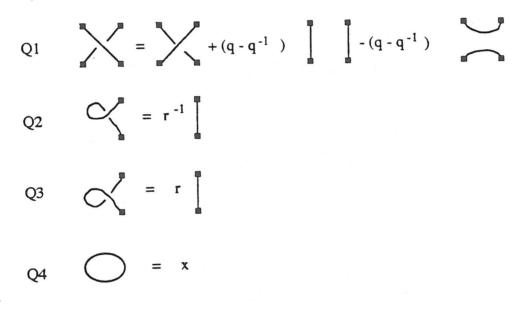
(or any diagram obtained by rotating these), then they represent the same element of \mathcal{T}_n ; and the set of such pictures mod the equivalence relation generated by these two "Reidemeister moves" is \mathcal{T}_n .

If $t_1, t_2 \in \mathcal{T}_n$, then we define t_1t_2 to be the (equivalence class) of the tangle obtained by concatenating t_1 and t_2 (place t_1 above t_2 and join the dots). With this product, \mathcal{T}_n is a monoid.

Let x, q, and r be indeterminants and let \mathcal{A} be the ring

$$\mathcal{A} = \mathbf{Z}[r, r^{-1}, q, q^{-1}, x] / ((1 - x)(q - q^{-1}) + (r - r^{-1}))$$

and $\mathcal{A}' = \mathbb{Z}[x]$. Write \widetilde{BW}_n for the quotient of \mathcal{AT}_n by the relations generated by



Here, by Q1 we mean that if t is a tangle with some crossing which looks like

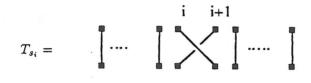
and t' (resp. t'', t''') represents the same tangle with this crossing modified to

then $t = t' + (q - q^{-1})t'' - (q - q^{-1})t''$ in $\widetilde{BW_n}$. (These relations really do descend to \mathcal{T}_n). Similarly for Q2-Q4.

For example,

$$= + (q - q^{-1}) O - (q - q^{-1})$$

whence $(r - r^{-1}) = (q - q^{-1})(x - 1)$ by Q2,Q3, and Q4. Define elements T_{s_i} , $T_{s_i}^{-1}$, and T_{e_i} in \mathcal{T}_n by



$$T_{e_i} =$$

Define $BW = BW_n$ to be the submonoid of \widetilde{BW}_n generated by $T_{s_i}, T_{s_i}^{-1}, T_{e_i}$ for $1 \leq i < n$. This is a \mathcal{A} -algebra, the "Birman-Wenzl" algebra, and may be defined explicitly in terms of these generators and some relations. (See [BW]).

If $d \in B_n$, T_d is the picture obtained from a nice diagram for d by requiring $\{i, j\}$ to pass over $\{k, l\}$ if i < k < j < l. $\{T_d\}_{d \in B_n}$ is a basis for BW_n [HR], which we call the standard basis.

If t is a picture representing a tangle, write \overline{t} for the picture obtained from t by interchanging every over and under crossing. It is clear that - respects Reidemeister moves, and so this operation on pictures descends to tangles.

Also write $\bar{}:\mathcal{A}\to\mathcal{A}$ for the Z-linear ring homomorphism defined by

$$r \mapsto r^{-1}, \quad q \mapsto q^{-1}, \quad x \mapsto x.$$

This is an involution.

It is clear from Q1-Q4 that the A-antilinear involution $\bar{}$: $\mathcal{AT}_n \to \mathcal{AT}_n$, $\sum_{t=1}^{n} n_t t \mapsto \sum_{t=1}^{n} \overline{n_t t}$ descends to an involution $\overline{} : BW_n \to BW_n$. Further, $\overline{t_1 t_2} = \overline{t_1 t_2}$ whenever we can concatenate tangles t_1 and t_2 ; i.e. $\overline{}$ is an algebra homomorphism whenever this makes sense.

Observe that if d is a Brauer diagram,

$$\overline{T_d} = T_d + \sum_{d':\ell(d') < \ell(d)} r_{d'd} T_{d'}$$
(1)

for certain $r_{d'd} \in \mathbb{Z}[(q-q^{-1})]$. This follows from Q1 by a straightforward induction.

Canonical Bases 3

We use the following lemma of [KL] to define our canonical basis for BW_n .

Lemma 1 Let M be a free $\mathbb{Z}[q,q^{-1}]$ -module, with a given basis $(e_i)_{i\in I}$, I some index set. Suppose also given a semilinear involution $\bar{}: M \to M$ such that $\overline{qm} = q^{-1}\overline{m}, \ \overline{m+m'} = \overline{m} + \overline{m'}, \ and \ a \ partial \ order \leq on \ I \ such that \ \{j \mid j \leq i\}$ is finite and

$$\bar{e_i} = \sum_{j \leq i} r_{ji} e_j,$$
 $r_{ji} \in \mathbb{Z}[q, q^{-1}] \text{ and } r_{ii} = 1.$

Then there is a unique basis $(b_i)_{i\in I}$ of M such that i) $\overline{b}_i = b_i$, and

ii)
$$b_i = \sum_{j \le i} P_{ji} e_j$$
, with $P_{ii} = 1$, and $P_{ji} \in q^{-1} \mathbb{Z}[q^{-1}]$ if $j < i$.

This basis is called the "canonical" (or Kazhdan-Lusztig) basis of M.

We apply the lemma to BW_n , and to the involution -, the standard basis T_d , and the partial order $d' \leq d$ if $\ell(d') < \ell(d)$ or d = d'. We may do this by (1). We denote the new basis by C_d

Observe that the polynomial $P_{d'd}$ are in $\mathbb{Z}[q^{-1}]$, that is they do not depend on r and x. For example, $C_{e_i} = T_{e_i}$, $C_1 = 1$, $C_{s_i} = T_{s_i} + q^{-1} - q^{-1}T_{e_i}$, $1 \le i < n$.

4 Cells

Let h_{xyz} be the structure constants for multiplication in BW_n with respect to the canonical basis; i.e.

$$C_x C_y = \sum_{z \in B_n} h_{xyz} C_z \qquad \text{for } x, y \in B_n.$$

Let \leq_L (resp. \leq_R) be the preorder on B_n generated by the relations $z \leq_L y$ (resp. $z \leq_R x$) if there exists an $x \in B_n$ (resp. $y \in B_n$) such that $h_{xyz} \neq 0$. Let \leq_{LR} be the preorder generated by the relation $x \leq_{LR} y$ if $x \leq_L y$ or $x \leq_R y$. Write $x \sim_L y$ if $x \leq_L y$ and $y \leq_L x$; similarly for \sim_R, \sim_{LR} . The equivalence classes for \sim_L , \sim_R , \sim_{LR} are called respectively left, right or two sided cells. Observe that if $x \sim_L y$, then h(x) = h(y). If π_1 and π_2 are elements of S_k , write $\pi_1 \sim_{L_S} \pi_2$ if π_1 is left equivalent to π_2 as in [KL]. It turns out that if x and y are elements of B_n and h(x) = h(y) = 0, so that x and y may be considered elements of S_n , then $x \sim_L y$ if and only if $x \sim_{L_S} y$.

If Γ is a left cell in B_n , then if we set

$$F^{\Gamma} = \mathcal{A}\{C_x \mid x \leq_L \Gamma\}$$

 F^{Γ} is a left ideal in BW_n . Write $F^{<\Gamma}$ for the sum of the $F^{\Gamma'}$ such that $\Gamma' \leq_L \Gamma$, $\Gamma \neq \Gamma'$; and write $gr^{\Gamma} = F^{\Gamma}/F^{<\Gamma}$. This is a left BW_n module. Similarly, for Γ a right or two sided cell, the analogously defined F^{Γ} are right (resp. two sided ideals), and gr^{Γ} is a right module (resp. $BW_n \times BW_n^{\circ}$ module).

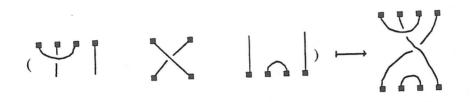
Our main result is an explicit description of the equivalence classes \sim_L , and hence an explicit construction of bases in the irreducible modules for BW_n with structure constants in \mathcal{A} . In order to describe these classes, we need to decompose tangles into *dangles* and elements of the symmetric group.

A "flat (n, k) dangle" is a subset of $\{1, \ldots, n\}$ of size 2k, which is partitioned into k 2-element subsets. Write $D^k = D^k_n$ for the set of flat (n, k)-dangles, so $|D^k_n| = \binom{n}{2k} k!!$. If $d \in D^k$, we can represent d by a diagram in the plane

such that *i* is joined to *j* if $\{i, j\} \in d$ and there is a vertical line from *i* if $i \notin d$. We can insist that two edges intersect at most once, and no vertical edges intersect, etc. Elements of D_n^k represent the tops of Brauer diagrams. Define ${}^{\circ}D_n^k$ to be D_n^k , but draw the pictures dangling upward rather than down,

and label the vertices $2n, \ldots, n+1$. These represent the bottom part of Brauer diagrams.

We define a map $D_n^k \times S_{n-2k} \times {}^{\circ}D_n^k \to B_n$, by concatenation, e.g.



Note that $D^k \times S_{n-2k} \times {}^{\circ}D^k$ bijects to $\{d \in B_n \mid h(d) = k\}$. Write $d \mapsto (\tau(d), \pi(d), \beta(d))$ for the inverse map.

Theorem 1 We have $d \sim_L d'$ if and only if h(d) = h(d'), $\beta(d) = \beta(d')$, and $\pi(d) \sim_{L_S} \pi(d')$ in $S_{n-2h(d)}$. Further, if Γ and Γ' are two left cells in the same two sided cell, then gr^{Γ} is isomorphic to $gr^{\Gamma'}$ as a BW_n -module with basis. Finally, let F be a field, $\alpha : \mathcal{A} \to \mathcal{F}$ a homomorphism of rings, and suppose $BW_n \otimes_{\mathcal{A}} F$ is semisimple. Then each representation $gr^{\Gamma} \otimes_{\mathcal{A}} F$ is irreducible.

In the course of the proof of Theorem 1, we observed the following simple result, which seems to be new.

Let V be an irreducible representation of S_{n-2k} . Then one can give $\mathcal{AD}_n^k \otimes V$ the structure of an irreducible representation of BW_n in a unique way. Further, representations constructed in this way are distinct, and exhaust the representations of BW_n . For the proof of these results, see [FG].

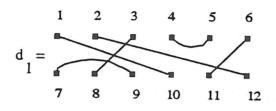
5 Combinatorial Description of the Cells

We now describe an algorithm, due to Sundaram [S], for bijecting Brauer diagrams B_n onto pairs (p,q) of up-down paths of length n in Young's lattice. The paths p and q begin at the same shape, end in the empty partition, and each partition differs from its predecessor by one square. In this language, if $d_1, d_2 \in B_n$ and $d_1 \rightarrow (p_1, q_1)$ and $d_2 \rightarrow (p_2, q_2)$, then the first sentence of Theorem 1 translates to $d_1 \sim_L d_2$ if and only if $p_1 = p_2$. This is a generalization of the relationship between tableaux and cells for the symmetric group. [KL], [K].

Throughout this section, let

Here are the steps, for $d \in B_n$ with h(d) = k.

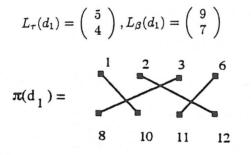
1. In this section, number the top row 1 to n and the bottom row from n+1 to 2n, both from left to right.



2. Let $\pi = \pi(d)$ be the permutation defined by the vertical edges of d, as in Section 4. Define two $2 \times k$ arrays L_{τ} and L_{β} . For each horizontal edge in the top row $\{i, j\}, 1 \leq i < j \leq n$, add the column

$$\left(\begin{array}{c} j \\ i \end{array} \right)$$

to L_{τ} . For each horizontal edge in the bottom row $\{i, j\}$, $n + 1 \le i < j \le 2n$, add the same column to L_{β}



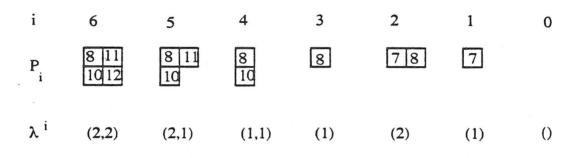
3. Use the Robinson-Schensted correspondence to obtain a pair of tableaux (P,Q) from π . The labels in P will be from the bottom row of D and the labels in Q will be from the top row of d.

$$(P(d_1),Q(d_1) = (\begin{array}{c} 8 & 11 \\ 10 & 12 \end{array}, \begin{array}{c} 1 & 2 \\ 3 & 6 \end{array})$$

4. Using P(d) and L_{β} , we proceed inductively as follows to build a path $p(d) = (\lambda^n, \lambda^{n-1}, \dots, \lambda^0)$ in Young's lattice. Let $P_n = P(d)$ and let λ^n be the shape of P(d). Suppose we have the standard Young tableau P_j of shape λ^j at the *j*th step. If n + j is a label of a square in P_j , delete that square. We now have the standard Young tableau P_{j-1} of shape λ^{j-1} . If n + j is not a label in P_j , then it appears in the top row of $L_{\beta}(d)$, in a column

1
J

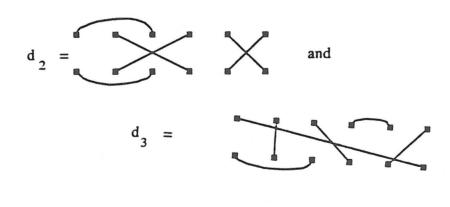
with i < j. In this case, column insert n + i into P_j to obtain P_{j-1} of shape λ^{j-1} .



5. Using Q(d) and $L_{\tau}(d)$, follow the same procedure as above, replacing P with Q, β with τ , n + j with j, and n + i with i.

$$q(d_1) = ((2, 2), (2, 1), (2, 1, 1), (2, 1), (2), (1), \emptyset)$$

If



then,

$$p(d_2) = p(d_1)$$

 $\begin{array}{lll} q(d_2) &=& ((2,2),(2,1),(1,1),(2),(1),\emptyset) \\ p(d_3) &=& ((3,1),(3),(2),(1),(2),(1),\emptyset) \\ q(d_3) &=& ((3,1),(2,1),(2,1,1),(2,1),(1,1),(1),\emptyset) \end{array}$

So we see that $d_1 \sim_L d_2$ and that d_3 is in a different two-sided cell from d_1 and d_2 .

References

- [BW] J. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math Soc.313(1989), 249-273.
- [FG] S. Fishel and I. Grojnowski, Canonical bases for the Brauer centralizer algebra, Math. Res. Lett. 2 (1995), 15-26.
- [HR] T. Halverson and A. Ram, Characters of algebras containing a Jones basic construction, to appear, Adv. in Math.
- [Ka] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math Soc. 318 (1990) 417-471.
- [KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.
- [K] D. E. Knuth, The Art of Computer Programming, volume 3, Addison-Wesley, Reading, MA, 1975.
- [S] S. Sundaram, On the combinatorics of representations of Sp(2n, C), Thesis, MIT (1986).
- [W] H. Wenzl, On the structure of Brauer's centralizer algebras, Ann. of Math, 128 (1988), 173-183.