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Abstract

In a recent preprint, R. P. Stanley defines a symmetric function in com-
muting indeterminates, XG where G* is a fmite graph, which generalizes the
chromatic polynomial of G. In my work, I consider a noncommutative ctna-
logue, YO, which, becomes Xa when the variables cire allowed to commute.
The advantage of YQ is that it satisfies a version of the deletion-contraction
rule, while Xa does not. Using this property and induction, we can express
YG in terms of vcirious bdses for the ring of non-commutative symmetric func-
tions. Letting the indeterininates commute, one recovers the corresponding
results of Stanley in a uniform mcinner. An example for the power sum
symmetric functions is provided.

Resume

Stajiley a defini une fonction symetrique en indeterminants commutatifs,
X(G}, ou G est im graphe, qui generalise Ie polynome chromatique de G.
Nous etudions ici un cinalogue noncomxnutatif, Y(G), se reduisant a X(G),
lorsque les vaj-iables commutent. L'avzintage de Y(G) est que cette fonctlon
verifie une loi de contraction-suppression, contrairement a X(G). Utilisant
cette propriete et par induction nous pouvons exprimer Y(G) en termes de
bases diverses de 1'anneau des fonctions symetriques noncommutatives. En
laissant les indetenninants commuter, on retrouve les resultats correspon-
dants de Stanley d une maniere plus imiforme. Nous domions un exajnple
pour la bcise des fonctions symetriques sommes de pmssance.
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lu "A Symmetric Function Generalization of the Chromatic Polynomial of
a Graph" [2] (see also [1]), R. P. Stanley introduces a symmetric function XG,
associated with a labelled (loopless) graph on d vertices as follows: Let G have
vertex set V{G} = {^1, ^2,..., Ud). Theu for the (commuting) indeterminates
a;i, a;2,... define a homogeneous function of degree d,

XG = XG{X^XI, ... ) = ^ a:^(ui) . . . ^^d) =^LX^
K t

where the sum ranges over all proper colorings, K : V{G) ̂  Z+. It is clear
from the definition that XG is a symmetric funtion. It is also a generalization
of the chromatic polynomial, AG. (ra), since setting a;i =3:2 = ... = xn = 1
and x, = 0 for all i > n in XG yields Xc(n). Stanley then proceeds, by various
arguments, to study the expansion of XG in terms of several of the standard
symmetric function bases. He also connects XG with acyclic orientations and
computes XG for various specific graphs.

Since the symmetric function XG is a generaUzation of <YG, several of
Stanley's results for XG closely parallel those ofWhitney [4] for the chromatic
polynomial. For example:

Theorem 1 For a finite graph, G,

^(")= E (-i)'sl"c(5)
SCE(G)

where c{S) is the number of connected components of the spanning subgraph
of G with edge set S. a

Stanley's extension of this for XQ is [2, Theorem 2. 5]:

Theorem 2 For a finite graph, G,

XG= E (-i)15W)-
SCE(G)

Here \{S) is the partition of d with parts equal to the sizes of the connected
components of the spanning subgraph of G with edge set S. Also P^(S) is the
power sum symmetric function for \{S).
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Whitney's Thoerem can be proven easily using induction and the deletion-
contraction property of the chromatic polynomial. To recall this rule, let
e   E{G). Denoting G with e deleted by Gr \ e, and G with e contracted to
a point by G Ie. Then

^(n) = ^\e(") - ^G/. (")

Unfortunately, Stanley's symmetric function has no such deletion-contraction
property, which deprives him of induction as a tool for his proofs.

In my work, I define an analogue of XQ which is a symmetric function in
noncommutative variables. That is, we fix a graph G and a labelling of its
vertex set V(G) = {ui, ̂ 2,..., v^} and defme the analogue of XG as

^G = ^X^, ),..., X^(^)
K,

where again the sum is over all proper colorings of G, but the a;, are now
noncommuting variables. If we distinguish an edge e 6 E{G} then we choose
the labeUing of the vertex set so that e = v^-iVd. I also define an operation T
ou noncommutative symmetric functions which simply raises the power of the
last variable in each term by one. More formally, for a monomial x^ x3^ . . . x^
define

, ]ly.32 ... ^Jk^ ̂  X^X32<a;ila;.2 ' ' " x~i'k) = .c»l J;<2

and extend linearly. With these definitions, YG satisfies a deletio! n-contraction
relationship simila

Lemma 1 YG = Ya\e - T Ya/e

Proof. The proof is very similar to that for the deletion-coatraction property
of XQ- Consider proper colorings of G \ e. They can be split disjointly into
two types:

1. proper colorings of G \ e with vertices Vd-i and Vd different colors;

2. proper colorings of G \ e with vertices Vd-i and v^ the same color.
Those of the first type clearly correspond to proper colorings of G'. H /c is a
coloring of G'\ e of the second type then, since the vertices Vd-i and u,; are
the same color, we have

.r»(z, i) . . . x^(^_, )X^(^) =T (a;»(ui) . . . 2;<(t»d-i)) =T a;?.

-<*'

x3k~lx3k+lx~ik-l x'i'k
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where K is a proper coloring of G/e. So those of the second type are exactly
the terms of'T Vc/e, and we have that Yc\e = ^G + T Yo/e- Equivalently,
Yc = Yc\e- T Yc/e. a

This deletion-contraction lemmafor YG gives us a tool for using induction.
Define 7 = 7(n) = (71/72, ... /7fc) to be a partition of {1, 2,... ,n}jl the
7. are disjoint subsets of {l, 2,..., n} whose union is {1, 2,..., n} Define
p^n) to be the symmetric function in noncommutative variables which is the
sum of all monomials Xi, x^ . . . x^ with the condition that if / and m are in
the same block of 7(n) then i; = im. Note that the set {p^n) : "_  _Z+}
forms a basis for these symmetric functions. Further, for S C E{G) let
7(5) denote the partition of {1, 2,..., d} with blocks corresponding to the
connected components in the spanning subgraph of G with edge set 5'.

Proposition 1 With the notation above,

^=E(-l)151p^)-
SCE

Proof. Induct on \E{G)\. If \E(G)\ = 0, then S=<^ and so we see -f(S) =
(1/2,... In). Thus

E(-DISIW)=^>
SCE

which is clearly YG for the totaUy discoimected graph on d, vertices. From
the lemma we'know that YG = Ya\e - T YG/C, and since we aUow multiple
edges when contracting e,

\E{G\e)\=\E(G/e)\=\E(G)\-L

So we can apply induction to Yo\e and ̂ G/e- Thus

^ = E (-i)151?^)- T E (-i)151^(S)-
SCE(G\e) SCE(G/e)

But if e ^ 5,
E (-i)151p^)= E (-I)IS'P^)-

SCE(G\e] ^G)

Hence it suffices to show that if e   5'

-T E (-I)ISIP^)= E (-l)151w)-
SCE{G/e) SCE(G1

~ies
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Define a map

Q:{SC E{G/e)} -^{SC E{G) -. ec 5} by:

Q(S)=S[j{e}=S.
Then © is a bijection, since we allow multiple edges to occur when we contract
e to v^. -\ . Also, |5'| + 1 = |5r |, and

7(^) = (7i(5)/ .. . /7<c-i(5)/7fe(5')) = (7i(5)/ . .. /7. -i(5)/7. (5) U {rf})
letting 7^ contain {d - 1} . Hence for e   5"

- T £ (-I)151?,,,, = T ^ E (-DISI+IP,(.)
§CE(G/e) SCE(G/e)

^ ( _ 1) 1-?|+1^^ (5)/^/^(5^{d})
SCE(G/e)

(-l)l51^).z_.
SCE(G]

~ees

This completes the proof. D

By letting the .r; commute, we then obtain Stcinley's theorem as an ecisy
corollary. There are other expeuisions for YG in the standdrd bases which
may also be obtained by applying induction and the deletion-contraction
property. This provides a uniform approach to obtaining some of Stanley s
results for XQ.
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