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STRUCTURES
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ABSTRACT. We present a unified analytic framework dedicated to the estimation of the size
of the largest component in random combinatorial structures.

REsuME. Nous présentons un cadre analytique général destiné a I’estimation de la taille de
la plus grande composante dans une structure combinatoire aléatoire.

1. INTRODUCTION

The problem of predicting the occurrence of large components in random combinatorial
structures is of interest in many branches of combinatorial modelling.

Given a window of 500 bases in a DNA sequence (with an alphabet {A,G,C,T} of size
4) how “significant” is it to observe a sequence of 5 or 6 consecutive identical bases? In
a similar spirit, Révész [13] describes the way an examination of “runs” in coin-flipping
sequences (i. e. contiguous runs of identical outcomes) may be used to distinguish efficiently
random sequences from man-made pseudo-random sequences.

In another context, that of cryptography, Quisquater and Delescaille [12] have conducted
extensive computations to determine the behaviour of the standard DES (Data Enscrip-
tion Standard) cryptosystem under iteration. They detect the usual occurrence of a “giant
component” to which are attached a few “giant trees” in DES graphs. It is then of obvi-
ous interest to compare such observations against the random functional graph model since
any significant deviation from randomness there may indicate the presence of a “hidden”
structure that could be exploited by cryptanalysts.

In this paper, we present a unified analytic framework dedicated to the analysis of largest
components in composite structures. This framework is based on an essential subdivision into
three cases (non-critical, critical, super-critical) that depends on simple analytic conditions
on intervening generating functions. A similar subdivision is also essential in characterising
the distribution of the number of components, as shown by Soria and Flajolet [7]. Though
they don’t cover all cases, our conditions do lead to explicit distribution estimates in the
asymptotic limit that are applicable to a large number of classical combinatorial structures.
Three prototypical applications illustrating the fundamental trichotomy are size distribution

of
(1) the largest root subtree in a random unlabelled rooted tree (the Catalan statistics,

= (7))

(2) largest tree in a random mapping (the n™ statistics);
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(3) largest summand in a random integer composition (the -1 statistics).

Our work generalises several specific studies on largest components while placing the
problem within a general theory of combinatorial schemas of [3, 7, 15]. Part of it extends
results of Stepanov [16] relative to random mappings and of Knuth [10] relative to carry
propagation in binary adders. Our results do not address however problems like largest
cycles in random permutations, a problem treated by Shepp and Lloyd [14] by means of a
Tauberian argument (this schema should be discussed in a companion paper.)

2. GENERATING FUNCTIONS OF LARGEST COMPONENTS
2.1. Algebraic framework. The relation between generating functions (GF’s)
C(z) = F(P(2))
is fundamental. It corresponds to combinatorial substitution
(1) C ~ ®(P),

with C(z), F(w), P(z) the GF’s associated to C, ®, P respectively.

In the labelled case, this operation is the usual labelled substitution described by Joyal in
[9]. In the unlabelled case, it is a form of “marked” substitution. Roughly, the meaning is
that C is formed by substituting objects of P inside “atoms” of ®. For example, the GF’s
of the generic set and generic sequence are

1

= W

F(w)=¢€¢" and F(w)= 7

This paper aims at studying the limit distribution of the random variable L., representing
the size of the largest P-component in a random structure of size n in C. In our context, the
generating function of ®(P)-structures whose P components all have size less than or equal
to m is F(sm(2)), where

m
salz) = Z P z*
k=0
denotes the truncation of the series P(z) to order m. Thus,

e [FIF ()
(2) Prlln <) = LR (R ()

and the problem is reduced to evaluate asymptotically [2"]F(s.(z)).

2.2. Analytic framework. It is known from classical analysis and analytic number theory
that the asymptotic growth of coefficients of a series is determined by its analytic properties,
especially its singular behaviour. Many functions used will be of the so-called algebraic-
logarithmic (AL) type.

Definition 1. A complex function f(z) is said to be Algebraic-Logarithmic (AL) at p >0
if
e with the sole exception of = = p, f(z) is analytic in an indented domain

3) A={:€C, |2 < p(L+n),larg(z = 1) > 8}
for some n > 0 and 0 < ¢ < 7/2;
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e as z tends to p in A,

s\ @ Y
(4) f(z) =c+ (l - ;) (log T _lz/p> (d + o(1)),

with ¢, d, a and  complex numbers.

For reasons explained in [3], many elementary combinatorial structures have GF’s of this
type. Examples include simple families of trees in the sense of Meir and Moon [11], families
of random mappings as considered by Arney and Bender [1], many classes of permutations
defined by cycle constraints, etc. A basic theorem of Flajolet and Odlyzko [6] states that
under the analytic continuation (3), the asymptotic condition (4) transfers to coefficients as

aieray L (log n)?
1) = o

(d+ o(1)

whenever a ¢ {0,1,2,...}.

3. NON-CRITICAL OCCURRENCE

We discuss here the substitution schema C(z) = F(P(z)) when the dominant singularity
of C is induced by the dominant singularity of P and P itself is AL. In that case, the analytic
character of the outer function F is “non-critical”. This situation covers for instance the size

of the largest root subtree in a random Catalan tree (Example 1).

Theorem 1 (Non-critical case). Assume

(i) the series F(w) has a non zero radius of convergence R;
(ii) the function P(z) is AL at z = p > 0. It satisfies, as z tends to p in its domain of

analyticity

=\° 1 4
P(z)=c—d (l - ;) <log T z/p) (1 +o(1)),

with ¢, d and a positive constants, a not an integer, and B a real number;
(iii) the function P(z) becomes singular before reaching the singularity of F(w), that is

c= P(p) < R.
Then the distribution of the random variable n — L, (where L, represents the size of the
largest P-component in a random ®(P) structure of size n) tends to a discrete law: for any

fized non negative integer k, we have

where b = [zk]F'(P(z)).

5) lim Pr(Ln = n — k) = 25
( nl-rgo hn =0 ’ —-F’(C)

When k — oo, the value of (5) is asymptotically

dF"(c) (logk)?
[(—a)F'(c) kot!
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Proof. Following (2), we have

_ B Gnoil2)) = Flsamina(2))

(6) Pr(L,=n—-k) = EEED)
Denoting by . (z) = P(z) — s.u(z) the rest of order m of P(z), we have
FO(P(z ¢
Flsu(2) = F(P(:) = ra(2) = £ = -1y (a)*
>0 c

When n > 2m, we have [2"]r,,(z)¢ = 0 for £ > 2, thus [2*]F(sm(z)) is the coefficient of 2™ in
F(P(z2)) = rm(2)F'(P(2)). Thus, when n > 2k, (6) leads to
[2"] (ruek-1(2) = Ta-i(2)) F'(P(2)) _ [2"7*1P(2) @ by
Pr(l,; =n—k) = = zF|F'(P(2)).
( ) (TF(EC) rp) )
To conclude, we look at the behaviour of the two AL-functions F(P(z)) and P(z) near their
singularity and we use the transfer lemma of [6] on these functions. [J

Comparing the distribution of L, with that of the number of components is of interest. In
the non-critical case, it is known (see [15]) that the distribution of the number of components
in the non-critical case tends to a discrete law, which is consistent with our result: when the
number of components is small, the largest component is large.

Distribution tail. The convergence to the discrete law (5) is not uniform enough to make
a precise evaluation of the mean and variance directly (the only information we can derive
is E(L,) ~ n and V(L,) = o(n*), which is not satisfying). Thus we study the distribution
tail, that is Pr(L, < n — k) when k is large. This problem is much more difficult than the
simple evaluation of the discrete law limit in the previous Theorem. For this purpose, we
make use of singularity analysis.

Behaviour of the rests near the singularity. First, we study the behaviour of the rests Pl 2
Y ksm Pi 2F near the singularity z = p. For a fixed ¢, the generating function of r,,(t) has
closed form in terms of P(z)

o |l

2 () . P(z)— P(t)
(7) Z—:O tm+l < = » =1 :
Performing singularity analysis on this function from Cauchy’s formulae (in the same vein
as in [6]) gives the behaviour of r,,(t) as m — oo.

Lemma 1 (Behaviour of the rests). Let P(z) be an AL-function at z = p, analytic (with
the ezception of z = p) in the indented domain (3) and satisfying (4) as z — p in A. We
denote by Ho the Hankel contour that is the union of the two semi-azis

p— pe? (p>0) and p— pe”® (p>0).

For all @ > 0, we denote by H, the Hankel contour clockwise oriented rounding Ho at @
distance a at the left, and we denote by R, the set of complez numbers at the left of H,.
Then the rest r(z) of P(z) satisfies, as m — oo

- o [p (14 2)] = (14 ey 18 (o () + o(1)),

m m
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where the o(1) is uniform for w € Ry, the function 1, (u) being defined by

—)* dp
ha(u) = L (=p) “p

2im Jr,,, p—uoer

This form of 1, (u) is not very explicit, but as we shall see further, it can be nicely written
in terms of a Laplace transtorm.

Theorem 2 (Tail estimates in the non-critical case). Under the assumptions of The-
orem 1, we have the estimate, for all integer € > 2

- (® gy =i
(9) Pr(L, < m) = L) () ((Qo8n)T) " yavee (g1 (3 +0(1),
2 F'(c) ne
uniformly as n — oo for A = n/m in any closed subinterval of |6 —1,¢], where
- ol e &g F 33l ¢t o du
(10) [‘a,[(’y) - m ¥ ([("'—ll) - l/)“(u,)] — (—l_) € (/}ﬂ(u) ) ;“_:7

with H a Hankel contour clockwise oriented rounding the positive real semi-azis.

Proof. Suppose {—1 < n/m < 0. Let 5,.(z) = sm(2)—c. When j < £, we have [2"]3,(2)’ =0,
thus

G)(e |
(1) [ﬂmmu»ﬂﬂ(zFf)auﬂ.

Let g(z) = P(z) — c. Replacing 3,.(z) by g(z) — r(2) in (11), expanding (g(z) — rm(2))
and using the fact that [z"]r,(z)? = 0 for j > £, we find that [z"]F(s,.(2)) is equal to the
coefficient of z" in the function

F) c) ,
(!( B(z) + C(z2),
with
-1 , ‘
B(2) = (9(2) = ru(2)" = (~1)ru(2)' and C(z) = Lrm(=) 9(:)77 C4(2),

where the C;(z) are AL at z = p with Cj(p) finite. Lemma 1 makes it possible to perform
singularity analysis on this function, leading to the estimate

(P F(5m(2)) = Toke) (logm)® ((1 Kae (%) + o(l))

[! m1+la

uniformly for A = n/m in any closed subinterval of ]¢ —1,¢]. Dividing by the asymptotic
value of [z"|F(P(z)) finally gives the result. O

The function K, () is expressed in the next paragraph as an integral convolution.
The tail estimates make it possible to get a quite precise evaluation of the mean and
variance.
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Corollary 1 (Mean and variance in the non-critical case). The mean and variance
of the random wvariable L, satisfy asymptotically, as n — oc,

E(L.) =n—rn' ™ (logn)’(1 +0(1)),  Var(L.) ~ san®~" (logn)’,
where k1 and ky are constants defined by
dT(—a) F" dT(—a) F"(c)
2F(c) F'(c)
An expression of K, , as a simple integral is given in the next paragraph, making possible

to express the constants x; and k, as double integrals. When a = 1/2 (which is the most
common case encountered in the practice), their value can be computed explicitly:

d.F"(e) dF"(c) ( 7r)
12 = —_— 1 =———(1-—].
(1) = TR N T AR 4

Computation of Kq¢()). We make explicit the expression (10) of the function Kg ().

_ (€) [?,20-1 1 _ 2 202 1~
K1 = t Koo(t)dt and k= (t = 1)t K, 2(t) dt.
1 1

Lemma 2. Denote by H,(t) the function defined over R by

1
H,(t) = prorey if <<l H.(t) =0 otherunse.

The value of Ko ¢(\) for £ —1 < XA < £ 15 equal to HO(N)/T(—a)t, where H® is the £-fold
convolution of H, with itself, that is

_ 1

- [(—a) Jti+ta4-tte=2
Proof. The function 1. (u) looks like a Stieljes transform taken at the value —u with a
different contour. A Stieljes transform is a Laplace transform iterated twice. A similar

property is true for 1, (u): suppose R(u) < 0 and u is at the left of the Hankel contour H.
We write

I(a,l(/\) Ha.(tl) e H(,(tg) (ltl e (ltl.

1 e”P o 1 400 e—(z:-{—l)p
e z(p—u) J.,. e ux
¢a(u) = % 4/'H pl"'" (/(; e\ (l.l,) (lp = 5ir Jo (/}; pH‘"’ (lp) e* dx.

The Hankel representation of the I-function gives an explicit value of the last integral [y
from which we derive

z b ifz>1
halu) = LIGo()(=u),  Galz) = {0 ;f 0 : z<1

where £ denotes the Laplace transform.
Now suppose a is a complex number such that R(a) < 0. Within the integral defining
¥a(A), we can shift the contour H to the line ®(c) = —1. Since

()" = ey £ o] (-

Koa () finally writes as

L (o [ (Ll (=) — LGa(~w(p)) & ds).

T(—a) \2ir Jo1-ico
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The last term is the inverse Laplace transform of the function L[Ha|* — L[G4]¢ taken at the
point ), thus it is equal to HON) = G (). Since A < £, we have G{@(\) = 0, which yields
the result when R(a) < 0. When A is fixed, our functions are analytic in o, thus the result
is true for all . O

Example 1 (Largest subtree of a Catalan tree). A Catalan tree is a planar rooted un-
labelled tree. Such a tree can be described recursively as a node followed by a sequence of
subtrees which are of Catalan type. Thus, with our notations, the distribution of the size of
the largest subtree of a Catalan tree corresponds to

1 1-+v1-—-4:z

and P(z)= (Catalan tree generating function).

F(w) =

T1l-w
By Theorem 1, the random variable L, counting the size of the largest subtree of a random
Catalan tree satisfies

lim Pr(L, =n — k) 115 7 2 for k=1, 2
n= — k) = Ck, CL= =5 =5 T Saald p1pt TP or c =1, 45 -
82 ‘ E= 3% G4’ 1287 512

As for the mean and variance, Corollary 1 with (12) give

E(Ly)=n— 2\/\/;(1 +o(l)) and Var(L,) ~

)
Sl
W s
—
|
|
N———
=
w
h
%)

4. CRITICAL OCCURRENCE

In this case, the dominant singularity of F(P(z)) arises simultaneously from P(z) and
F(w), a situation occurring for instance when studying the size of the largest tree in a

random mapping (Example 2).

Theorem 3. Assume
(i) the series F(w) is AL at w= R >0, and as z — R in its domain of analyticity

F(w)=C +D (1 - %)7 <1og 1 _L/R) (1 + o(1)),

where C, D, v and § are some constants with D #0 and vy <1, 7 #0;
(ii) the function P(z) is AL at z=p >0 and P(p) = R. It satisfies, as z = p in its
domain of analyticity

' 2\“ ] 1 # _
P(z):R—d(l—;) (1081—2/,0) (1 +o(1)),

with d and a positive constants, a < 1, and B a real number.
Then the random variable Ly, satisfies 1imy—oo Pr(L, < n/)) = far(A) for A 21, where

(13) fun() = Dmo T8 [l _ %;(—(_—(%])—“—)] o dp.

The integral in (13) is an analytic function of y for R(y) < 0 which can be analytically
continued for all complez number v; for v > (0 its value 15 defined by analytic continuation.

27:7!' —100
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Proof. We can restrict to the case where p = 1. The function C(z) = F(P(z))is ALat z =1
and its asymptotic form near z = | is obtained from those of F(w) and P(z) near w = R
and z = 1. Using singularity analysis, we deduce

Br+6

I, . .. (logn)
(=)’ K, =K

Now, following formulae (2), we study the behaviour of [z"]F(sm(2)). Let A = n/m and
¢ = |\]. From Taylor formula, [z"]F(s.(z)) is equal to the coefficient of z" in the function

(14) s = [Z|F(P(z]) > K=Ddd.

nor+l ’

¢ @) = :
(15) Z(_l)a F__L_wrm(z)J'

7=0 ]'

A classical result from analytic function theory states that the derivatives of F¥)(w) behave
like the derivatives of the behaviour of F(w) near w = R. Plugging this information into
(15) together with the result of lemma | and performing singularity analysis finally gives for
[2"]F(sm(2)) the asymptotic value

(16) Kmgon):  gan() = 5= [ (=) {Z (=1(1), (e;‘a_bzgg)> } -

|
71=0 ] :

When a and )\ are fixed, this integral is analytic in y. When v < 0, we can move the contour
H to the vertical line ®(z) = —1, and a change of variable leads to an expression in terms
of an inverse Laplace transform

(17) G = 5= [ [Z(_l).j () (L[G"(“)](”)) ]e”’\dp.

= 2% Ji—ico o= 2 I'(—a)p”

The function G, (u) vanishes when u < 1, thus GY)(X) = 0 for j > ¢, and since a product
transforms (by Laplace) into a convolution, the sum in the last integral can be extended

until infinity and corresponds exactly to the expansion of (1 - ﬂg—:—%ﬂﬁﬂ)v. The result
follows easily. O

Corollary 2 (Mean and variance in the critical occurrence). Under the assumptions
of the previous Theorem, the mean and variance of the random variable L, satisfy asymp-
totically, as n — oo,

E(L,)~cn, Var(L,) ~ cyn?

where the constants ¢, and c, are defined by

1 e 1 o et )
= — - it — :
(18) c 2 Ji [(1 T(—a) [ prre, ( ) 1] dz

and
3 o0 1 o =t \”
o e — | it) —1| zdz — 2.
“ ay(l — o) /n [(l ['(—«a) /1: go+1 ¢ ) } T a
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Proof. Thanks to the previous Theorem, we have

(19) E(L) =Y [L=Pr(L, <m)]~ 3 [1 —fn (%)} ~en

m<n m<n

where ¢; = [ [l — fay(1/t)] dt. This integral expression for the constant ¢, is not satisfying;
we give another way of expressing c;. Let

(20) H(z) =Y [F(P(2)) = F(sm(2)]
m2>0
so that E(Ls) = &= [z"]H(z). Formula (19) with (14) give an asymptotic value of [z"H(2)
from which it is easy to deduce the behaviour (we can restrict to p = 1)
1 )ﬂ‘v+5

—z

(21) H(z) ~ K (ayer) (1 — 2) (103-

valid as z — 1=, z being a real number. The behaviour of H(z) near 1~ can also be
computed directly from (20). Approaching sums by integrals (a technique used in (5, proof
of Theorem 8] for example) gives for the behaviour of H(z) near 1~ a formula like (21), but
with a7yc, replaced by an integral. By identification, this gives the expression (18) for ¢;.

Starting with the formula E(L}) = S m<n(2m + 1) Pr(L, > m), the same technique gives
the result for the variance. O -

Example 2 (Largest tree in random mappings). A random mapping is a set of cycles
of labelled rooted general trees 7, which can be also interpreted as a sequence of trees 7.
Thus it corresponds to the case

1
F(w) = 7 and P(z) =T(z), where T(z) = zeT®)
—w
(Cayley tree-function). The tree-function is AL near z = 1/e and satisfies near this singu-
larity T(z) = 1 — /2(1 — ez) + O(1 — ez). Theorem 3 gives the limit distribution of the
random variable L, representing the size of the largest tree in a random mapping of size n
in the form

lim Pr(L. < n/A) = fia1(A), A1

In—00

with f1/2,-1(A) given in (13). The value of fij2,-1(A) can be computed explicitly for 1 < A < 2;
instead of (13), we use the expression (17) which gives

' 1/2  rl+ico 2[Gy2(w)](;
fij2,-1(A) = ——‘——F(l/z‘fjr/\ /1_l_oo (P—I/Z 5 L—————[Ilel(/z))]f)p)> e dp.
We rewrite this in the form
_ T(1/2)N/? i [ Llu"}2)(p) L[G12(w)](p) £11(P) o
his=iy= 22 G ) <

Since the integral is the inverse Laplace transform, this rewrites as

. " e G1/2(u) * 1)(A A2 1/2
fij2,-1(A) = F(l/?))\” (F(l/?) + ( /I"((—)l/‘ll))( )) =1- ——é—[) Gyja(u)du=2—A hi

A

—100
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This is true for 1 < A < 2. The same technique can be used to compute fij2,-1(X) for
k < A< k+1 when k is any positive integer, leading to much more complicated expressions
when k& > 2.

As for the mean and variance, Corollary 2 combined with numerical computations give
E(L,) ~ cn and Var(L,) ~ cyn? where ¢ = 0.4334983... and ¢; = 0.0494698 ... (the
mean value of the size of the largest tree in a random mapping of size n was determined by
Flajolet and Odlyzko in [5, Theorem 8] who gave the same expression for ¢).

5. SUPER-CRITICAL OCCURRENCE

In this last case, the singularity of F(P(z)) is dictated only by F(w). The technique is
a generalisation of the one Knuth used in [10] while analysing the average time for carry
propagation. It consists essentially in studying the way the dominant singularity of F(sm(2))
is modified as m increases.

Theorem 4 (Super-critical case). Assume

(i) the series F(w) is AL at w = R >0;
(ii) the function P(z) is AL at z=p >0 and P(p) > R. It satisfies, as z tends to p in
its domain of analyticity

A\ @ . B
p L—2z/p

with d, o and B real numbers, o & {0,1,2,...} and d #0.

Then the distribution of the random variable L, satisfies

d (log m)? (g)’"

< = —n. ' m. 1t S ~
Pr(Ln — m) exp( n ]nt) (J‘ + O(m ]m.)) 'Uﬂfh ] I‘(__a)Pl(a)(p - (l) . ma+1 p

where a is the unique number in (0, p) such that Pln) = R,

Proof. We use formulae (2). The function F' (P(z)) has only one dominant singularity at
z = a; as for F(sm(z)), it becomes singular at z = a,, where a,, is the unique positive
number such that s,,(a,,) = R. Since a < p and s,,(a) — P(a), we have a,, — a as m — 00.
These considerations permits to derive an estimation of r,,(a,) from the first terms of its

expansion, leading to

an )" 1 d (logm)?
rm(am) ~ g T .
o) ToalpT(—a) men
Then from r'm(am) = P(am) — P(a) ~ (am — a)P'(a), our estimate of 7, (anm) easily leads to
A, 7 7 a\™ d (logm)?
—_— =" Jmm -
a ’ p) T(=a)P'(a)(p—a) mt!

Now it remains to perform singularity analysis on the two functions F(P(z)) and F(sm(z))
near z = a and z = a,, which finally yields the result. O
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Corollary 3 (Mean and variance in the super-critical occurrence). Under the
assumptions of the previous Theorem, the mean and variance of the random vartable L,
satisfy asymptotically, as n — oo,

E(L,) =logyn — (a+1)logr logn + Blogrloglogn + o(1), Var(L,) = O(1),
where T = p/a.

Proof. Since (J,,) tends geometrically to zero, we easily prove

(22) E(L)=Y[t-e™]+0()= ¥ 1+0(),

™m minJm<1
the result for the mean follows then from the inverse asymptotic
nJ, <1 iff m <logyn— (a+1)logrlogn + Blogrloglogn + O(1).

The variance Var(L,) = ¥, Pr(L, = m)[m — E(L,)]* is O(1) as can be proved by cutting
the sum at m = |E(L,)] and using easy inequalities on each term of the two parts. [

The estimate of harmonic sum in (22) is generally treated thanks to Mellin transform
technique [4], as done also in [10] or in (8] in the case a = —1 and 3 =0.

Example 3 (Largest summands in compositions). A composition is a sequence of pos-
itive integers, called summands, the size of a composition being the sum of its summands.
The distribution of the largest summand L, in a random composition of size n correspond
to the case where

1 Z

F(w):_l_w and P(z)= T

The function F(P(z)) becomes singular at z = 1/2. At this point, P(z) is regular so that
we are in the super-critical case. Theorem 4 gives

PI'(L" S m) = exp(_nJ"L) (l + O(m'lm)) Wlth J1n ~ -‘Jj 51"7,
and from the Corollary
E(L,) =log,n + O(1), Var(L,) = O(1).

A similar analysis applies to longest runs in random strings (2, 10].

Example 4 (Longest sequence of unary nodes in unary-binary trees).  We work
with rooted plain trees. The family of unary-binary trees C can be obtained from the family
of binary trees B by substituting each node with a non-empty sequence of unary nodes. In
other terms, C = B(S) where S is the family of non-empty sequence of unary nodes. We
wish to study the random variable L, counting the size of the longest S component in a
random unary-binary tree of size n. This corresponds to the case where

1 —+1-—4w?

2w

P(z) = . and F(w) = B(w), where B(w) =

(binary trees generating function). The function F(P(z)) becomes singular when z =1 /3,
near which P(z) is regular: we are in the super-critical case. Theorem 4 gives

1
Pr(L, <m)= exp(—nJu)(1 + O(m.J.,)) with  .J,, ~ g— e
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and from the corollary

E(L,) =logyn + O(1), Var(L,) = O(1).
6. CONCLUSION

Methods of this paper also permit us to determine more complete asymptotic expansions

while giving access to local limit theorem. Possible extensions of this work are

— largest components in product schemas of the form C = A x ®(P);
- distribution of the r-th largest component;

— distribution of the smallest components;

- problems like counting the largest cycle in a random mapping.

As done in [15, 7], it would be also of interest to study systematically the framework where
generating functions are of the exp-log type.
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