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ABSTRACT. We present, a unified analytic framework dedicated to the estimation of the size
of the largest, component, in ranilom combinafcorial structures.

RESUME. Nous present. ons iin ca<lre analyt, i<ine general destine a 1'est. imation de la fcaille de
la plus grande composante dans line stnict. iire combinat.oire aleafcoire.

1. INTRODUCTION

The problem of predicting the occurrence of large components in random combinatorial
structures is of interest in many branches of combinatorial modelling.

Given a window of 500 bases in a DNA sequence (with an alphabet {A, G, C, T} of size
4) how "significant" is it to observe a sequence of 5 or 6 consecutive identical bases ? ^ In
a similar spirit, Revesz [13] describes the. way an examination of "runs" in coin-flipping
sequences (i. e. contiguous runs of identical outcomes) may be used to distinguish efficiently
random sequences from man-made pseudo-random sequences.

In another context, that of cryptography, Quisquater and Delescaille [12] have conducted
extensive computations to determine the behaviour of the standard DES (Data Enscrip-
tlon Standard) cryptosystem under iteration. They detect the usual occurrence of a giant
component" to which are attached a few "giant trees" in DES graphs It is then of obvi-
ous interest to compare such observations against the random functional graph model since
any significant deviation from randomness there may indicate the presence of a "hidden
structure that could be exploited by cryptanalysts.

In this paper, we present a unified analytic frainework dedicated to the analysis of largest
components in composite structures. This framework is based on an essential subdivision into
three cases (non-critical, critical, super-critical) that depends on simple analytic conditions
on intervening generating functions. A similar subdivision is also essential in cha.racterising
the distribution of the number of components, as shown by Soria and Flajolet [7]. Though
they don't cover all cases, our conditions do lead to explicit distribution estimates in the
asymptotic limit that are applicable to a large number of classical combinatorial structures.
Three prototypical applications illiistrating the fundamental trlchotomy are size distribution
of

(1) the largest root subtree in a random unlabelled rooted tree (the Catalan statistics,
-1-f2"^-
n+l'<n^;' - ... -. . ..

(2) largest tree in a random mapping (the n" ytatisticy);
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(3) largest summand in a, random iiiteger composition (the 2"-1 statistics).
Our work generalises yeveral specific yfcudies on largest components while placing the

problem withm a general theory of combinatorial schemas of [3, 7, 15]. Part of it extends
results of Stepanov [16] relative to random mappings and of Knuth [10] relative to carry
propagation in binary adders. Our results do not address however problems like largest
cycles in random permutations, a problem treated by Shepp and Lloyd [14] by means of a
Tauberian argument (this schema should be discussed in a companion paper.)

2. GENERATING FUNCTIONS OF LARGEST COMPONENTS

2. 1. Algebraic framework. The relation between generating functions (GF's)
C(z) = F{P[z}}

is fundamental. It correspondy to combinatorial substitutinn

(1) C^^(T^),

with C(z), F(w), P(z) the GF's a-ssociated to C, $, -P respectively
In the labelled case, this operation is the usual labelled subKtitution described by Joyal in

[9]. In the unlabelled case, it is a form of "marked" substitution. Roughly, the meaning^is
that C is formed by substituting objects of T inside "atoms" of $. For example, the GF's
of the generic set and generic sequence are

F(w} = ew and F(w) = -^.
This paper aims at studying the limit distribution of the random variable Ln representing

the size of the largest 'P-compoueut in a random structure of yize n in C. In our context, the
generating function of $CP)-stri. icturey whose V components all have size less than or equal
to m is F(sm{z)), where

m

.^(^=Ep^fc
fc=u

denotes the truncation of the series P(z) to order m. Thus,

[zn}F{^(z))
(2) Pr(^n ^ m) = F]F(P(z)) '
and the problem is reduced to evaluate asymptotically [zn}F{. s,,, {z)).

2. 2. Analytic framework. It iy known from classical analysis and analytic number theory
that the asymptotic growth of coefficients of a series is determined by its analytic properties,
especially its singular behaviour. Many fiinctions used will be of the so-called algebraic-
logarithmic (AL) type.

Definition 1. A complex function f{z) is said to be Algebraic-Logarithmic (AL) at /? > 0
if

. with the sole exception oi : = p, f(z) is analytic in an indented domain

(3) A= {^ e C, |^| ̂  /»(! + '^), I arg(2 - 1)| > ^}

for some rj > 0 and 0 < ^ < r/2;
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. as 2 tends to p in A,

(4) w=c+[1-^, log
1 - ^Ip

(., +0(1)),

with c, d, a and /3 complex numbers.

For reasons explained in [3], many elementary combinatorial structures have^GF's^of this
type. Examples include simple families of trees in the sense of Meir and Moon [II], families
of random mappings as considered by Arney and Bender [I], many classes of permutations
defined by cycle co'nstraints, etc. A basic theorem of Flajolet and Odlyzko [6] states that
under the analytic continuation (3), the asymptotic condition (4) transfers to coefficients as

W(--)=^r(1 (log n)^
0'] n 1+"

(r/+o(l))

whenever a ^ {0, 1, 2,... }.

3. NON-CRITICAL OCCURRENCE

We discuss here the substitution schema C{z) = F{P{z)) when the dominant singularity
of C is induced by the dominant slngularity of P and P itself is AL. In that case, the analytic
character of the outer function F is "non-critica. 1". This sitiiation covers for instance the size
of the largest root subtree in a ra.ndom Catalan tree (Example 1).

Theorem 1 (Non-critical case). Assume

(i) the series F{w) has a non zero radius of convergence R;
(ii) the function P(z) is AL at z = p> 0. It satisfies, as z tends to p in its domain of

analyticity
,3

P{z)=c-d[i-z-} (log
1

(1+0(1)),
'1-^,

with c, d and a positive cmi. stfni. ts, a not an integer, and /3 a real number,
(iii) the function P{z} bf. cornes yimjula. r hc. forc. reaching the snifjulurity of F(w}, that is

c = P[p) < R.
Then the distribution of the rnndom 'iwriablt: n - L,, (whc. re Ln represents the size of the
largest P-component in a randnm. ^(7?) structure of size n) tends to a discrete law: for any
fixed non negative integer k, we. ha. vc.

(5) JimPr(^ =n - fc) = ^ ^here 1^ =[zk}F\P{z}}.
"->oo ' ~ . r'[c,

When fc -+ oo, the value of (r)) ifi asymptotically

dF"(c) {log kf
F(-a)F/(c) ka+1 '
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Proof. Following (2), we have

(6) Pr(Zn = n - k) =
[z't}F{.^, {z)) - F(.^^(z))_

[-]F(P(^))
Denoting by r^(z) = P(z) - s,,, (:) the reyt of order m of P(^), we have

F(., (z)) = F(P(. ) - .. (. )) = E (,p(')) (-1/^(^'.
t>0

i\

When n ^ 2m, we have [zn}r^z)1 =0 for^ ̂  2, thus [zn]F(. 5^(^)) is the coefficient of zn in
F{P(z)) - r^(z)F'(P{z)). Thus, when n ^ 2&, (6) leads to

,

=n_k}= [zn}^-^z\-^-^FW^ = ^}p{zl [. k}F'(P{.)).Pr(^ =n-k)= - Jv 

"-~^^^p(;))// = 

[^]F(P(. )) 
t2 "J2<'^^^-

To conclude, we look at the behaviour of the two AZ-functions F(P(z)) and P(z} near their
singularity and we use the transfer lemma, of [6] on tliese functions. D

Comparing the distribution of Ln with that of the number of components is of interest. In
the non-critical case, it is known (see [15]) that the distribution of the number of components
in the non-critical. case tends to a discrete law, which is consistent with our result: when the
number of components is small, the largest component is large.
Distribution tail. The convergence to. the diycrete law (5) is not uniform enough to make
a precise evaluation of the mean and variance directly (the only information we can derive
is£(I. n) ~ n and V(Z^) = o(n2), which is iiot satisfying). Thus we study the distributiou
tail, that is Pr(2. » < n - fc) when k is large. This problem is much more difficult than the
simple evaluation of the discrete la.w liinit in the previous Theorem. For this purpose, we
make use of singularity analysis.
Behaviour of the rests near the sinijularity. Firiit, we study the behaviour of the rests rm(z) =
Sfc>^ Pk zk near the singularity z = p. For a fixed ̂ , the generating function of Tm(t) has a
closed form in terms of P( 2)

(7)
+00 .,.

rr"'{T',
^IIt+1

P(z)-P(t)
m=0

-t

Performing singularity analysis on this fi.inction from Cauchy's formulae (in the same vein
as in [6]) gives the behaviour of r,,, {t) a.s m -r oo.

Lemma I (Behaviour of the rests). Let P{z) be un AL-function at z = p, analytic (with
the exception of z = p) in the in<lf:. nt. Kil dnni. ain (3) and sat-l. sfyin(j (4) us z-^ p in ̂ .. We
denote by HQ the Hankel contnur thai is the union of the two semi-axis

pe-
-;^>(p > 0) and p ^ pe~^ (p ̂  0).

For all a > 0, we denote by TYa the Hankel contour clockwise oriented rounding Tio at a
distance a at the left, and we. denote by Ra the set nf complex numbers at the left ofT-Ca-
Then the rest r,n(z) of P{z) satififies, as m ->. oo

(8) 1+^1S "-+I
.(/.

1+-
.m.

m+l (\ogm. yi
mi

(^, (u)+o(l)),
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where the o(l) is 'luiiform for u $ R.^, the functinn '(^(u) be'iwj (lc. fined by

i [ {-vY_^
'^"(n) = ^-r L ---^-

/^ I ,2 /; ~ u ev

This form of .'/'"(?/, ) is not very explicit, but ay we ahall see further, it can be nicely written
in terms of a Laplace traiisform.

Theorem 2 (Tail estimates in the non-critical case). Under the assumptions of The-
orem 1, we have the estimate, for all iiitajer i >^'2

(. ) p^.,,. ). n^y (i^)". - (. A-.., (. ) . O(D) ,
uniformly as n -r co for X = n/'m. iii. any clnyf. d yuhintc. rval of}f. - !, £}, where

(10) A^,, (7) - ^/^ ([(-". )" - e"0»(u)]' - (-l)?^.^(u)<) ̂ ,
with T-L a, Hankel contour clnckwise nrif.ut. U rounding the positive real semi-axis.

Proof. Suppose ̂ -1 < n/m ̂  t. Let ?,»(z) = .s,, (.;)-c. When j < I, we have \zn}s^{z}3 = 0,
thus

(11) [^n}F(^(^^[. n}iz-^-S^ZY
\3^' Jl

Let g(z) = P{z) - c. Replacing . Su(^) by y{=) - r,, ^) in (11), expanding {g(z) -r^(z))J
and using the'fact that [=n}r,,, {zY = 0 for j > f., we find that [^"]F(.s^(z)) is equal to the
coefficient of zn in the function

F(t\c)
<?! B[z}+C[z},

with
e-i

B{z) = {g{z) - r^{z))c - {-l)tr,, ^)e ami C(z) =Er^zY3^w~3 ̂ (2)'
j=u

where the Cj{z) are AL at z= ̂  with Cj(p) finite. Lemma 1 makes it possible to perform
singularity analysis on this function, leading to the e-stiniate

[zn}F(.^{z)) =
F^{c) (log m)^

i\ mwa d/<». '©+°(1')
uniformly for A = n/m in any closed subinterval ot}£ - 1, £\. Dividing by the asymptotic
value of [zn]F{P(z)) finally gives the result. D

The function Kc,, e(\) is expressed in the next paragraph a.s an integral convolution.
The tail estimates make it possible to get a quite precise evaluation of the mean and

variance.
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Corollary 1 (Mean and variance in the non-critical case). The. mean and variance
of the random vari(i. ble Z» satisfy asymptnticidly, as n -+ ec,

E(Ln) =n- ̂ n1-" (logn)/3(l +o(l)), Var(L») ~ ^ n2-° (logn)^,
where K.^ and K^ are constants defined by

^^^^, -^«), « «". ,.^pl ^-l)<-^(^<.
An expression of /<o, 2 as a simple integral is given in the next paragraph, making possible

to express the constants KI and ,(3 as double integrals. When a = 1/2 (which is the most
common case encountered in the practice), their value can be computed explicitly:

(12) KI =
dF"(c)

and /C2 =
dF"{c) 14^F^} duu '2-7^^)

Computation of Kc,, i[\}. We make explicit the expresyion (10) of the function /<a,^(A).
Lemma 2. Denote by Ha{t) the. functinn dc. finc. d nvc. r R by

1
H. {t} = fa+l

if 0 < ^ 1, H»(t) =0 othervnse.

The value of K^, ((\) for i-\ < \<(. is equal to H^{\)/r{-aY, where H^ is the £-fold
convolution of He, with itself, that is

H^Y--H^tt)dt^--dti.Ka'lw = T^a) k+t^...^=> '
Proof. The function ^«(u) looks like a Stieljes transform taken at the value -u with a
different contour. A Stieljes transform is a Laplnce transform iterated twice. A similar
property is true for 7/>o, (u): suppose .%(». ) < 0 and u is at the left of the Hankel contour H.
We write

>-P / you , . \ 1 /. +00 / /. e-(:c+1^

^ =^/^ (F '""." "x) .". - ^ C {/« ̂  "") e" "z'
The Hankel representation of the F-function gives an explicit value of the last integral f^
from which we derive

^a(u) = r^yr[G'a(:c)](-''^' G'"(-r)= {o
:c-"-l if a: > 1

if0< a: < 1

where jC denotes the Laplace transform.
Now suppose cr is a complex number such that ?R(a;) < 0. Within the integral defining

^a(A), we can shift the contour 'H. to the line %(c) = -1. Since

(-")" = r(-a) M <->.
A'a,<(A) finally writes as

-7 (^ rl
+w 

(^[^(-")](^-^[^(-u)i(^)e-PAJU)-
-0')'- \'^, ZTT J-l-iou
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The last term is the inverse Laplace tranyform of the fiincfcion C.[Hy}t - L[Ga\l taken at the
point A, thus it is, equal to H^(\) - Gw{\). Since A < ^, we have G'W(A) = 0, which yields
the result when ?R(o') < 0. When A is fixed, our functions are analytic in cr, thus the result
is true for all o;. D

Example 1 (Largest subtree of a Catalan tree). A Catalan tree is a planar rooted un-
labelled tree. Such a tree can be described recursively as a node followed by a sequence of
subtrees which are of Catalan type. Thus, with our notations, the distribution of the size of
the largest subtree of a Ca.ta.Ian tree corresponds to

F{w)=
1

and P(z) = (Catalan tree generating function).
1-w "~" ' v~/ 2

By Theorem 1, the random variable Ln counting the size of the largest subtree of a random
Catalan tree satisfies

Jim Pr(Zn =n-k) = c^, Cfc = 7, ^-, ^-, ^^, f^-, ...
"--00 - v-" / "' ~ 4' 8' 64' 128' 512

for &= 1, 2, ...

As for the mean and variance, C'orolla.ry 1 with (12) give

£(£,, ) = n - ^( i+o(i)) and Va.r( Z, )~ -^= fl -^) n3/2.
'7T ' VTT

4. CRITICAL OCCURRENCE

In this case, the domlna. nt slngiilarity of F(P(z)) arises simultaneously from P{z) and
F(w)^ a situation occurring for inytance when studying the size of the largest tree in a
random mapping (Example 2).

Theorem 3. Assume

(i) the series F(w) is AL at 'ID = /?. > 0, ajid as 2 -^ P. in its domain of analyticity

F(,»)=G+fl(l-^T(log^) (1+»(1)),
where C, D, 7 and S are some constants with D ^ 0 and 7 < 1, 77^0;

(ii) the function P{z) is AL at z = p>0 an. d P[p) = R.. It satisfies, as z -^ p in its
domain of analyticity

a

P(, )=R-d[l--] (log^
1

(1+0(1)),
1-^^

with d and a positive. coustd-nts, a < \, urifl /3 a real n'limber.
Then the random variable L^ saf. ififies linin-^oo Pr(-^n <: n/^) == fc',-r(^) for ^ ^ 1.. where

f^--T^^f::['a-cv^}'^
The integral in (13) is (m arui. lyf. ic function of 7 for ?R(7) < 0 which can be analytically
continued for all coniplcx mimber 7; for 7 > 0 its naluc. is defined by analytic continuation.
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Proof. We can restrict to the case where p = 1. The function C\z) = F{P{z)) isAL at 2 =1
and its asymptotic form near z = i is ol>ta. iued from those of F(w) and P{z) near w = B.
and 2; = 1. Using singularity analyyis, we deduce

(14) Cn = [Z71}F{P{Z)}
Kn

r(-"7)'
K^K^ny:+\ K=D,^a'.

na-T+1

Now, following formulae (2), we study the behaviour of [zn]F{.Sm(z)). Let A = n/m and
i = \\\. From Taylor formula, [zn}F{s^[z}} is eqiial to the coefficient of zn in the function

(15) ^y^W^y.
3=0

A classical result from analytic function theory states tliat the derivatives of Fu)(w) behave
like the derivatives of the behaviour of F{w) near -u; = R. Plugging this information into
(15) together with the result of lemnia 1 and performing singularity analysis finally gives for
[zn}F{sm(z)) the asymptotic value

(16) K^ g^{\\ g^{\) = ^ Sn[~ur E
J=U

(-1)<(7)^ feu^{u)\3
Jl \ (-U)"

,
-uA du.

When a and A are fixed, this integral is an<zlytic in 7. When 7 < 0, we can move the contour
H to the vertical line SR(z) = -1, and a change of variable leads to an expression in terms
of an inverse Laplace transform

<17> ^<A'= 2^/1""" ^ (-1)^(7), ( C[G. [u}\[p-)\
~J\ ^ r(-a)p"E

j=u

SPA dp.

The function G^{u} vanishes when u < 1, thus G^(A) = 0 for j > i, and since a product
transforms (by Laplace) into a convolution, the sum in the last integral can be extended
until infinity and corresponds exactly to the expansion of (l - £^l^)pa ) . The result
follows easily. D

Corollary 2 (Mean and variance in the critical occurrence). Under the assumptions
of the previous Theorcm, the mean and variance of the random variable Ln satisfy asymp-
totically, as n -». oo,

E{L,,) ~ ci n, Var(£») ~ cz n2,
where the constants c\ and c-i are dc. fi. ji. ed by

(18)

and

Cl =_L rffi --i_ r
~ 07 7o [V F(-Q) J.

, -(

^o.+l
dt. } -1

C2 =
0:7(1 - a'7)

rffi ___r^-d<V-i1
y«, | ̂  - r(-a) y. f"+1

dx

xdx - c^.
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Proof. Thanks to the previous Tlieorem, we have

(19) E{L^ = E [1 - Pr(^n < ^)] ~ E [l - /",. (^)] ~ cl n
7n<n rn<n

where Ci = Jo1 [1 - /«, -y(l/Q] ̂ . Thiy integral expression for the constant c^ is not satisfying;
we give another way of expressing Ci. Let

(20) H{.)=^[F{P{z))-F{. s^z))},
m>0

so that £(Ln) = ^- [zn\H^z}. Formula (19) with (14) give an asymptotic value of [zn\H[z~}
from which it is easy to deduce the behaviour (we can restrict to /? = 1)

(21)
1 ^{3-r+S

H{z} ~ K (^ci) (1 - zF-1 ̂ log ̂ ^
valid asz -^ 1-, z being a real number. The behaviour of H{z) near 1-^can^also be
computed directly from (20). Approaching sums by integrals (a technique use^inj^ proof
ofTheoremS] for example) gives for the behaviour of H{z\ near^l- a formula Uke (21)^
with 0701 replaced by an integral. By identification, tlus^glves the expression (18) tor Ci.

'Starting with the formula £(L2J = E,^n(2m + 1) Pr(L^ > m), the same technique gives
the result for the variance. D

Example 2 (Largest tree in random mappings). A random mapping is a set^ ofcycl^s
of labelled rooted general trees T, which can be also interpreted as a sequence of trees T.
Thus it corresponds to the case

^)=_1_ and P(z)=T(z), where T^) = 2eT<z)
1 - w

(Cayley tree-function). The tree-function is AL near z = 1/e and satisfies near this singu-
larity T{z) = 1 - ^2(1 - e^) + 0(1 - e^). Theorem 3 gives the limit distribution of the
random variable ij representing the size of the largest tree in a random mapping of size n
in the form

lim Pr(^» ^ n/A) = /i/2, -i(A), A ^ 1
n-* oo

with /i/2, -i(A) given in (13). The valueof/i/2-i(A) can be computed explicitly for 1^ A <2;
instead of (l3), -we use the expression (17) which gives

^ ^ r(i/2)A^/2 ^+- ̂ _, /, ̂  r[Gl/2(u)l(p)'l eAP^.
/l/2'-l(A)=-^7-A-. oo [p "'+ r(-i/2)p

We rewrite this in the form

r(l/2)A1/2 ^'^[C\u^2}(p) , C[G^(u)}(p) C[l}(p)^ ̂ ^
A/2,-i(A)=-^-^ <, r(i/2)" + " r(-i/2) )

Since the integral is the inverse Laplace transform, this rewrites as

/an./. (^IL + (G'/i("). ^>(A^ = i -^ /' G^n) ̂  = 2 - A-/2.
2,-i^; == i^/^^ . ^p(^2) "r T(-l/2) y " 2 ^o
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This is true for i < A < 2. The same technique can be used to compute fi /2-i^\ for

k <X < k+ 1 when~'A; is a'ny positive iuteger, leadiiig to miich more complicated expressions
when fc > 2. ......

As for-the mean and variance, Corollary 2 combined with numerical computations give
J^(Z r~"ci'n "and" Vai-(^)-~"C2"2 where "ci = 0^4834983... and ̂  = °-049469_8_;_^he
mean'value'of the size of the largest tree in a random mapping of size n w^
Flajolet and Odlyzko in [5, Theorem 8] who gave the same expression for ci).

5. SUPER-CRITICAL OCCURRENCE

In this last case, the singularlty of F{P(z))\s dictated only by F(w). The technique is
a generalisation of the one" Knufch used in [10]^ while analysing the average ̂tim^ ̂ ^^
pr^pagatTon. "It~consiyts essentially in studying the way the dominant singularity of F[Sm[z)
is modified as m increases.

Theorem 4 (Super-critical case). Assumf
[i) the series F(w) is AL at w= R>0; . _, , " ,. .. , , , _ ,, _ ,.

(U) "the 'function P{z) is~AL at z = p >'0 and P(p) > R. It satisfies, as z tends to p in
its domain of analyticity

P(. )=/?. +^1--J ^log
i

\-zip,

with d, a and (3 rwd numbc. rs, a i {0, 1, 2,... } wul d + 0.
Then the distribution of the random, vnri. d. liU L,, satisfies

Pr(^n ̂  m) = exp(-n ./". ) (1 + 0(m. /,,J) m</i ./".

(1+0(1)),

(log m)/
Y(-a)P'(a){p-a) . m°-+1 \p^

where a is the unique number in (0, p) such that P(«) = R.

/. We use formulae (2). The function F(P(z)) h^s only one dominant singularity^at
z'=a; a5 for F{s^(z))^\t becomes singular at z = a^ where a^ is the um<lue_Posl^ve
number suchthatv^(aj = R. Since a <p and .s»(a) -. P(a), wehave^^aas^-^oo^
These~considerationsv permits to derive an estimation of T,,. (a^) from the first terms
expansion, leading to

ri+l
'.T,t

.^("m) ~ ( -
1 d (log m)^

1 - alp F(-a) ma+l

Theu from r^(a^) = P(a,. ) - P(a) ~ (^ - ")?'("), our estimate of ̂ (a,, ) easily leads to
fa\m d (log m)^(^=ejn

a

.^ r(-a)P'{a){p-a} mol+1

Now it remains to perform siugularity analysis on the two functions F(P(z)) and F(^(z))
near z = a and z = a,,, which finally yields the result. D
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Corollary 3 (Mean and variance in the super-crltical occurrence). und^ ̂ e
assumptions of the prc'mous Thcorcm, t. hf1. mmu and . imriM. nc. K of the random variable Ln

satisfy asymptoticully, as n -> oo,

E(Ln) = log^n - (ft + l)logTlogn +/?logrloglogn + 0(1), Va.r(£n) = 0(1),
where T = pl a.

Proof. Since (</^) tends geometrically to zero, we easily prove

(22) £(ZJ=E[l-£-"'m]+o(l)= E^i+°(1)'
nt Tn:nJm<?l

the result for the mean follows then from the inverse asymptotic

nJ^^l iff m <logTra-(a+l)log7logn+/31og^loglogn+0(l).
The variance Var(L») = E,,. Pr(L^ = m)[m -E(Z»)]2 is 0(1) as can be proved by cutt ing

the sum at m = LE(Z")J ami'using ea..sy inequalities on each term of the two parts. D
The estimate of harw. omc sum in (22) l.s generally treated thanks to Mellin transform

technique [4], as done alyo in [10] or in [8] in the ca.se a = -1 and f3 = 0.
Example 3 (Largest summands in compositions). A composition is a sequence of pos-
itivemtegers, called summands, the size of a composition being the sum of its summands-
The distribution of the largest siimmand Z» in a random composition of size n ec
to the case where ,

F('u;)=rr^ and p^=T~z-
The function F(P(z)) becomes yingular at z = 1/2. At this point, P(z) is regular so that
we are in the super-critical case. Theorem 4 gives

Pr(L, ̂  m) = exp(-n. A,J (1 + C»(m. 7,J) with J,» ~ 3 2^'
and from the Corollary

£(ZJ = log, n + 0(1), Var(£J = 0(1).
A similar analysis applies to longest, runs in random strings [2, 10].
Example 4 (Longest sequence of unary nodes in unary-binary trees). ^W^WOA
m:th'roIoted-plaintTees. The faniily of uaary-binary trees C can be obtained from the ^
of binary trees B by substituting each node. with a aon-empty sequence of unary nodes.
other terms, C = 5(5) where <? is the family of non-empty sequence ofunary nodes. We
wish to"study the random variable Ln counting the size of the longest S component iu a
random unary-binary tree of size n. This corresponds to the case where

P(z) = -- and F(w) = B(w), where 5(w) =
- z

1 _ ^/l - 4u,2

2w

(binary trees generating function). The function F(P{z)) becomes singular when z = 1/3,
near which P(z) is regiilar: we are in the super-critical case. Theorem 4 gives

Pr(^n ^ m) = exp(-".. /", )( 1 + 0(m. 7^)) with ,

3J-
Jm ~ 2 ;F

259



and froin the corollary

^(ZJ=log.3n+0(l: Var(ZJ=0(l).

6. CONCLUSION

Methods of this paper also permit u,s to determine more complete asymptotic expansions
while giving accesa to loca, l limit theorem. Posyible extensions of this work are

- largest coniponents in product, sclieina.,s of tlie forni C = A x ^{'P),
- distribution of the r-th largest component;
- distribution of the smallest components;
- problems like counting the largest cycle in a random mapping.

As done in [15, 7], it would be also of interest to study systematically the framework where
generating functions are of the exp-log type.
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