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Abstract: We study bmary codes with covering radius one via their characteristic
functions. The covering condition is expressed as a system of linear mequalities. The
excesses then have a natural interpretation that makes congruence properties clear. We
present new congruences and give several unprovements on the lower bounds for K(n, 1)
given by Zhang [9, 10]. We study more spect&caUy the cases n ^ 5 mod 6 and n s 2,4
mod 6, and get new lower bounds such as K{11, 1) ̂  178 and K(20, 1) ̂  52455.

Resnme: Nous etudions les codes bmaires de recouvrement dont Ie rayon de recou-
vrement vaut 1, S. 1'aide de leur fonction caract6ristique. La condition de recouvrement
s'exprime comme un systfeme d'in6quations Un6aires. Les exc^s de recouvrement out alors
une interpretation naturelle qui rend les propri^tes de congruence claires. Nous presentons
de nouvelles congruenceset am^Uorons quelques minorations de K{n, 1) donn6es par Zhang
[9, 10]. Nous 6tudions plus particuliferement les cas n = 5 mod 6 et n = 2, 4 mod 6, et
obtenons de nouvelles minorations, comme K{11, 1) ̂  178 ou -K'(20, 1) ̂  52455.

261



1. INTRODUCTION

Let Pa be the finite field with two elements and n be some positive integer. Let us put
H = (Fz)" and define the Hamming distance between two elements x = {x^,... , Xn) and
y= (yi, --- ,yn) of if by

d(z, y)=|{z  {!,... , n} : 2;z^y, }|.

For x ^ H and r   Z, the sphere of center x and radius r is denoted 5'r(. r) and is defined
by

Sr{x)--{yeH : d(x, y)=r}.

Note that \Sr{x}\ = Q.
A binary code with covering radius one is a subset C of H such that the following

covering condition holds:

(1) Va;6ff, 3yeC : d{x, y)^l.

The problem of determining K(n, 1), the minimal cardinality of C, has been widely studied
in the last decade [1-10]. The methods used in these papers are various and range from
congruence properties [1,4-8] to pair covering by fc-uples [9, 10], and from embedded error-
correcting codes [2] to recurrence relations [3].

We first mtroduce a formalism that gives an algebraic interpretation to the theory of
excesses [1-2,4-8]. This enables us to produce numerous congruence properties. Later
sections will be devoted to the study of special cases: Section 3 deals with the case n = 5
mod 6, Section 4 with the cases n s 1, 3 mod 6 and Section 5 with the cases n = 2,4
mod 6. We wUl end this paper by giving an updated version of the lower bounds for
K(n, 1) and by indicating how these bounds inight be unproved further.

2. GENERALITIES

Let F be a real function defined on H. For z   Z, let us introduce the function F»
defined by

F^)= ^ F(y).
veSi(x)

Note that Fi=Q \fi i {0,... , n}, FQ = F ajid Eo<i<n Fi = IFI' whel'e

\F\ = E FW .
a ff

It is also clear, by definition, that

(2) IJ;'. l=fi)lJ;'l-
We shall make extensive use of the following Lemma.
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Leinina 1. For i, j   Z, we have

m, = E fc+,
J-^fes.+J

fc=i+J mod 2

; \ fn- k

;^^)F^).

Proof. By definition (and by using the isometric property of the translations and permu-
tations for the Hamming distance) we get

m^x)= ^ E F(2)=E E ^)l{y ff:d(.c, y)=;etd(2/, ^=z}|
d(x, y)=j d.(y, z)=i JfcgN d(x, z)=k

=J^\{yeH : d(y, 0) = j et d(y, ̂ ) = z}|^(z) ,
fc N

where Zk is the vector beginning with fc 1's and ending with n - k O's. The coefficient
of Ffc(a') is 0 ift'+j +fc is odd. lfi+ j +k is even, it is equal to the number of ways
for choosing k±j=l 1's among the k first coordinates and i+{~k 1's among the n - k last
coordinates. This gives the desired result. DThis

Let us apply this formalism to codes and let N denote the characteristic function of C:

1 if x EC,
WM=lo if. ^c:

Then the covering condition (1) becomes

Va; fr, (No+N^x)>l.

Let us put S = NQ+N\ -1, so that 5 is a function defined on H that takes nonnegative
integer values. It is closely related to the theory of excesses [1-2, 4-8], since S{x) just equals
the excess on the singleton {x}. Moreover, by formula (2), we have

(3) H=(n+l)|C|-2n.

Since 5 is a nonnegative function, (3) implies the sphere covering bound \C\ > ^-. Lemma
1 gives the general fonn for Sf.

(4) Si={n+l- !-)7V, _i +N, + {i + l)^Vi+i -
n

This last formula enables us to produce numerous congruence properties for the 8 function.
We start with a general property.

Leinma 2. For any odd prime number p dividing n + 1,

p-l

^^Si=p-l mod p.
i=0
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t!
n

p-1

E
i=0

'n

z

mod p,

Proof. By summing (4), we get

p-1 p-2

^S, =(n+l}^N, +p{N^, +Np)-\
i=0 t==0

Since rz, = -1 mod p, we have

p-1 /»\ p-l

E(:)=E^)i=-i
1=0 vv / i=0

and the Lemma follows. D

In a similar way, we can get congruence properties for other sums of Si. We list below
the congruences for p 6 {2, 3, 4, 5}.

So+Si=N +1 mod 2 if n s 0 mod 2

So+6i=0 mod 2 if n = 1 mod 2

S-i + S-i ̂ 0 mod 3 if n = 0 mod 3

2So +Si+S-2=0 mod 3 if n = 1 mod 3

So+8t+S2=2 mod 3 if n = 2 mod 3

8-i + ^3 = 0 mod 4 if n = 1 mod 4

SQ + S^ +S-i+6s =0 mod 4 if n s 3 mod 4

( 45i +4^2 +^3 +^4 = 0 mod 5 if ra = O mod 5

3^o + 2^i +262+83+84=0 mod 5 if n = I mod 5

^3 +^4 = 0 mod 5 if n = 2 mod 5

SQ + 3(?i +3<?2 +5s +^4 = 0 mod 5 if n = 3 mod 5

^ SQ+SI + S'i+ 83 +S^ =4 mod 5 if n s 4 mod 5

Let us now examine more closely the numerical implications of these congruences.

!

3. THE CASE n = 5 mod 6

If n = 5 mod 6, we have the two congruences

<?o +<?i = 0 mod 2,

<?o +<?i +^2 = 2 mod 3,

which implies that
5(<?o+^i)+252 ^4 mod 6.

Moreover we have 5(5o + ^i) + 2<?2 > 10, unless {So, S-i, S^) = (0, 0, 2). Let us put

T={xeH : S{x) = Si{x) = 0 and S^x) = 2}.

We have the inequality

S WQ +s^+ 2WX) ^ 10. 2n - 6|T|,
x^H

and we would like to prove that |T| is not too large. We will need the following Lemmas.
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Lemrtia 3.
Vrc T, 3!y 52(. r) : <5(y) > 0.

Moreover S{y} = 2.

Lemma 4. For any x e Z^, the foUowing inequalities bold

|52(2;)nT|^ R)-(2n-3) if x eC,
|52(a;)nr|<(^-3(n-2) ifxiC.

Lemma 5. For n ^ 11, we have

|T|-4|Z2nq+2|5|< ^ -^.
Lemma 6. The foHowing estimates bold:

(5((5o+^i)+2<52)(. r)>10 forxeH\T,
(5(<5o+<?i)+2<52)(a;)=4 forxeT,
(5(5o + ^) + 2<?2)(a;) ^ 34 for xe{Z^C}\ S,
(5(<$o+<5x)+2<52)(2;)>22 forxeS.

The proofs of these Lemmas are omitted since this paper is just an extended abstract.
We can now prove the main result of this section.

Theorem 7. For n = 5 mod 6, n ^ 11, we have

10 \ 2"
lcl>^+5©^Ti^nTr

Proof. By Lemma 6, we have

^ (5(^ + ^) + 2<$2)(a;) ̂  10. 2" - 6|T| + 24|Z2 n C'l - 12|5|
x^H

By Lemma 5, we get

^(5(<5o+^)+2^)(^>10. 2n-6(/Q-2n-l)!|1.
x^H

By (3), this gives the mequality

('5(l+n)+2Q)l^>10. 2"-3(Q-2n-l)l<|,
from which we deduce that , ̂ ^>n

151>5R)-n+2-
We then just have to apply (3) to get the desired result. D

Let us give some of the corresponding lower bounds for K{n, 1).
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Corollary 8.
^(11, 1) > 178

K{17, 1) > 7392

These bounds are all better than the ones given in Zhang's table [9, 10], which were
respectively 176 and 7378. Van Wee [8] and Honkala [5] gave the bounds i:C(ll, l) > 177
(both authors), K(17, l) > 7391 (Van Wee) and K{17, 1) ^ 7399 (Honkala). Theorem 1
thus improves on the first lower bound.

4. THE CASES n = 1, 3 mod 6

We start with a Lemma that extends the approach given at the beginning of the last
section. As in the last section, its proof is omitted.

Lenima 9. Let p ^ 5 bea prime Dumber. Let us assume there exist three congruence
properties of the foHowing type:

(5)

(6)

(7)

p-4

y^ a^i + 5p_s ̂  0 mod p - 2,
t=0

p-3

y^ /3t^i + ^p-2 = 0 mod p - 1,
i=0

p-1

^^Si=p-l mod p,
i=0

where the ai 's and the /3, 's are rational numbers. Then. the foUowiitg property holds:

V.r   J?, 6o(x) = ... = <5p_2(.E) = 0 ==> 5p-i(.r) > 2p - 1.

It is probably true that a necessary and sufficient condition for the existence of (5-7)
is that p divides n + 1. Since the applications of this Lemma require explicit congruence
properties, we shall not try to prove this characterization.

Let us first apply this Lemma with p = 5.

Theorem 10. For n = 19, 39 mod 60, we have

i > fi + ___36__-^ _yL
l>^+9(n+l+(T))+4(:);nTT

For n = 9, 49 mod 60, we have

\C\^(l+
36 2"

18(n+l)+9(ni-l)+4K)y n+1
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Proof. When n is congruent to 19 or 39 module 60, the foUowing congruence properties
hold

2nSo +Si+S2=0 mod 3 ,

So +S^+ S^+ §3 =0 mod 4,

^o +^i +^2 4-^3 +^4 S4 mod 5.

By Lemma 9, we know that either ^o +^i +^2+^3 > 4or ^4 >: 9. Thus it is always true
that

9(<5o+<?i+<52+<?3)+4<?4 > 36.

Using (2-3) again gives the desired result.
When n is congruent to 29 or 49 module 60, the following congruence properties hold

So+S-i=0 mod 2,

2n6o +8i+Si^O mod 3,

^2 +^3 = 0 mod 4,

So+S-i+ S-i+S3+ S^^i mod 5.

By Lemma 9, we know that either 2(So +5i)+^2+^3 ^ 4 or ^4 > 9. Thus it is always
true that

18(<5o + <?i) + 9(<?2 + <5a) + 4^4 > 36.

Using (2-3) again gives the desired result. D
Let us give some of the corresponding explicit lower bounds for K(n, 1).

Corollary 11.
K(9, l)>53
^(19, 1) ^26251

The only improvement to the tables in [3, 9-10] is K{19, 1) > 26251. The bound given in
[3, 9-10] (and found in [2]) was 26216, and Habsieger obtamed m [3] the small improvement
26218.

Let us now apply Lemma 9 with p = 7. The only interesting cases mentioned in the
tables are n = 13 and n = 27. This method does not give a good result for n = 13, i.e
7^(13, 1) > 587, while Cohen, Lobstein and Sloane's bound [2] is 598. So we will focus on
the case n = 27, where the only improvement to the sphere covering bound was given by
Habsieger [3] (K {27, 1) ̂  4793495).

Theorem 12. A:(27, 1) ̂  4793611.

Proof. The following congruence properties hold

5o +^i = 0 mod 2,

So+Si+St^O mod 3,

So+Si+S-i+S3=0 mod 4,

Ss+S^ =0 mod 5,

<?4 +<?5 = 0 mod 6,

{So+Si+S-i+S3+S^+S5+SQ=6 mod 7,
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By Lemma 9, we know that either 3(<?o + <?i +<?2 + 63) + 2(<?4 +<?5) ̂  12or ̂  > 13. Thus
it is always true that

39(5o +5i +<?2 + <?s) + 26(<?4 + <?5) + 12-56 > 156.

Using (2-3) again gives

156 ^ 227 /. . 1 ^ 227

\C\>[1+ 39(28 + (?)) +26(^8) + 12 (2;) )^8=[ 39976^ '28"'
and the Theorem follows. D

5. THE CASES n = 2, 4 mod 6

Let us introduce a new function 0 defined for any a;   ff by

0^) = JW^) + ^l(^) + N,{x) + N, (x) - (n+l)^+2) .
The next Lemma shows the importance of this function.

Lemma 13. The function (j) satisfies to the two following properties:

(8) Vzeff, <^>(rc)>0,

(9) ^. (»+l^+2)(n|C7|-2-).
Proof. Let us first assume that n = 2 mod 6. The two foUowing congruence properties
hold

SQ+6i+No=l mod 2,

SQ+S^+St^2 mod 3.

The first congruence shows that SO+S^+NQ>I. Put / = <?o+<?i +^Vo - 1. By Lemma
1 and (4), we have

Q<:fo+h=So+Si+nSo+2S2+NQ+N^-l-n=={n+ 2)<?o + 2(^i + <?2) - n,

which unpUes that (^ +l)<?o +^i +^2 > ^. K So = 0, this gives i?i + S^> ̂  and even
S^+S-i>^ +1 , since 5o+5i +^2 = 2 mod 3. If <?o ̂  1, we stiU have SQ+8^ + St ̂ 2
and therefore ^<?o +<?i +^2 > 2+ ̂  -1. Thus, we always have

J5o+5i+52>|+l.
Now (4) teUs us that

J5o+5i+52-|-l=^o+Ni-l)+3(^+^)-Q-j-l=30,
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and (8) is half-proved.
Let us now assume that n = 4 mod 6. The two following congruence properties hold

SQ+SI+NQ^I mod 2,

2<?o +(^i +<?2 = 0 mod 3 .

The proof then proceeds as before and we still have (^ + l)<^o +^i +i?2 ̂  f- If So =0, we
obtain 5i + ̂ 2 >. ̂ , and even 5i+^2 ̂  f +1, since 2^o +^i +^2 = 0 mod 3. If So ̂  1, we
still have 2So +<?i +^2 > 3 and therefore ^o + ^i +<?2 >. 3+^ -2. Thus, we always have

J5o+<?i+^2>j+l,
and in the same way, we get 0 >: 0.

To prove (9), we apply (2) to the definition of <p:

^=(j(l+B>+(;)+(:))ici- (n+l)(n+2),, _ (n+l)(n+2)^, ^ _ ^,
n\u[ - z~).

D

This Lemma readily gives Van Wee's bound [7]: |C'| > r-. However Van Wee's bound
applies whenever n is even, whereas this Lemma does not cover the case n = 0 mod 6. In
terms of S, Van Wee's proof may be summarized as follows:

2" - |C| < ^ (5o+^i)(a;) by the congruence property ̂ o + 5i s ^V + 1 mod 2,
xGH\C

S(y){n - S{y)) by using the definition of S-i and permuting sums,
y -ff

< (n - 1)|^| since we can assume that S{y) > 0 in the previous sum,

= (n2 - 1)|C| by (3).

Let us now use this Lemma to improve on Van Wee's bound.

Theorem 14. For n = 20, 40 mod 60 we have

lcl2ll +SIF2((T)+6)^'
For n = 10, 50 mod 60 we ba,ve

in

^>[l+-^)^)\^+^)~n-
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Proof. In both cases we can apply Lemma 13. We then use Lemma 1 to compute 0i and
02 and we find

(J+6)^>+^+^=Io('(?^l)(iVo+^)+|W+N, )4-W4+W^
(ra+l)(n+2)fnfn +iU^

3 ^2 \2

Thus, if 10 divides n, we obtain the congruence property

^+6l0+0i+02=8 mod 10.

When n = 20, 40 mod 60, this gives the inequaUty 60+ 0i + ^ ^ 8. We now use (2)
and (9) to get

(n+l^+2)(6+(n^l))(n|C|-2n)>8. 2n,
and the first part of the Theorem is proved.

When n =10, 50 mod 60, we have the inequality 0+<^i + <?1>2 > 8 and we find similarly

(n+l)^+2)^^l^(^|_2")>8. 2n,
which completes the proof of the Theorem. D

Let us ̂ ve some of the corresponding explicit lower bounds for K{n, 1).
Corollary 15.

AT(10, 1)^104

^(20, 1) ̂  52455

These bounds improve on Van Wee's bounds [7]. However, when n = 10, the best
bound is Zhang's one [9] (K{1Q, 1) >. 105). When n = 20, we can use the same method to
mcrease our lower bound by one unit. Both our results improve on Van Wee's bound [7]
(^(20, 1) ^52429).

Theorem 16. K{20, 1) >. 52456

Let us now study the special cases n = 14 and n = 28. Since the proofs of the next two
Theorems are basically the same, we give only the first one.

Theorem 17. AT(14, 1) > 1172

Proof. We use Lemma 1 to get the identity

90+^+02+2(03+04) =70(14(ATo+M)+9(^2+^3)+4(lV4+^5)+^6+IV7-1626)+60,

which leads to the inequality

14(No + N1) + 9(iV2 + ̂ 3) + 4(iV4 + ^5) +N3 + N7 > 1626.
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Let us put ̂  = 14(lVo + M) + 8(^2 + N3) + 4(N^ +Ns)+NQ+N7 - 1626. By applying
Lemma 1 again, we obtain

9
^ (3<?i> + 01 + 02) +4^ +^i + -^2

= 36(35(^0 + Ni) + 2Q{N^ + N3) + 10(^4 + ^5) + 4(7Vg 4- N^ + Na+N9 - 5032) + 30 ,

which gives

35(JVo + Nz) + 20(^2 + N3) + 10(^4 + ^5) + 4(^-6 + ^) + Ns+N9 ̂  5032 .

We then apply (2) to get

5032 214

lcl £ 35(\5)+20(1, 5)+10(V)+4(U)+(1, 5) = 1171'08;i ." .
and the Theorem follows. D

Theorem 18. K(28, 1) > 9587064

6. CONCLUDING REMARKS

Let us first give an updated version of Zhang's Table I [9-10]. We consider only those
values of n < 33 for which K{n, 1) is still unknown.

n Lower bound for K{n, 1) Reference
9

10
11
12
13
14
17
18
19
20
21
22
23
24
25
26
27
28
29
30
33

55
105
178
342
598
1172
7399
14564
26251
52455
95330
190651
352336
699051
1290562
2581111
4793611
9587064
17985042
35791395
252645140

i3]
[9]

Theorem 7

[7]
[2]

Theorem 17

[5]
[7]

Theorem 10
Theorem 14

[3]
[7]

Theorem 7

i7!
E3]
[7]

Theorem 12
Theorem 18
Theorem 7

[7]
[3]
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There is some hope of improving a number of the lemmas given in this paper. In Section
3, one might well think that Z^ \ C should be much bigger than Z^ n C. By Lemma^, an
effective comparison between jZs n C\ and 1^1 would give a smaller estimate forjT|. In
Section 4, the inequaUty 6p-t(x} > 2p - 1 can probably be sharpened. One might even
get a lower bound which is quadratic in p.
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