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Abstract: Several identities involving compositions of vectors and g-rook polynomials are
derived. Applications include some new results on Rawlings (¢—r) Simon Newcomb Problem,
and a new recurrence relation for g-rook polynomials. A more general form of this recurrence
occurs when studying a two variable rook polynomial, with connections to hypergeometric
series.

Résumé: On établit plusieurs identités faisant intervenir des compositions vectorielles et
les g-polynomes de tours. Les applications comprennent de nouveaux résultats sur le (¢ —r)
Probleme de Simon Newcomb, de Rawlings, et une nouvelle relation de récurrence pour les
g-polynémes de tours. Une forme plus générale de cette réurrence apparait lorsqu’on étudie
un polynéme de tours a deux variables, relié aux séries hypergéométriques.

1. Introduction.

For a given vector v € N*, let fi(v) be the number of compositions of v into k parts, i.e.

fk(V) = Z 1 Wi € Nt,Wi % 0.
w1+...+wk=v

For example, f5(2,1) = 4 since (2,1) = (2,0) + (0,1) = (0,1) + (2,0) = (1,1) + (1,0) =
(1,0) + (1,1). MacMahon showed that this function is closely related to Simon Newcomb's
Problem, which asks for the number of permutations of a multiset with a specified number of
descents. For the multiset where i occurs v; times, let Ni(v) denote the number of multiset
permutations with exactly £ — 1 descents. MacMahon proved [Mal]

Zk: fi(v)z"* = ; Ni(v)(z+ 1)~ F n=uv;+...+ v and (1) |

> (5)sm=T1(7+e"h). 2
k>1 i o

In previous work the author showed that compositions can be studied using rook theory.
A board B is a subset of an n x n chessboard of squares. Let ri(B) be the number of ways
of placing k non-attacking rooks (no two in the same row or column) on B, and let ai(B) be
the number of placements of n non-attacking rooks on the n x n chessboard, with exactly
n — k on B. Then

fk(V) = k!rn_k(Bv)/H;v,-! and

Ni(v) = ax(By)/IL;v;! [Hal], [Ha2],

where By is a certain board, easily described in terms of the coordinates of v (in the notation
of Figure 1, By = B(v; — 1,v1;v2,02;...;v,v;)). Equations (1) and (2) can then be shown
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to follow from the two classical results

érk( n—k)l(z— 1)k Z 2 n_k [K-R], and (3)
ix(z— 1)--(z — k+ 1)rai(B) = ﬁ(z+q—i+l) [GIW]. (4)

k=0
In (4), it is assumed that Bisa special type of board called a Ferrers board, with ¢; squares

in the 7t* column.

d;
he

hy d

Figure 1: The Ferrers board B = B(hy,dy; ks, ds; - - -; hs, dy).
The first d; columns have height A, the next d, columns have height hy + h2, etc.

2. g-versions.
For Ferrers boards, Garsia and Remmel [G-R] found g-versions of (3) and (4), namely
S (k]! Ra- «(B)zF H (1—z¢')= Z zF Ax(B), and (5)
k=0 i=k+1
Z[x][m—1]---[x—k+1]Rn_k(B) =[[lz+e—-i+1] (6)
k=0 =1
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Here [z] := (1 — ¢%)/(1 — q) for any real z, [k]! := [1][2]---[k], and Ri(B) := ¢ gl
with the sum over all placements C of k non-attacking rooks on B, and inv(C) a statistic
associated to C. The polynomials Ax(B) reduce to ax(B) when ¢ = 1. Garsia and Remmel
proved these polynomials have nonnegative integral coefficients, and in [Hal] their proof was
extended to show Ax(B) is also symmetric and unimodal.

The author originally noticed that if we define fx[v] by taking g-versions of the identity
fi(v) = klra_ik(Bv) /v, i.e.

filv] := [k]'Ra—r(Bv) /IL[vi]!,

then fi[v] appeared to be a polynomial in q. The question naturally arose as to whether or
not fi[v] can be written as a sum over compositions as follows;

filvl= X e

Wl +...+Wk=V

for some statistic 3. The solution to this question builds on a construction originally due to
Cheema and Motzkin [C-M] which in modified form has previously found application to ques-
tions involving partitions of vectors [G-G], [Gor]. Given a sequence of vectors w1, Wz, ..., W,
Cheema and Motzkin construct a sequence of permutations 7,72, ..., 7: as follows; let M
be the matrix whose ** row, j** column contains w;;. Let 71 be the permutation of the rows
of M needed to sort the first column of M into non-increasing order, with two given rows
not permuted with respect to each other if they have the same first column entry. Call this
new matrix M;. Now do the same procedure to the second column, letting 7; denote the
permutation of the rows of M; needed to put the second column in non-increasing order,
where two rows with the same second column entry are not permuted with each other. If
our vectors have ¢ coordinates, we end up in this way with ¢ permutations =y, ..., 7;. Letting
invm;(W1,...,wk) denote the number of inversions of the i** permutation so obtained, the
g-version of fx(v) we seek is

fk[v] - Z qE;inw; (w1,....wk)+2r;(w1,...,wk)_
Wl +...+wk=v

The statistic n()\) equals Z;(z — 1)X; if A is an integer partition; for a sequence of vectors
adding to v, associate the t partitions (,...,(:, where (; is the it* column of the matrix
after it has been sorted by the permutation 7;, and let n(wy,..., W) be the sum of 7((;)
for ¢ in the range 1 <z <t.

Proving that this definition of fi[v] works is rather complicated [Hal]. The hard part is

to establish the identity
T z+uv;—1
S HEZUE 11
k>1 i i
n

after which (6) is applied. As usual, [ &

] denotes the g-binomial coefficient.
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MacMahon also studied unitary compositions of a vector v. A composition is unitary if
all the coordinates w;; of all the parts w;j are 0 or 1. Defining

Jk [v] = Z qE.irwm(wl ..... Wk)’
Wl +...+Wk=v

gk[v] can be shown to satisfy

= [fJw-1(;]

which implies gi[v] = [k]!Ra-k(Gv)/IL;[v:]! for a certain Ferrers board Gy (the boards Gy

originally occurred in the work of Kaplansky and Riordan, who showed Ni(v) = an_k+1(Gv)/ILivy!).

Using the mathematics underlying juggling patterns, a bijective proof of (7) has recently been
discovered by Ehrenborg and Readdy [E-R].
A g-version of the function Ni(v) was already introduced by MacMahon [Ma2]; set

Nk[v] = Z 'qmaja’

a
k—1 descents

where majo is the sum of the places where o has descents, namely ¥;,54,,,¢. This ¢g-version
turns out to be exactly what we need to extend our theorems connecting Ni(v) to A;(Bv)
and A;(Gy); we end up with the four identities

filv] = [F]'Raei(By) /T[]l Ni[v] = Ax(Bv)/ILi{vi]!

ge[v] = [K]'Bnk(Gv)/Tiwi]!  Nie[v] = ") An_p4a (Gv) /TLi[ws]!
where E(k,v) = (k—1)n — 3¢, vi(v1 + ... 4+ vi—1). Formulas like
S e hfv] IT (1—2q) = 30 2 Nely]
k=0 1=k+1 =0
now follow as consequences.

3. The r parameter.

Rawlings has introduced a more general version of the ¢-Simon Newcomb Problem which
also depends on a parameter r [Raw]. He sets

Nk [V, 1'] e Z qr—maja

a
k=1 r—descents

where an r-descent is a value of ¢ for which ¢; — 6;4; > 1, and 7 — majo equals the sum
over all these ¢ (where r-descents occur) plus the cardinality of the set (¢,7): 1 <i<j<n
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and o; > o; > 0;—,. This reduces to majo when r = 1, and to nvo when r = t. This also
connects nicely with g-rook theory; one can define boards By, and Gy, so that

Nk[V,T‘] = Ak(va,.)/H,-[v,-]!, and
Ni[v,r] = ¢#E*D A, (G, )/ Tilwi]!
with E(k,v,r) = (k—1)n — Yt , vi(v1 + ... + vi_;). In the notation of Figure 1,
Bv,r = B(‘/t - ‘/t—r - ]-7 Vt; Vt—ry Vt—1; Vt—r—1, Ut—=2; - - - ; V2, Ur4+1;, V1, ‘/1')1 and

Gv,r = B(0,V;; 01, Ur41; V2, Urg2; « « + 5 Vimry Vt),

with V; = v; + vg + ...+ v;. One interesting corollary is a generalized version of Worpitsky’s
identity;

t

I [z+v;-r+1+vi-r+2+---+v‘_l] =Z[z+n~J]Nj[V’r]

i=1 vi 7=0 n
(Worpitsky proved the case v = 1",q = r = 1 of the above). Another result obtained is that
the polynomials Ni[v,r] are all symmetric and unimodal. This gives rise to the question

of whether or not the functions
fe[v, 7] := [k]! Ruek(Bv,r)/IL;[vi]!, and
gx[v, 7] == [F]! Rk (Gv,r) [TLi[vi]!,

can be written as sums over compositions for some appropriately defined statistics. For
gk[v, 7], the answer is yes ([Ha3], p.20; for an equivalent result formulated in terms of juggling
see [E-R], Theorem 8.5). The question remains unanswered in general for fi [v,7] , although
the special case v = 1* can be dealt with by material in [EHR].

4. Recurrence relations.

Let v\ = (vy,...,v:-1). It is easy to derive a recurrence relation for Ry(B) [G-R] which in
turn implies the recurrence

fe[v] = ifk_j[v'] [f] [k -1+ vt —j] q(k-—l)j-

=0 vt —J
By applying induction to a result of Rawlings one can show that

N, = S B [n +k—1-Ver - J] [Vt-r ~ki1 +J] g k-1+Vemi=Vier),
=0 vt —J J

Here V; = vy + ... + v;. Since the polynomials Ni[v,r] are special cases of the A(B), one

would suspect the Ay satisfy some kind of recurrence as well, which led to the following

result:
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Theorem 1 Let B = B(hy,d;;...;hs,d;) be the Ferrers board of Figure 1. Let B’ =
B(hi,dy;...; ht—1,di—1) be the board obtained from B by truncating the last d; columns.
Then

_ | ' Cn—n-f-dt-f-SJ [Zn—dt—cn—s] (k=3)(cn+k—n)
AdB)=(d) T AlB) S P ®

Proof: A (seven page) combinatorial proof for the ¢ = 1 case, for some B, is given in
[Hal,pp.73-80]. The general case is proven algebraically; let

PROD(z,B) =][]lz+ca —1+1]
i=1
where ¢; = the height of the it* column, and start with the identity
k
4B) =X |2 1] (-1 PRrODG, B)
7=0

which can be derived from (5) using the g-Vandermonde convolution. Now replace PROD(j, B)
by [J + ¢» — n + 1JPROD(j, B*), where B* = B(hy,ds;...; he—1,dt—1; he — 1,dy — 1). Using

[t 5] =e25]+e E—j-1

we get, after some rearrangement,
Ar(B) = [k + cn — n + d]AR(B*) + [2n + 1 — cu — di — k]Ap_y(B*)g~1Henntde

Iterating this d; times yields (8). =
5. The z parameter.
Recently the author has been studying the function

n

S z(z— 1) (2 — k+ Drai(B)(=1)(z = 1)"* := 3 2*ap_u(z, B)

k=0 k=0

and its g-version

Sl-allz+ 1]+ [—c + k= URage* [] (1—2¢=") = 3 #Au(z, B).  (10)
k=0 1=k+1 k=0
The motivation for introducing this two-variable polynomial is that if z = —1, (10) reduces

to (5), while the coefficient of z" in the left hand side of (10) equals (—1)"q(3)=*" times the
left hand side of (6).
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Using the methods outlined in section 4, Ai(z, B) can be expressed explicitly;

k , .
- o Py ~1 .
Az B) =3[} 27| (00 [ 19 7Y RO, B), (1)
7=0
or recursively;

Ai(z,B) = [d:]! Z A,(:L‘,B’)

k—ngSSk
Cn —n+dt+s] [Qn—dt—cn—s—z—l] (k—s)(cn+k—n)
[ di—k+s ks g ' (12)
Equation (12) can be viewed as a result in basic hypergeometric series. In the standard
A1,Q2y...,0¢41

notation, ;41 ¢:( ) stands for the sum

by, b2,...,b;

o (91)n(a2)n - - (@e41)n
Ey (@n(br)n -~ (be)n

where (w), = (1 —Vw)(l —wgq)--- (1 —wg"™"). The right hand side of (11) can be expressed
as a t42P¢41 using the simple identity

‘ t (qH.'—D.'-1+1)J.
PROD(j, B) = PROD(0, B) [] (D),
J

=1

(for H; > D; with H; = by + ...+ ki, D; = dy + ... + d;, and B the board of Figure 13
In the case ¢ = 2, the right hand side of (12) can also be expressed as a 4¢3 (by iterating
the recurrence, then converting the ¢-binomial coefficients to g-rising factorials). Comparing

(11) and (12) we get one 4¢3 equals another 4¢3, which is equivalent to Sears transformation
[GaR,p.41]. Full details will be included in [Had].
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