Compositions and q-rook Polynomials

by
James Haglund
Abstract: Several identities involving compositions of vectors and q-rook polynomials are derived. Applications include some new results on Rawlings $(q-r)$ Simon Newcomb Problem, and a new recurrence relation for q-rook polynomials. A more general form of this recurrence occurs when studying a two variable rook polynomial, with connections to hypergeometric series.
Résumé: On établit plusieurs identités faisant intervenir des compositions vectorielles et les q-polynômes de tours. Les applications comprennent de nouveaux résultats sur le ($q-r$) Problème de Simon Newcomb, de Rawlings, et une nouvelle relation de récurrence pour les q-polynômes de tours. Une forme plus générale de cette réurrence apparaît lorsqu'on étudie un polynôme de tours à deux variables, relié aux séries hypergéométriques.

1. Introduction.

For a given vector $\mathbf{v} \in \mathbf{N}^{t}$, let $f_{k}(\mathbf{v})$ be the number of compositions of \mathbf{v} into k parts, i.e.

$$
f_{k}(\mathbf{v}):=\sum_{\mathbf{w}_{\mathbf{1}}+\ldots+\mathbf{w}_{\mathbf{k}}=\mathbf{v}} 1 \quad \mathbf{w}_{\mathbf{i}} \in \mathbf{N}^{t}, \mathbf{w}_{\mathbf{i}} \neq 0
$$

For example, $f_{2}(2,1)=4$ since $(2,1)=(2,0)+(0,1)=(0,1)+(2,0)=(1,1)+(1,0)=$ $(1,0)+(1,1)$. MacMahon showed that this function is closely related to Simon Newcomb's Problem, which asks for the number of permutations of a multiset with a specified number of descents. For the multiset where i occurs v_{i} times, let $N_{k}(v)$ denote the number of multiset permutations with exactly $k-1$ descents. MacMahon proved [Ma1]

$$
\begin{gather*}
\sum_{k} f_{k}(\mathbf{v}) z^{n-k}=\sum_{k} N_{k}(\mathbf{v})(z+1)^{n-k} \quad n=v_{1}+\ldots+v_{t}, \text { and } \tag{1}\\
\sum_{k \geq 1}\binom{x}{k} f_{k}(\mathbf{v})=\prod_{i}\binom{x+v_{i}-1}{v_{i}} \tag{2}
\end{gather*}
$$

In previous work the author showed that compositions can be studied using rook theory. A board B is a subset of an $n \times n$ chessboard of squares. Let $r_{k}(B)$ be the number of ways of placing k non-attacking rooks (no two in the same row or column) on B, and let $a_{k}(B)$ be the number of placements of n non-attacking rooks on the $n \times n$ chessboard, with exactly $n-k$ on B . Then

$$
\begin{gathered}
f_{k}(\mathrm{v})=k!r_{n-k}\left(B_{\mathbf{v}}\right) / \Pi_{i} v_{i}!\text { and } \\
N_{k}(\mathbf{v})=a_{k}\left(B_{\mathbf{v}}\right) / \Pi_{i} v_{i}!\quad[\mathrm{Ha} 1],[\mathrm{Ha} 2],
\end{gathered}
$$

where B_{v} is a certain board, easily described in terms of the coordinates of v (in the notation of Figure $\left.1, B_{\mathrm{v}}=B\left(v_{1}-1, v_{1} ; v_{2}, v_{2} ; \ldots ; v_{t}, v_{t}\right)\right)$. Equations (1) and (2) can then be shown
to follow from the two classical results

$$
\begin{gather*}
\sum_{k=0}^{n} r_{k}(B)(n-k)!(z-1)^{k}=\sum_{k=0}^{n} z^{k} a_{n-k}(B) \quad[\mathrm{K}-\mathrm{R}], \text { and } \tag{3}\\
\sum_{k=0}^{n} x(x-1) \cdots(x-k+1) r_{n-k}(B)=\prod_{i=1}^{n}\left(x+c_{i}-i+1\right) \quad[\mathrm{GJW}] . \tag{4}
\end{gather*}
$$

In (4), it is assumed that B is a special type of board called a Ferrers board, with c_{i} squares in the $i^{\text {th }}$ column.

Figure 1: The Ferrers board $B=B\left(h_{1}, d_{1} ; h_{2}, d_{2} ; \ldots ; h_{t}, d_{t}\right)$.
The first d_{1} columns have height h_{1}, the next d_{2} columns have height $h_{1}+h_{2}$, etc.
2. q-versions.

For Ferrers boards, Garsia and Remmel [G-R] found q-versions of (3) and (4), namely

$$
\begin{align*}
& \sum_{k=0}^{n}[k]!R_{n-k}(B) z^{k} \prod_{i=k+1}^{n}\left(1-z q^{i}\right)=\sum_{k=0}^{n} z^{k} A_{k}(B), \text { and } \tag{5}\\
& \sum_{k=0}^{n}[x][x-1] \cdots[x-k+1] R_{n-k}(B)=\prod_{i=1}^{n}\left[x+c_{i}-i+1\right] . \tag{6}
\end{align*}
$$

Here $[x]:=\left(1-q^{x}\right) /(1-q)$ for any real $x,[k]!:=[1][2] \cdots[k]$, and $R_{k}(B):=\sum_{C} q^{i n v(C)}$, with the sum over all placements C of k non-attacking rooks on B, and $\operatorname{inv}(C)$ a statistic associated to C. The polynomials $A_{k}(B)$ reduce to $a_{k}(B)$ when $q=1$. Garsia and Remmel proved these polynomials have nonnegative integral coefficients, and in [Hal] their proof was extended to show $A_{k}(B)$ is also symmetric and unimodal.

The author originally noticed that if we define $f_{k}[\mathbf{v}]$ by taking q-versions of the identity $f_{k}(\mathrm{v})=k!r_{n-k}\left(B_{\mathrm{v}}\right) / \Pi_{i} v_{i}!$, i.e.

$$
f_{k}[\mathbf{v}]:=[k]!R_{n-k}\left(B_{\mathbf{v}}\right) / \Pi_{i}\left[v_{i}\right]!
$$

then $f_{k}[\mathrm{v}]$ appeared to be a polynomial in q . The question naturally arose as to whether or not $f_{k}[\mathrm{v}]$ can be written as a sum over compositions as follows;

$$
f_{k}[\mathrm{v}]=\sum_{\mathbf{w}_{1}+\ldots+\mathbf{w}_{\mathbf{k}}=\mathrm{v}} q^{\beta\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathbf{k}}\right)}
$$

for some statistic β. The solution to this question builds on a construction originally due to Cheema and Motzkin [C-M] which in modified form has previously found application to questions involving partitions of vectors [G-G], [Gor]. Given a sequence of vectors $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}$, Cheema and Motzkin construct a sequence of permutations $\pi_{1}, \pi_{2}, \ldots, \pi_{t}$ as follows; let M be the matrix whose $i^{\text {th }}$ row, $j^{\text {th }}$ column contains $w_{i j}$. Let π_{1} be the permutation of the rows of M needed to sort the first column of M into non-increasing order, with two given rows not permuted with respect to each other if they have the same first column entry. Call this new matrix M_{1}. Now do the same procedure to the second column, letting π_{2} denote the permutation of the rows of M_{1} needed to put the second column in non-increasing order, where two rows with the same second column entry are not permuted with each other. If our vectors have t coordinates, we end up in this way with t permutations π_{1}, \ldots, π_{t}. Letting $\operatorname{inv} \pi_{i}\left(\mathbf{w}_{1}, \ldots, w_{k}\right)$ denote the number of inversions of the $i^{\text {th }}$ permutation so obtained, the q-version of $f_{k}(\mathrm{v})$ we seek is

$$
f_{k}[\mathbf{v}]=\sum_{\mathbf{w}_{1}+\ldots+\mathbf{w}_{\mathbf{k}}=\mathbf{v}} q^{\Sigma_{i} i n v \pi_{i}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathbf{k}}\right)+2 \eta\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathbf{k}}\right)}
$$

The statistic $\eta(\lambda)$ equals $\Sigma_{i}(i-1) \lambda_{i}$ if λ is an integer partition; for a sequence of vectors adding to v , associate the t partitions $\zeta_{1}, \ldots, \zeta_{t}$, where ζ_{i} is the $i^{\text {th }}$ column of the matrix after it has been sorted by the permutation π_{i}, and let $\eta\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathbf{k}}\right)$ be the sum of $\eta\left(\zeta_{i}\right)$ for i in the range $1 \leq i \leq t$.

Proving that this definition of $f_{k}[\mathbf{v}]$ works is rather complicated [Hal]. The hard part is to establish the identity

$$
\sum_{k \geq 1}\left[\begin{array}{l}
x \\
k
\end{array}\right] f_{k}[\mathbf{v}]=\prod_{i}\left[\begin{array}{c}
x+v_{i}-1 \\
v_{i}
\end{array}\right]
$$

after which (6) is applied. As usual, $\left[\begin{array}{l}n \\ k\end{array}\right]$ denotes the q-binomial coefficient.

MacMahon also studied unitary compositions of a vector v . A composition is unitary if all the coordinates $w_{i j}$ of all the parts w_{i} are 0 or 1 . Defining

$$
g_{k}[\mathbf{v}]=\sum_{\mathbf{w}_{1}+\ldots+\mathbf{w}_{\mathbf{k}}=\mathbf{v}} q^{\Sigma_{i} i n v \pi_{i}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{\mathbf{k}}\right)}
$$

$g_{k}[\mathrm{v}]$ can be shown to satisfy

$$
\sum_{k \geq 1}\left[\begin{array}{l}
x \tag{7}\\
k
\end{array}\right] g_{k}[\mathrm{v}]=\prod_{i}\left[\begin{array}{c}
x \\
v_{i}
\end{array}\right]
$$

which implies $g_{k}[\mathbf{v}]=[k]!R_{n-k}\left(G_{\mathbf{v}}\right) / \Pi_{i}\left[v_{i}\right]$! for a certain Ferrers board $G_{\mathbf{v}}$ (the boards $G_{\mathbf{v}}$ originally occurred in the work of Kaplansky and Riordan, who showed $\left.N_{k}(\mathrm{v})=a_{n-k+1}\left(G_{\mathrm{v}}\right) / \Pi_{i} v_{i}!\right)$. Using the mathematics underlying juggling patterns, a bijective proof of (7) has recently been discovered by Ehrenborg and Readdy [E-R].

A q-version of the function $N_{k}(\mathrm{v})$ was already introduced by MacMahon [Ma2]; set

$$
N_{k}[\mathbf{v}]:=\sum_{\substack{\sigma \\ k=1 \\ \text { descents }}} q^{m a j \sigma}
$$

where maj σ is the sum of the places where σ has descents, namely $\Sigma_{\sigma_{i}>\sigma_{i+1}} i$. This q-version turns out to be exactly what we need to extend our theorems connecting $N_{k}(\mathrm{v})$ to $A_{j}\left(B_{\mathrm{v}}\right)$ and $A_{j}\left(G_{\mathbf{v}}\right)$; we end up with the four identities

$$
\begin{gathered}
f_{k}[\mathbf{v}]=[k]!R_{n-k}\left(B_{\mathbf{v}}\right) / \Pi_{i}\left[v_{i}\right]!\quad N_{k}[\mathbf{v}]=A_{k}\left(B_{\mathbf{v}}\right) / \Pi_{i}\left[v_{i}\right]! \\
g_{k}[\mathbf{v}]=[k]!R_{n-k}\left(G_{\mathbf{v}}\right) / \Pi_{i}\left[v_{i}\right]!\quad N_{k}[\mathbf{v}]=q^{E(k, v)} A_{n-k+1}\left(G_{\mathbf{v}}\right) / \Pi_{i}\left[v_{i}\right]!
\end{gathered}
$$

where $E(k, \mathbf{v})=(k-1) n-\sum_{i=1}^{t} v_{i}\left(v_{1}+\ldots+v_{i-1}\right)$. Formulas like

$$
\sum_{k=0}^{n} x^{k} f_{k}[\mathbf{v}] \prod_{i=k+1}^{n}\left(1-x q^{i}\right)=\sum_{k=0}^{n} x^{k} N_{k}[\mathbf{v}]
$$

now follow as consequences.
3. The r parameter.

Rawlings has introduced a more general version of the q-Simon Newcomb Problem which also depends on a parameter r [Raw]. He sets

$$
N_{k}[\mathbf{v}, r]:=\sum_{k=1}^{\sigma}{ }_{k-\text { descento }} q^{r-m a j \sigma}
$$

where an r-descent is a value of i for which $\sigma_{i}-\sigma_{i+1} \geq r$, and r-maj σ equals the sum over all these i (where r-descents occur) plus the cardinality of the set $(i, j): 1 \leq i \leq j \leq n$
and $\sigma_{i}>\sigma_{j}>\sigma_{i-r}$. This reduces to maj σ when $r=1$, and to $i n v \sigma$ when $r=t$. This also connects nicely with q-rook theory; one can define boards $B_{\mathbf{V}, r}$ and $G_{\mathbf{V}, r}$ so that

$$
\begin{gathered}
N_{k}[\mathbf{v}, r]=A_{k}\left(B_{\mathbf{v}, r}\right) / \Pi_{i}\left[v_{i}\right]!, \quad \text { and } \\
N_{k}[\mathbf{v}, r]=q^{E(k, v, r)} A_{n-k+1}\left(G_{\mathbf{v}, r}\right) / \Pi_{i}\left[v_{i}\right]!
\end{gathered}
$$

with $E(k, \mathbf{v}, r)=(k-1) n-\sum_{i=1}^{t} v_{i}\left(v_{1}+\ldots+v_{i-r}\right)$. In the notation of Figure 1,

$$
\begin{gathered}
B_{\mathbf{V}, r}=B\left(V_{t}-V_{t-r}-1, v_{t} ; v_{t-r}, v_{t-1} ; v_{t-r-1}, v_{t-2} ; \ldots ; v_{2}, v_{r+1} ; v_{1}, V_{\tau}\right), \text { and } \\
G_{\mathbf{V}, r}=B\left(0, V_{r} ; v_{1}, v_{r+1} ; v_{2}, v_{r+2} ; \ldots ; v_{t-r}, v_{t}\right)
\end{gathered}
$$

with $V_{i}=v_{1}+v_{2}+\ldots+v_{\mathrm{i}}$. One interesting corollary is a generalized version of Worpitsky's identity;

$$
\prod_{i=1}^{t}\left[\begin{array}{c}
z+v_{i-r+1}+v_{i-r+2}+\ldots+v_{i}-1 \\
v_{i}
\end{array}\right]=\sum_{j=0}^{n}\left[\begin{array}{c}
z+n-j \\
n
\end{array}\right] N_{j}[\mathbf{v}, r]
$$

(Worpitsky proved the case $v=1^{n}, q=r=1$ of the above). Another result obtained is that the polynomials $N_{k}[\mathrm{v}, r]$ are all symmetric and unimodal. This gives rise to the question of whether or not the functions

$$
\begin{gathered}
f_{k}[\mathbf{v}, r]:=[k]!R_{n-k}\left(B_{\mathbf{v}, r}\right) / \Pi_{i}\left[v_{i}\right]!, \text { and } \\
g_{k}[\mathbf{v}, r]:=[k]!R_{n-k}\left(G_{\mathbf{v}, r}\right) / \Pi_{i}\left[v_{i}\right]!,
\end{gathered}
$$

can be written as sums over compositions for some appropriately defined statistics. For $g_{k}[\mathbf{v}, r]$, the answer is yes ([Ha3], p.20; for an equivalent result formulated in terms of juggling see $[\mathrm{E}-\mathrm{R}]$, Theorem 8.5). The question remains unanswered in general for $f_{k}[\mathbf{v}, r]$, although the special case $v=1^{n}$ can be dealt with by material in [EHR].

4. Recurrence relations.

Let $\mathrm{v}^{\prime}=\left(v_{1}, \ldots, v_{t-1}\right)$. It is easy to derive a recurrence relation for $R_{k}(B)$ [G-R] which in turn implies the recurrence

$$
f_{k}[\mathbf{v}]=\sum_{j=0}^{v_{t}} f_{k-j}\left[\mathbf{v}^{\prime}\right]\left[\begin{array}{l}
k \\
j
\end{array}\right]\left[\begin{array}{c}
k-1+v_{t}-j \\
v_{t}-j
\end{array}\right] q^{(k-1) j} .
$$

By applying induction to a result of Rawlings one can show that

$$
N_{k}[\mathbf{v}, r]=\sum_{j=0}^{v_{t}} N_{k-j}\left[\mathbf{v}^{\prime}, r\right]\left[\begin{array}{c}
n+k-1-V_{t-r}-j \\
v_{t}-j
\end{array}\right]\left[\begin{array}{c}
V_{t-r}-k+1+j \\
j
\end{array}\right] q^{j\left(k-1+V_{t-1}-V_{t-r}\right)} .
$$

Here $V_{j}=v_{1}+\ldots+v_{j}$. Since the polynomials $N_{k}[\mathbf{v}, r]$ are special cases of the $A_{k}(B)$, one would suspect the A_{k} satisfy some kind of recurrence as well, which led to the following result:

Theorem 1 Let $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$ be the Ferrers board of Figure 1. Let $B^{\prime}=$ $B\left(h_{1}, d_{1} ; \ldots ; h_{t-1}, d_{t-1}\right)$ be the board obtained from B by truncating the last d_{t} columns. Then

$$
A_{k}(B)=\left[d_{t}\right]!\sum_{k-d_{t} \leq s \leq k} A_{s}\left(B^{\prime}\right)\left[\begin{array}{c}
c_{n}-n+d_{t}+s \tag{8}\\
d_{t}-k+s
\end{array}\right]\left[\begin{array}{c}
2 n-d_{t}-c_{n}-s \\
k-s
\end{array}\right] q^{(k-s)\left(c_{n}+k-n\right)}
$$

Proof: A (seven page) combinatorial proof for the $q=1$ case, for some B, is given in [Hal,pp.73-80]. The general case is proven algebraically; let

$$
\operatorname{PROD}(x, B)=\prod_{i=1}^{n}\left[x+c_{i}-i+1\right]
$$

where $c_{i}=$ the height of the $i^{\text {th }}$ column, and start with the identity

$$
A_{k}(B)=\sum_{j=0}^{k}\left[\begin{array}{l}
n+1 \\
k-j
\end{array}\right](-1)^{k-j} q^{(k-j)} P R O D(j, B)
$$

which can be derived from (5) using the q-Vandermonde convolution. Now replace $\operatorname{PROD}(j, B)$ by $\left[j+c_{n}-n+1\right] P R O D\left(j, B^{*}\right)$, where $B^{*}=B\left(h_{1}, d_{1} ; \ldots ; h_{t-1}, d_{t-1} ; h_{t}-1, d_{t}-1\right)$. Using

$$
\left[\begin{array}{l}
n+1 \\
k-j
\end{array}\right]=\left[\begin{array}{c}
n \\
k-j
\end{array}\right]+q^{n+1-k+j}\left[\begin{array}{c}
n \\
k-j-1
\end{array}\right]
$$

we get, after some rearrangement,

$$
A_{k}(B)=\left[k+c_{n}-n+d_{t}\right] A_{k}\left(B^{*}\right)+\left[2 n+1-c_{n}-d_{t}-k\right] A_{k-1}\left(B^{*}\right) q^{k-1+c_{n}-n+d_{t}}
$$

Iterating this d_{t} times yields (8).
5. The x parameter.

Recently the author has been studying the function

$$
\sum_{k=0}^{n} x(x-1) \cdots(x-k+1) r_{n-k}(B)(-1)^{k}(z-1)^{n-k}:=\sum_{k=0}^{n} z^{k} a_{n-k}(x, B)
$$

and its q-version

$$
\begin{equation*}
\sum_{k=0}^{n}[-x][-x+1] \cdots[-x+k-1] R_{n-k} z^{k} \prod_{i=k+1}^{n}\left(1-z q^{i-x-1}\right):=\sum_{k=0}^{n} z^{k} A_{k}(x, B) \tag{10}
\end{equation*}
$$

The motivation for introducing this two-variable polynomial is that if $x=-1,(10)$ reduces to (5), while the coefficient of z^{n} in the left hand side of (10) equals $(-1)^{n} q^{\binom{n}{2}-x n}$ times the left hand side of (6).

Using the methods outlined in section $4, A_{k}(x, B)$ can be expressed explicitly;

$$
A_{k}(x, B)=\sum_{j=0}^{k}\left[\begin{array}{l}
n-x \tag{11}\\
k-j
\end{array}\right](-1)^{k-j} q\binom{k-j}{2}\left[\begin{array}{c}
-x+j-1 \\
j
\end{array}\right] \operatorname{PROD}(j, B),
$$

or recursively;

$$
\begin{gather*}
A_{k}(x, B)=\left[d_{t}\right]!\sum_{k-d_{t} \leq s \leq k} A_{s}\left(x, B^{\prime}\right) \\
{\left[\begin{array}{c}
c_{n}-n+d_{t}+s \\
d_{t}-k+s
\end{array}\right]\left[\begin{array}{c}
2 n-d_{t}-c_{n}-s-x-1 \\
k-s
\end{array}\right] q^{(k-s)\left(c_{n}+k-n\right)} .} \tag{12}
\end{gather*}
$$

Equation (12) can be viewed as a result in basic hypergeometric series. In the standard notation, ${ }_{t+1} \phi_{t}\binom{a_{1}, a_{2}, \ldots, a_{t+1}}{b_{1}, b_{2}, \ldots, b_{t}}$ stands for the sum

$$
\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \cdots\left(a_{t+1}\right)_{n}}{(q)_{n}\left(b_{1}\right)_{n} \cdots\left(b_{t}\right)_{n}}
$$

where $(w)_{n}=(1-w)(1-w q) \cdots\left(1-w q^{n-1}\right)$. The right hand side of (11) can be expressed as a ${ }_{t+2} \phi_{t+1}$ using the simple identity

$$
P R O D(j, B)=P R O D(0, B) \prod_{i=1}^{t} \frac{\left(q^{H_{i}-D_{i-1}+1}\right)_{j}}{\left(q^{H_{i}-D_{i}+1}\right)_{j}}
$$

(for $H_{i} \geq D_{i}$ with $H_{i}=h_{1}+\ldots+h_{i}, D_{i}=d_{1}+\ldots+d_{i}$, and B the board of Figure 1). In the case $t=2$, the right hand side of (12) can also be expressed as a ${ }_{4} \phi_{3}$ (by iterating the recurrence, then converting the q-binomial coefficients to q-rising factorials). Comparing (11) and (12) we get one ${ }_{4} \phi_{3}$ equals another ${ }_{4} \phi_{3}$, which is equivalent to Sears transformation [GaR,p.41]. Full details will be included in [Ha4].

References

[C-M] M. S. Cheema and T. S. Motzkin, Multipartitions and Multipermutations, Proc. Symposia in Pure Mathematics, Vol. XIX, Combinatorics (1971), 39-70.
[E-R] R. Ehrenborg, and M. Readdy, Juggling and applications to q-analogues, preprint (1994).
[EHR] R. Ehrenborg, J. Haglund, and M. Readdy, Colored juggling and rook placements, in preparation.
[GaR] Gasper and Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, Great Britain (1990).
[G-G] A. M. Garsia and I. Gessel, Permutation Statistics and Partitions, Advances in Mathematics 31(1979), $288-305$.
[Gor] B. Gordon, Two Theorems on Multipartite Numbers, Journal of the London Mathematical Society 38(1963), 459-464.
[G-R] A. M. Garsia and J. B. Remmel, q-Counting Rook Configurations, Journal of Combinatorial Theory (A)41(1986), 246-275.
[GJW] J. Goldman, J. Joichi, and D. White, Rook theory I: Rook equivalence of Ferrers boards, Proc. Amer. Math. Soc. 52(1975), $485-492$.
[Ha1] J. Haglund, Rook Placements, Compositions, and Permutations of Vectors, Doctoral Dissertation, University of Georgia (1993).
[Ha2] J. Haglund, Compositions and rook placements, preprint (1994).
[Ha3] J. Haglund, Vector versions of q-identities, preprint (1995).
[Ha4] J. Haglund, Rook theory and hypergeometric series, in preparation.
[K-R] I. Kaplansky, and J. Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13(1946), 259 - 268.
[Mal] P. A. MacMahon, Combinatory Analysis, Vol. 1, Cambridge University Press (1915).
[Ma2] P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge University Press (1916).
[Raw] D. Rawlings, The $(q-r)$ Simon Newcomb Problem, Linear and Multilinear Algebra, 10 (1981), 253-260.

Mathematics Department
Kennesaw State College
Marietta, GA 30061
jhaglund@kscmail.kennesaw.edu

