Compositions and *q*-rook Polynomials

by

James Haglund

Abstract: Several identities involving compositions of vectors and q-rook polynomials are derived. Applications include some new results on Rawlings (q-r) Simon Newcomb Problem, and a new recurrence relation for q-rook polynomials. A more general form of this recurrence occurs when studying a two variable rook polynomial, with connections to hypergeometric series.

Résumé: On établit plusieurs identités faisant intervenir des compositions vectorielles et les q-polynômes de tours. Les applications comprennent de nouveaux résultats sur le (q-r)Problème de Simon Newcomb, de Rawlings, et une nouvelle relation de récurrence pour les q-polynômes de tours. Une forme plus générale de cette réurrence apparaît lorsqu'on étudie un polynôme de tours à deux variables, relié aux séries hypergéométriques.

1. Introduction.

For a given vector $\mathbf{v} \in \mathbf{N}^t$, let $f_k(\mathbf{v})$ be the number of compositions of \mathbf{v} into k parts, i.e.

$$f_k(\mathbf{v}) := \sum_{\mathbf{w}_1 + \dots + \mathbf{w}_k = \mathbf{v}} 1 \qquad \mathbf{w}_i \in \mathbf{N}^t, \mathbf{w}_i \neq \mathbf{0}.$$

For example, $f_2(2,1) = 4$ since (2,1) = (2,0) + (0,1) = (0,1) + (2,0) = (1,1) + (1,0) = (1,0) + (1,1). MacMahon showed that this function is closely related to Simon Newcomb's Problem, which asks for the number of permutations of a multiset with a specified number of descents. For the multiset where *i* occurs v_i times, let $N_k(\mathbf{v})$ denote the number of multiset permutations with exactly k - 1 descents. MacMahon proved [Ma1]

$$\sum_{k} f_{k}(\mathbf{v}) z^{n-k} = \sum_{k} N_{k}(\mathbf{v}) (z+1)^{n-k} \qquad n = v_{1} + \ldots + v_{t}, \text{ and}$$
(1)

$$\sum_{k\geq 1} \binom{x}{k} f_k(\mathbf{v}) = \prod_i \binom{x+v_i-1}{v_i}.$$
 (2)

In previous work the author showed that compositions can be studied using rook theory. A board B is a subset of an $n \times n$ chessboard of squares. Let $r_k(B)$ be the number of ways of placing k non-attacking rooks (no two in the same row or column) on B, and let $a_k(B)$ be the number of placements of n non-attacking rooks on the $n \times n$ chessboard, with exactly n-k on B. Then

$$f_k(\mathbf{v}) = k! r_{n-k}(B_{\mathbf{v}}) / \prod_i v_i! \text{ and}$$
$$N_k(\mathbf{v}) = a_k(B_{\mathbf{v}}) / \prod_i v_i! \quad [\text{Ha1}], [\text{Ha2}],$$

where $B_{\mathbf{v}}$ is a certain board, easily described in terms of the coordinates of \mathbf{v} (in the notation of Figure 1, $B_{\mathbf{v}} = B(v_1 - 1, v_1; v_2, v_2; \ldots; v_t, v_t)$). Equations (1) and (2) can then be shown

to follow from the two classical results

$$\sum_{k=0}^{n} r_k(B)(n-k)!(z-1)^k = \sum_{k=0}^{n} z^k a_{n-k}(B) \qquad [K-R], \text{ and}$$
(3)

$$\sum_{k=0}^{n} x(x-1)\cdots(x-k+1)r_{n-k}(B) = \prod_{i=1}^{n} (x+c_i-i+1) \qquad [GJW].$$
(4)

In (4), it is assumed that B is a special type of board called a Ferrers board, with c_i squares in the i^{th} column.

Figure 1: The Ferrers board $B = B(h_1, d_1; h_2, d_2; ...; h_t, d_t)$. The first d_1 columns have height h_1 , the next d_2 columns have height $h_1 + h_2$, etc.

2. q-versions.

For Ferrers boards, Garsia and Remmel [G-R] found q-versions of (3) and (4), namely

$$\sum_{k=0}^{n} [k]! R_{n-k}(B) z^{k} \prod_{i=k+1}^{n} (1 - zq^{i}) = \sum_{k=0}^{n} z^{k} A_{k}(B), \text{ and}$$
(5)

$$\sum_{k=0}^{n} [x][x-1] \cdots [x-k+1] R_{n-k}(B) = \prod_{i=1}^{n} [x+c_i-i+1].$$
(6)

Here $[x] := (1 - q^x)/(1 - q)$ for any real x, $[k]! := [1][2] \cdots [k]$, and $R_k(B) := \sum_C q^{inv(C)}$, with the sum over all placements C of k non-attacking rooks on B, and inv(C) a statistic associated to C. The polynomials $A_k(B)$ reduce to $a_k(B)$ when q = 1. Garsia and Remmel proved these polynomials have nonnegative integral coefficients, and in [Ha1] their proof was extended to show $A_k(B)$ is also symmetric and unimodal.

The author originally noticed that if we define $f_k[\mathbf{v}]$ by taking q-versions of the identity $f_k(\mathbf{v}) = k! r_{n-k}(B_{\mathbf{v}}) / \prod_i v_i!$, i.e.

$$f_k[\mathbf{v}] := [k]! R_{n-k}(B_{\mathbf{v}}) / \prod_i [v_i]!,$$

then $f_k[\mathbf{v}]$ appeared to be a polynomial in q. The question naturally arose as to whether or not $f_k[\mathbf{v}]$ can be written as a sum over compositions as follows;

$$f_k[\mathbf{v}] = \sum_{\mathbf{w}_1 + \dots + \mathbf{w}_k = \mathbf{v}} q^{\beta(\mathbf{w}_1, \dots, \mathbf{w}_k)}$$

for some statistic β . The solution to this question builds on a construction originally due to Cheema and Motzkin [C-M] which in modified form has previously found application to questions involving partitions of vectors [G-G], [Gor]. Given a sequence of vectors $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_k$, Cheema and Motzkin construct a sequence of permutations $\pi_1, \pi_2, \ldots, \pi_t$ as follows; let Mbe the matrix whose i^{th} row, j^{th} column contains w_{ij} . Let π_1 be the permutation of the rows of M needed to sort the first column of M into non-increasing order, with two given rows not permuted with respect to each other if they have the same first column entry. Call this new matrix M_1 . Now do the same procedure to the second column, letting π_2 denote the permutation of the rows of M_1 needed to put the second column in non-increasing order, where two rows with the same second column entry are not permuted with each other. If our vectors have t coordinates, we end up in this way with t permutations π_1, \ldots, π_t . Letting $inv\pi_i(\mathbf{w}_1, \ldots, \mathbf{w}_k)$ denote the number of inversions of the i^{th} permutation so obtained, the q-version of $f_k(\mathbf{v})$ we seek is

$$f_k[\mathbf{v}] = \sum_{\mathbf{w}_1 + \ldots + \mathbf{w}_k = \mathbf{v}} q^{\sum_i inv\pi_i(\mathbf{w}_1, \ldots, \mathbf{w}_k) + 2\eta(\mathbf{w}_1, \ldots, \mathbf{w}_k)}.$$

The statistic $\eta(\lambda)$ equals $\Sigma_i(i-1)\lambda_i$ if λ is an integer partition; for a sequence of vectors adding to **v**, associate the *t* partitions ζ_1, \ldots, ζ_t , where ζ_i is the *i*th column of the matrix after it has been sorted by the permutation π_i , and let $\eta(\mathbf{w}_1, \ldots, \mathbf{w}_k)$ be the sum of $\eta(\zeta_i)$ for *i* in the range $1 \leq i \leq t$.

Proving that this definition of $f_k[\mathbf{v}]$ works is rather complicated [Ha1]. The hard part is to establish the identity

$$\sum_{k\geq 1} \begin{bmatrix} x\\k \end{bmatrix} f_k[\mathbf{v}] = \prod_i \begin{bmatrix} x+v_i-1\\v_i \end{bmatrix}$$

after which (6) is applied. As usual, $\begin{bmatrix} n \\ k \end{bmatrix}$ denotes the q-binomial coefficient.

MacMahon also studied unitary compositions of a vector v. A composition is unitary if all the coordinates w_{ij} of all the parts w_i are 0 or 1. Defining

$$g_k[\mathbf{v}] = \sum_{\mathbf{w}_1 + \dots + \mathbf{w}_k = \mathbf{v}} q^{\sum_i i n v \pi_i(\mathbf{w}_1, \dots, \mathbf{w}_k)},$$

 $g_k[\mathbf{v}]$ can be shown to satisfy

$$\sum_{k\geq 1} \begin{bmatrix} x\\k \end{bmatrix} g_k[\mathbf{v}] = \prod_i \begin{bmatrix} x\\v_i \end{bmatrix},\tag{7}$$

which implies $g_k[\mathbf{v}] = [k]! R_{n-k}(G_{\mathbf{v}}) / \prod_i [v_i]!$ for a certain Ferrers board $G_{\mathbf{v}}$ (the boards $G_{\mathbf{v}}$ originally occurred in the work of Kaplansky and Riordan, who showed $N_k(\mathbf{v}) = a_{n-k+1}(G_{\mathbf{v}}) / \prod_i v_i!$). Using the mathematics underlying juggling patterns, a bijective proof of (7) has recently been discovered by Ehrenborg and Readdy [E-R].

A q-version of the function $N_k(\mathbf{v})$ was already introduced by MacMahon [Ma2]; set

$$N_k[\mathbf{v}] := \sum_{\substack{\sigma \ k-1 \ descents}} q^{maj\sigma},$$

where $maj\sigma$ is the sum of the places where σ has descents, namely $\sum_{\sigma_i > \sigma_{i+1}} i$. This q-version turns out to be exactly what we need to extend our theorems connecting $N_k(\mathbf{v})$ to $A_j(B_{\mathbf{v}})$ and $A_j(G_{\mathbf{v}})$; we end up with the four identities

$$f_k[\mathbf{v}] = [k]! R_{n-k}(B_{\mathbf{v}}) / \prod_i [v_i]! \qquad N_k[\mathbf{v}] = A_k(B_{\mathbf{v}}) / \prod_i [v_i]!$$

$$g_k[\mathbf{v}] = [k]! R_{n-k}(G_{\mathbf{v}}) / \prod_i [v_i]! \qquad N_k[\mathbf{v}] = q^{E(k,v)} A_{n-k+1}(G_{\mathbf{v}}) / \prod_i [v_i]!$$

where $E(k, \mathbf{v}) = (k-1)n - \sum_{i=1}^{t} v_i(v_1 + \ldots + v_{i-1})$. Formulas like

$$\sum_{k=0}^{n} x^{k} f_{k}[\mathbf{v}] \prod_{i=k+1}^{n} (1 - xq^{i}) = \sum_{k=0}^{n} x^{k} N_{k}[\mathbf{v}]$$

now follow as consequences.

3. The r parameter.

Rawlings has introduced a more general version of the q-Simon Newcomb Problem which also depends on a parameter r [Raw]. He sets

$$N_k[\mathbf{v},r] := \sum_{\substack{\sigma \ k-1 \ r-descents}} q^{r-maj\sigma}$$

where an r-descent is a value of i for which $\sigma_i - \sigma_{i+1} \ge r$, and $r - maj\sigma$ equals the sum over all these i (where r-descents occur) plus the cardinality of the set $(i, j): 1 \le i \le j \le n$

and $\sigma_i > \sigma_j > \sigma_{i-r}$. This reduces to $maj\sigma$ when r = 1, and to $inv\sigma$ when r = t. This also connects nicely with q-rook theory; one can define boards $B_{\mathbf{v},r}$ and $G_{\mathbf{v},r}$ so that

$$N_k[\mathbf{v}, r] = A_k(B_{\mathbf{v}, r}) / \prod_i [v_i]!, \quad \text{and} \quad$$

$$N_{k}[\mathbf{v}, r] = q^{E(k, v, r)} A_{n-k+1}(G_{\mathbf{v}, r}) / \prod_{i} [v_{i}]!$$

with $E(k, \mathbf{v}, r) = (k-1)n - \sum_{i=1}^{t} v_i(v_1 + \ldots + v_{i-r})$. In the notation of Figure 1,

$$B_{\mathbf{v},r} = B(V_t - V_{t-r} - 1, v_t; v_{t-r}, v_{t-1}; v_{t-r-1}, v_{t-2}; \dots; v_2, v_{r+1}; v_1, V_r), \text{ and }$$

$$G_{\mathbf{v},r} = B(0, V_r; v_1, v_{r+1}; v_2, v_{r+2}; \dots; v_{t-r}, v_t),$$

with $V_i = v_1 + v_2 + \ldots + v_i$. One interesting corollary is a generalized version of Worpitsky's identity;

$$\prod_{i=1}^{t} \begin{bmatrix} z + v_{i-r+1} + v_{i-r+2} + \dots + v_i - 1 \\ v_i \end{bmatrix} = \sum_{j=0}^{n} \begin{bmatrix} z + n - j \\ n \end{bmatrix} N_j[\mathbf{v}, r]$$

(Worpitsky proved the case $v = 1^n$, q = r = 1 of the above). Another result obtained is that the polynomials $N_k[\mathbf{v}, r]$ are all symmetric and unimodal. This gives rise to the question of whether or not the functions

$$f_k[\mathbf{v}, r] := [k]! R_{n-k}(B_{\mathbf{v}, r}) / \prod_i [v_i]!, \text{ and}$$
$$g_k[\mathbf{v}, r] := [k]! R_{n-k}(G_{\mathbf{v}, r}) / \prod_i [v_i]!,$$

can be written as sums over compositions for some appropriately defined statistics. For $g_k[\mathbf{v}, r]$, the answer is yes ([Ha3], p.20; for an equivalent result formulated in terms of juggling see [E-R], Theorem 8.5). The question remains unanswered in general for $f_k[\mathbf{v}, r]$, although the special case $\mathbf{v} = 1^n$ can be dealt with by material in [EHR].

4. Recurrence relations.

Let $\mathbf{v}' = (v_1, \ldots, v_{t-1})$. It is easy to derive a recurrence relation for $R_k(B)$ [G-R] which in turn implies the recurrence

$$f_k[\mathbf{v}] = \sum_{j=0}^{\mathbf{v}_t} f_{k-j}[\mathbf{v}'] \begin{bmatrix} k\\ j \end{bmatrix} \begin{bmatrix} k-1+v_t-j\\ v_t-j \end{bmatrix} q^{(k-1)j}.$$

By applying induction to a result of Rawlings one can show that

$$N_{k}[\mathbf{v},r] = \sum_{j=0}^{v_{t}} N_{k-j}[\mathbf{v}',r] \begin{bmatrix} n+k-1-V_{t-r}-j\\v_{t}-j \end{bmatrix} \begin{bmatrix} V_{t-r}-k+1+j\\j \end{bmatrix} q^{j(k-1+V_{t-1}-V_{t-r})}.$$

Here $V_j = v_1 + \ldots + v_j$. Since the polynomials $N_k[\mathbf{v}, r]$ are special cases of the $A_k(B)$, one would suspect the A_k satisfy some kind of recurrence as well, which led to the following result:

Theorem 1 Let $B = B(h_1, d_1; ...; h_t, d_t)$ be the Ferrers board of Figure 1. Let $B' = B(h_1, d_1; ...; h_{t-1}, d_{t-1})$ be the board obtained from B by truncating the last d_t columns. Then

$$A_{k}(B) = [d_{t}]! \sum_{k-d_{t} \leq s \leq k} A_{s}(B') \begin{bmatrix} c_{n} - n + d_{t} + s \\ d_{t} - k + s \end{bmatrix} \begin{bmatrix} 2n - d_{t} - c_{n} - s \\ k - s \end{bmatrix} q^{(k-s)(c_{n}+k-n)}.$$
 (8)

Proof: A (seven page) combinatorial proof for the q = 1 case, for some B, is given in [Ha1,pp.73-80]. The general case is proven algebraically; let

$$PROD(x,B) = \prod_{i=1}^{n} [x + c_i - i + 1]$$

where c_i = the height of the i^{th} column, and start with the identity

$$A_{k}(B) = \sum_{j=0}^{k} {n+1 \choose k-j} (-1)^{k-j} q^{\binom{k-j}{2}} PROD(j,B)$$

which can be derived from (5) using the q-Vandermonde convolution. Now replace PROD(j, B) by $[j + c_n - n + 1]PROD(j, B^*)$, where $B^* = B(h_1, d_1; \ldots; h_{t-1}, d_{t-1}; h_t - 1, d_t - 1)$. Using

$$\begin{bmatrix} n+1\\k-j \end{bmatrix} = \begin{bmatrix} n\\k-j \end{bmatrix} + q^{n+1-k+j} \begin{bmatrix} n\\k-j-1 \end{bmatrix}$$

we get, after some rearrangement,

$$A_k(B) = [k + c_n - n + d_t]A_k(B^*) + [2n + 1 - c_n - d_t - k]A_{k-1}(B^*)q^{k-1+c_n-n+d_t}$$

Iterating this d_t times yields (8).

5. The x parameter.

Recently the author has been studying the function

$$\sum_{k=0}^{n} x(x-1)\cdots(x-k+1)r_{n-k}(B)(-1)^{k}(z-1)^{n-k} := \sum_{k=0}^{n} z^{k}a_{n-k}(x,B)$$

and its q-version

$$\sum_{k=0}^{n} [-x][-x+1] \cdots [-x+k-1] R_{n-k} z^{k} \prod_{i=k+1}^{n} (1-zq^{i-x-1}) := \sum_{k=0}^{n} z^{k} A_{k}(x,B).$$
(10)

The motivation for introducing this two-variable polynomial is that if x = -1, (10) reduces to (5), while the coefficient of z^n in the left hand side of (10) equals $(-1)^n q^{\binom{n}{2}-xn}$ times the left hand side of (6).

Using the methods outlined in section 4, $A_k(x, B)$ can be expressed explicitly;

$$A_{k}(x,B) = \sum_{j=0}^{k} {n-x \choose k-j} (-1)^{k-j} q^{\binom{k-j}{2}} {-x+j-1 \choose j} PROD(j,B),$$
(11)

or recursively;

$$A_{k}(x,B) = [d_{t}]! \sum_{\substack{k-d_{t} \leq s \leq k \\ d_{t} - k + s}} A_{s}(x,B')$$

$$c_{n} - n + d_{t} + s \left[2n - d_{t} - c_{n} - s - x - 1 \\ k - s \right] q^{(k-s)(c_{n}+k-n)}.$$
(12)

Equation (12) can be viewed as a result in *basic hypergeometric series*. In the standard notation, $_{t+1}\phi_t(\begin{array}{c}a_1,a_2,\ldots,a_{t+1}\\b_1,b_2,\ldots,b_t\end{array})$ stands for the sum

$$\sum_{n=0}^{\infty} \frac{(a_1)_n (a_2)_n \cdots (a_{t+1})_n}{(q)_n (b_1)_n \cdots (b_t)_n}$$

where $(w)_n = (1-w)(1-wq)\cdots(1-wq^{n-1})$. The right hand side of (11) can be expressed as a $_{t+2}\phi_{t+1}$ using the simple identity

$$PROD(j,B) = PROD(0,B) \prod_{i=1}^{t} \frac{(q^{H_i - D_{i-1} + 1})_j}{(q^{H_i - D_i + 1})_j}$$

(for $H_i \ge D_i$ with $H_i = h_1 + \ldots + h_i$, $D_i = d_1 + \ldots + d_i$, and B the board of Figure 1). In the case t = 2, the right hand side of (12) can also be expressed as a $_4\phi_3$ (by iterating the recurrence, then converting the q-binomial coefficients to q-rising factorials). Comparing (11) and (12) we get one $_4\phi_3$ equals another $_4\phi_3$, which is equivalent to Sears transformation [GaR,p.41]. Full details will be included in [Ha4].

References

- [C-M] M. S. Cheema and T. S. Motzkin, Multipartitions and Multipermutations, Proc. Symposia in Pure Mathematics, Vol. XIX, Combinatorics (1971), 39-70.
- [E-R] R. Ehrenborg, and M. Readdy, Juggling and applications to q-analogues, preprint (1994).
- [EHR] R. Ehrenborg, J. Haglund, and M. Readdy, Colored juggling and rook placements, in preparation.
- [GaR] Gasper and Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge, Great Britain (1990).

- [G-G] A. M. Garsia and I. Gessel, Permutation Statistics and Partitions, Advances in Mathematics 31(1979), 288 - 305.
- [Gor] B. Gordon, Two Theorems on Multipartite Numbers, Journal of the London Mathematical Society 38(1963), 459 464.
- [G-R] A. M. Garsia and J. B. Remmel, q-Counting Rook Configurations, Journal of Combinatorial Theory (A)41(1986), 246 - 275.
- [GJW] J. Goldman, J. Joichi, and D. White, Rook theory I: Rook equivalence of Ferrers boards, Proc. Amer. Math. Soc. 52(1975), 485 - 492.
- [Ha1] J. Haglund, Rook Placements, Compositions, and Permutations of Vectors, Doctoral Dissertation, University of Georgia (1993).
- [Ha2] J. Haglund, Compositions and rook placements, preprint (1994).
- [Ha3] J. Haglund, Vector versions of q-identities, preprint (1995).
- [Ha4] J. Haglund, Rook theory and hypergeometric series, in preparation.
- [K-R] I. Kaplansky, and J. Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13(1946), 259 - 268.
- [Mal] P. A. MacMahon, Combinatory Analysis, Vol. 1, Cambridge University Press (1915).
- [Ma2] P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge University Press (1916).
- [Raw] D. Rawlings, The (q-r) Simon Newcomb Problem, Linear and Multilinear Algebra, 10 (1981), 253-260.

Mathematics Department Kennesaw State College Marietta, GA 30061 jhaglund@kscmail.kennesaw.edu