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Abstract: Several identities involving compositions of vectors and ^-rook polynomials are
derived. Applications include some new results on Rawlings {q-r) Simon Newcomb Problem,
and a new recurrence relation for q-rook polynoinials. A more general form of this recurrence
occurs when studying a two variable rook polynomial, with connections to hypergeometric
series.

Resume: On etablit plusieurs identites faisant intervenir des compositions vectorielles et
les g'-polynomes de tours. Les applications comprennent de nouveaux resultats sur Ie (q - r)
Probleme de Simon Newcomb, de Rawlings, et une nouvelle relation de recurrence pour les
g-polynomes de tours. Une forme plus generate de cette reurrence apparait lorsqu'on etudie
un polynome de tours a deux variables, relie aux series hypergeometriques.

1. Introduction.

For a given vector v 6 N(, let /A;(v) be the number of compositions of v into k parts, i. e.

 

) := E i
w^+...+w^=v

w,  N\Wi ^0.

For example, , 2(2, !) = 4 since (2, 1) = (2, 0) + (0, 1) = (0, 1) + (2, 0) = (1, 1) + (1, 0) =
(1, 0) + (1, 1). MacMahon showed that this function is closely related to Simon Newcomb's
Problem, which asks for the number of permutations of a multiset with a specified number of
descents. For the multiset where i occurs v, times, let ^Vfc(v) denote the number of multiset
permutations with exactly k -1 descents. MacMahon proved [Mal]

Zf^}zn-k=^N, (v){z+l)
k k

n-k n = Ui +. .. +Ut, and

E
k>l

/. (v) = n X + V{ -1

Vi

(1)

(2)

In previous work the author showed that compositious can be studied using rook theory.
A board B is a. subset ofan n x n chessboard of squares. Let rk(B) be the number of ways
of placing k non-attacking rooks (no two in the same row or column) on B, dnd let afc(jB) be
the number of placements of n non-attacking rooks on the n x n chessboaj-d, with. exactly
n- fc on B. Then

A(v) = fc'r, -fc(Bv)/H. v. ! and

^(v) = afc(Bv)/H, v, ! [Hal], [Ha2],

where By is a certain board, easily described in terms of the coordinates of v (in the notation
of Figure 1, Bv = B(v^ - 1, vi; uz, "2; ... ; Vt, Vt)). Equations (1) and (2) can then be shown
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to follow from the two classical results

^ rk(B)(n - k)\(z - 1)A = E ̂ k^n-k(B) [K-R], and
fc=0 fc=0

^ ̂  -1). .. (., -&+ l)r^(B) = n(3;+c,. - i + 1) [GJWj.

(3)

(4)
fc=0 t=l

In (4), it is assumed that 5 is a special type of board called a F errors board, with c,' squares
in the ith column.

hz di

^

h,

n

A(
dt

B

Figure 1: The Ferrers board B = B(h^, di; ,13, ^2; . . . ; ^t, df).

The first d-i columns have height Ai, the next d-^ columns have height Ai + As, etc.

2. 9-versions.

For Ferrers boaj-ds, Gaj-sia and Remmel [G-R] found ^-versions of (3) and (4), namely

n

^[k}\Rn^{B}zk H (1 - zq') = ^^A, (B), and
k=0 t=fc+l fe==0

n

^[x][x - 1]. --[x-k+ l}Rn-k{B) =^[[x+c, -i+l}.
fc=0 «=1

(5)

(6)
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Here [x} := (1 - gr)/(l - g) for any real x, [k}\ := [l][2]. -. [fc], and ̂ (B) := Ec9tnu(c),
with the sum over all placements C ot k non-attacking rooks on B, and inv(C) a statistic
associated to C. The polynomials Ak(B) reduce to ak{B) when g = 1. Garsia and Remmel
proved these polynomials have nonnegative integral coefficients, and m [Hal] their proof was
extended to show Ak{B) is also symmetric and unimodal.

The author originally noticed that if we define /fc[v] by taking g-versions of the Identity
/fc(v) = fc!^_fc(Bv)/n. u.. !, i. e.

/, [v] := [^!^-fc(Bv)/n. [y. ]!,

then /fc[v] appeared to be a polynomial in q. The question naturally arose as to whether or
not fk[v} can be written as a sum over compositions as follows;

AM = E
wi+...+w^=v

7^(wl--wk)

for some statistic ̂ . The solution to this question builds on a construction originally due to
Cheema and Motzkin [C-M] which in modified form has previously found application to ques-
tions involving partitions of vectors [G-G], [Gor]. Given a sequence of vectors Wi, W2,..., w^,
Cheema and Motzkin construct a sequence of permutations TTi, ̂ 2,... , 7Tt as follows; let M
be the matrix whose itlt row, jth column contains w;j. Let TTi be the permutation of the rows
of M needed to sort the first column of M into non-increasing order, with two given rows
not pennuted with respect to each other if they have the same first column entry. Call this
new matrix Mi. Now do the same procedure to the second column, letting ^2 denote the
permutation of the rows of Mi needed to put the second column in non-increasing order,
where two rows with the same second column entry are not permuted with each other. If
our vectors have t coordinates, we end up in this way with t permutations TTi,... , 7T(. Letting
inv7r;(wi,... , Wk) denote the number of inversions of the i permutation so obtained, the
g-version of /fc(v) we seek is

A[v] = 1^ gS;.n^. (wi,.... W^)+2r, (Wi,..., W^)^
wi+...+w^=v

The statistic T){\) equals S, (i - 1)A, if A is an integer partition; for a sequence of vectors
adding to v, associate the t partitions Ci,..., Ct> where C< is the ith column of the matrix
after it has been sorted by the permutation TT,, and let ??(wi,... , Wfc) be the siun of 7y(C.)
for i in the range 1 <, i <.t.

Proving that this defimtion of /fc[v] works is rather complicated [Hal]. The hard part is
to establish the identity

s:[^AM=nr:::-1]
k>l

n

after which (6) is applied. As usual, ^ denotes the g-binomial coefficient.
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MacMahoa also studied unitary compositions of a vector v. A composition is unitary if
all the coordinates w,j of all the parts w, are 0 or 1. Defining

^fc[v] =

^[v] can be shown to satisfy

.E
w^+... +w^=v

E, tnuir, (w^,...,w^)

^[:]^=n[;], (7)

which implies ^jk[v] == [k]lRn-k(Gv')/Ui[vi]l for a certain Ferrers boaj-d Gv (the boards Gv
originally occurred in the work of Kaplansky and Riordan, who showed Arfe(v) = an-fc+i (G'v)/!!^:!).
Using the mathematics underlying juggling patterns, a bijective proof of (7) has recently been
discovered by Ehrenborg and Readdy [E-R].

A g-version of the function Arfe(v) was already introduced by MacMahon [Ma2]; set

^[v] := E 9maJ<T,
k-1 de.acen.ts

where maja is the sum of the places where a- has descents, najnely 'E^^^^i. This ^-version
turns out to be exactly what we need to extend oiu- theorems connecting Nk(y) to Aj(Bv)
cind Aj(Gv)', we end up with the four identities

fk[v] == [fc]!^-fc(Bv)/n<M! ^[v] = A, (Bv)/H. [u. ]!

9kW = [fc]!E. -fc(G'v)/n. H! ^[v] = qE^An-k^G^/Tli[v, ]\

where E(k, v) = (fc - l)n - ^.L^ u, (vi + ... + v.-i). Formulas like

E^fcA[v] H(i-^t)=E^^[v]
k=0 i=k+l k=0

now follow as consequences.

3. The r paj-ameter.

Rawlings has introduced a more general version of the g-Simon Newcomb Problem which
also depends on a paj-ajneter r [Raw]. He sets

^[v, r]:= E gr-maj<r
Jb-l r-descents

where an r-descent is a value of i for which <T, - (7, +i >. r, and r - maja equals the sum
over all these i (where r-descents occur) plus the cardinality of the set (i, j) :1 <:i <j <:n
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and <7, > o-j > o-, _r. This reduces to majo- when r = 1, and to inva- when r = t. This also
connects nicely with g-rook theory; one can define boaj-ds -Bv, r and G'v, r so that

^[v, r]=Afc(Bv,. )/H, M!, and

^[v, r] = ^. u'r)An-^i(Gv,. )/n. N'.
with E{k, v, r)={k- l)n - E.Li u. (ui + ... + v, -r). In the notation of Figure 1,

Bv, ^ = B{Vt-Vt-r -l, Ut;U(-r, Ut-l;Ut-r-l, Ut-2;... ;U2, Vr+l;Vl, 1/r), and

G!v, r = B(0, Vr; Vl, Ur+l;^2, Vr+2;... ; Ut-r, V(),

with V, = v-i+v-2+ ... +Vi. One interesting corollary is a generalized version of Worpitsky's
identity;

U[z+u. -^+v«-^+---+vl -l]=^[z+^-J]7V, [v, r]

(Worpitsky proved the case y=ln, g=r=lof the above). Another result obtained is that
the polynomials Nfc[v, r] are all symmetric and ummodal. This gives rise to the question
of whether or not the functions

/fc[v, r] := [fc]!^_fc(Bv,. )/H, N', and

^[v, r]:=[fc]!^-fc(G'v, r)/n. H',
can be written as sums over compositions for some appropriately defined statistics. For
5fc[v, r], the answer is yes ([Ha3], p. 20; for an equivalent result formulated in terms of juggling
see [E-R], Theorem 8.5). The question remains unanswered in general for A[v, r] , although
the special case v = 1" can be dealt with by material in [EHR].

4. Recurrence relations.

Let v' = (vi,..., Vf-i). It is easy to derive a recurrence relation for Rk{B) [G-R] which in
turn implies the recurrence

AM=EA-, [vi[,i][*^+-r^(t-y
By applying induction to a result of Rawlings one can show that

^[v^]=E^-. [v^]
J=0

n+k-1- Vi-r-j} ^Vt-r -k+l+j
Vf-J

.

Vt-r -k+1 +^ , (Jk-l+V, _, -^_, )^

Here Vj = ui+ ... + vj. Since the polynomials Nk[v, r] are special cases of the Afe(B), one
would suspect the Ak satisfy some kind of recurrence as well, which led to the following
result:
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Theorem 1 Let B = B(hi, d^,... ; h^di) be the Ferrers board of Figure 1. Let B' =
B(/ii, <^i;... ; A(_i, c?t-i) be the board obtained from B by truncating the last di columns.
Then

Cn-n+dt+ s~[ [2n- df- Cn- sA^=w^/^)[c'r_:t+s][
k-d, <s<k

k - s
,
(k-s)(cn+k-n) (8)

Proof: A (seven, page) combinatorial proof for the 9 = 1 case, for some -B, is given in
[Hal, pp. 73-80]. The general cdse is proven algebraically; let

n

PROD{x, B) = ]^[[x +a-i+l}
t'=l

where c; = the height of the i column, and start with the identity

A.W =E [;^1 {-^k-j^PROD^B}
^OiR~3

which can be derived from (5) using the g-Vzindermonde convolution. Now replace PROD(j, B)
by L?'+c^ - n+ l]PROD(j, B'), where B- = B{h^d^,... ;At_i, ^-i; ̂  - 1, ^ - 1). Using

nf?+11=[. " . 1+<7n+1-^'
.
k-j\ ==[k-j\+q " " [k-j-1^

we get, after some rearrangement,

Ak{B) =. [k+cn-n+ d,}Ak{B-) +[2n+l-c^-d, - k}Ak-^B-)qk-l+cn-n+dt.

Iterating this df times yields (8). .

5. The x pctrajneter.

Recently the author has been studying the function

^x{x-l)---(x-k+ l)r^-k{B)(-l)k(z - l)"-fc := ̂  zfca^(. r, B)
fc=0 fc=0

and its g-version

^[-x}[-x+l]... [-x+k-l]Rn-kZk H {l-zqi-I-l)^^zkAk(x, B). (10)
fc=0 *=A+l <;=0

The motivation for introducing this two-vajiable polynomial is that if a; = -1, (10) reduces
to (5), while the coefficient of zn in the left hand side of (10) equals (-l)nq^)~xn times the
left hand side of (6).
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Using the methods outlined in section 4, Afc(a:, B) can be expressed explicitly;

A. (., B) = S ["^ : ;] (-Dk-^"l [-z +/ - ' ] PRODU, B), (11)
or recursively;

A,{x^B}=W ^ A^x, B')
k-dt<s<k

Cn-n+d, +s^2n-d, -c^-s-x-^^-. )(c^-n)
it - k+ s J L k - (12)5 J L k - s

Equation (12) can be viewed as a result in basic hypergeometric series. In the standard
notation, (+i^t( a^ a^'- . . ' a^+1 ) stands for the sum

7l, 02,..., 0(

E (ai)n(a2)n---(a(+i)r
n^O (9)n(6l)n . . . (&<)n

where (w)^ = (1 - w)(l -wg)... (1 - wqn-1). The right hand side of (11) can be expressed
as a t+2<f>t+i using the simple identity

t ^ff, -£)._i+11.(9
PROD^ B) = PROD{0, B} g ̂ ^

(for ̂ f; ̂  A with ̂ ; = hi+ ... +hi, D, = di+ ... + cf;, and B the board of Figure 1).
In the case t =2, the right hand side of (12) can cdso be expressed as a 4^3 (by iterating
the recurrence, then converting the ̂ -binomial coefficients to ̂ -rising factorials). Comparing
(11) and (12) we get one 4^3 equals another ̂ 3, which is equivalent to Sears transformation
[GaR, p.41]. Full details will be included in [Ha4j.
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