First steps towards Exact Algebraic Identification

Christiane HESPEL
I.N.S.A. Laboratoire L.A.N.S.

20, avenue des Buttes de Coësmes
35043 Rennes Cédex-FRANCE
e-mail : hespel@nimbus.irisa.fr

Gérard JACOB
L.IF.L.(U.A. 369 C.N.R.S.)

Bat.M3, Université Lille I
59655 Villeneuve d'Ascq Cédex-FRANCE
e-mail : jacob@lifl.fr

Abstract

This paper presents the first step toward solving the problem of the Exact Algebraic Identification. This problem consists in computing the coefficients of a non commutative generating series when only the Taylor expansion of some inputs (at $t=0$), and the Taylor expansion (at $t=0$) of associated outputs are known. *

Cet article présente la première étape vers la résolution du problème de l'Identification Algébrique Exacte. Ce problème consiste à calculer les coefficients d'une série génératrice non commutative, connaissant les développements de Taylor (en $t=0$) des entrées, et les développements de Taylor (en $t=0$) des sorties correspondantes.

1 Introduction

The input/output behaviour of a dynamic system

$$
(\Sigma) \begin{cases}\dot{\mathrm{q}} & =g_{0}(q)+\sum_{i=1}^{m} a_{i}(t) g_{i}(q) \\ y(t) & =h(q)\end{cases}
$$

- where the state q belongs to a finite dimensional \mathbb{R}-analytic manifold Q,
- the vector fields f, g_{i} and the scalar observation function h are analytic and defined in a neighbourhood of $q(0)$.
- the inputs a_{i} are real and piecewise continuous and everywhere right continuous.

[^0]The output of (Σ) may be obtained from its generating series [3]

$$
G=\sum_{l \geq 0} \sum_{i_{l}=0}^{m} g_{i_{1}} \cdots g_{i_{l}} \circ h_{\left.\right|_{q_{0}}} z_{i_{1}} \cdots z_{i_{l}}
$$

where $g_{i} \circ h=\sum_{s=1}^{N} g_{i}^{s}(q) \frac{\partial h}{\partial q^{s}}$ denotes the Lie derivation of h by the vector field g_{i}.
This generating series G is a formal series in the non commutative variables taken in the encoding alphabet $Z=\left\{z_{0}, z_{1}, \ldots, z_{m}\right\}$ corresponding to the system inputs ($a_{0}, a_{1}, \cdots, a_{m}$) (we have to set $a_{0}(t) \equiv 1$).

In this paper, we are interested in solving the "algebraic identification problem": Is there an algorithm that enables to compute exactly all the coefficients of the generating series G, when only the Taylor expansions (at $t=0$) of some finite set of inputs, and the Taylor expansions (at $t=0$) of associated outputs are known?

A preliminary problem is the following: is the generating series encoding a faithful representation? In other words, if the output $y(t)$ is equal to zero whatever the input may be, is the generating series necessarily equal to zero? Independant positive proofs have been given by M.Fliess [5], C.Reutenauer [9],Y.Wang and E.D.Sontag [11]. The proof of M.Fliess is based on defining outputs for generalized inputs. The two other proofs are based on computing outputs for some parametrized inputs. The proof of C.Reutenauer uses analytic expansion of the output on parameters. The proof of Y.Wang and E.D.Sontag uses a noncommutative partial derivative computation towards parameters. Nevertheless, none of these proofs provides an exact identification method.

We present here a first step towards solving this problem of the algebraic identification: At once, we compute the iterated derivatives of the output $y(t)$, as linear combinations of the input multiderivatives. Hence, the formula of F.Lamnabhi and P.Crouch [8] is redemonstrated. Let us remark that an interpretation of this formula has been given by E.D.Sontag and Y.Wang [11]. Then, we provide an algorithm for the computation of the coefficients of the input multiderivatives appearing in the expressions of the iterated derivatives of the output $y(t)$. The problem of the Algebraic Identification will be solved when we are able to identify the coefficients of the generating series, from the coefficients of the input multiderivatives.

2 Preliminaries and notations

See $[3,4,7,10]$. We associate with (Σ) the encoding alphabet $\mathcal{Z}=\left\{z_{0}, z_{1}, \cdots, z_{m}\right\}$. A word $w \in \mathcal{Z}^{*}$ is a finite sequence of letters in \mathcal{Z}. The empty word is denoted by ε. A formal series S (in the noncommuting variables z_{i}) with coefficients in \mathbb{R} is any mapping of \mathcal{Z}^{*} into \mathbb{R} :

$$
S=\sum_{w \in Z^{*}}<S \mid w>w
$$

The operations of sum, and Cauchy product, of two series S and T are defined by

$$
S+T=\sum_{w \in Z^{*}}(<S|w>+<T| w>) w \quad S . T=\sum_{w \in Z^{*}} \sum_{u v=w}<S|u>.<T| v>w
$$

In that way, the set of formal series on \mathcal{Z} is an associative algebra denoted by $\mathbb{R} \ll \mathcal{Z}\rangle>$. For each word $w \in Z^{*}$ we define recursively both a differential operator $\mathcal{Y}(w)$ and an iterated integral $\int_{0}^{t} \delta_{a}(w)$, as follows:

- The differential operators $\mathcal{Y}(w)$ are defined as follows, starting with $\mathcal{Y}(\varepsilon)=I d$:

$$
\begin{aligned}
& \mathcal{Y}\left(z_{i}\right)=\sum_{s=1}^{N} g_{i}^{s}(q) \frac{\partial}{\partial q^{s}} \quad \forall i \quad 0 \leq i \leq m \\
& \mathcal{Y}\left(v z_{j}\right)=\mathcal{Y}(v) \circ \mathcal{Y}\left(z_{j}\right) \quad \forall v \in Z^{*} \quad \forall z_{j} \in Z .
\end{aligned}
$$

Any word $w=z_{i_{1}} \cdots z_{i_{p}}$ and any analytical function h give rise to the iterated Lie derivative:

$$
\mathcal{Y}(w) \circ h=g_{i_{1}} \cdots g_{i_{p}} \circ h
$$

- Similarly, the iterated integrals $\int_{0}^{t} \delta_{a}(w)$ are defined as follows:

$$
\left\{\begin{aligned}
\int_{0}^{t} \delta_{a}(\varepsilon) & =1 & & \forall t \geq 0 \\
\int_{0}^{t} \delta_{a}\left(v z_{i}\right) & =\int_{0}^{t}\left(\int_{0}^{\tau} \delta_{a}(v)\right) a_{i}(\tau) d \tau & & \forall v \in Z^{*} \quad \forall z_{j} \in Z
\end{aligned}\right.
$$

We introduce naturally the two following formal series:

- $G=\sum_{w \in Z^{*}}\left[\mathcal{Y}(w) o h_{1_{q_{0}}}\right] w \quad$ is the generating series, or 'Fliess series' of (Σ).
- $\mathcal{C}_{a}(t)=\sum_{w \in Z^{*}}\left[\int_{0}^{t} \delta_{a}(w)\right] w \quad$ is the 'Chen series' of the input a (see [1]).

According to Chen's notation [1], (the order used here being the reverse of Fliess' one [4]), the Fliess fundamental formula can be alternatively written as:

$$
\begin{aligned}
& y(t)=\sum_{w \in Z^{*}}\left[\mathcal{Y}(w) \circ h_{\left.\right|_{q_{0}}}\right] \int_{0}^{t} \delta_{a}(w) \\
& y(t)=\sum_{w \in Z^{*}}<G\left|w><\mathcal{C}_{a}(t)\right| w>=<G \| \mathcal{C}_{a}(t)>
\end{aligned}
$$

(where \| means infinite sum). More generally, any power series H over \mathcal{Z}, the coefficients of which satisfy the following convergence condition: " $\exists K, L \in \mathbb{R}^{+}$such that any $w \in Z^{\text {" }}$ satisfies $\mid<H_{|w>|<K| w|!L|w| " ~ d e f i n e s ~ t h e ~ c a u s a l ~ f u n c t i o n a l ~ d e f i n i n g ~ t h e ~ o u t p u t: ~}^{\text {a }}$

$$
\left.y_{H}(t)=\sum_{w \in Z^{*}}<H|w><C(t)| w\right\rangle
$$

We define the concatenated control $a \sharp v$ of the two inputs a defined in $\left[0, t_{1}[\right.$ and v defined in $\left[0, t_{2}\left[\right.\right.$, as being the input defined on $\left[0, t_{1}+t_{2}[\right.$ by:

$$
a \sharp v(t)=\left\{\begin{array}{lll}
a(t) & \text { if } & 0 \leq t<t_{1} \\
v\left(t-t_{1}\right) & \text { if } & t_{1} \leq t<t_{1}+t_{2}
\end{array}\right.
$$

Then we have the relation between the Chen series [12]: $\mathcal{C}_{a \sharp v}\left(t_{1}+\tau\right)=\mathcal{C}_{a}\left(t_{1}\right) \cdot \mathcal{C}_{v}(\tau)$.

Lemma: The derivative of a Chen series \mathcal{C}_{a} is $\frac{d}{d t} \mathcal{C}_{a}=\mathcal{C}_{a} . \mathcal{L}_{a}$, where $\mathcal{L}_{a}=\sum_{0 \leq i \leq m} a_{i} . z_{i}$.
Proof : Let us call left remainder by some polynomial P, noted " $P \triangleleft$ ", the linear map defined on the power series $G \in \mathbb{R} \ll \mathcal{Z} \gg$ by the property:

$$
\forall w \in \mathcal{Z}^{*}, \quad<P \triangleleft G|w>=<G| w \cdot P>
$$

Hence for any words u and v we have $u \triangleleft w=v$ if $w=v u$, else 0 . We obtain successively:

$$
\begin{aligned}
\left.\frac{d}{d t}<\mathcal{C}_{a} \right\rvert\, w> & =\sum_{z \in \mathcal{Z}}\left[\int_{0}^{t} \delta(z \triangleleft w)\right] a_{z}(t) \\
& =\sum_{z \in \mathcal{Z}}<\mathcal{C}_{a}\left|z \triangleleft w>a_{z}(t)=\sum_{z \in \mathcal{Z}}<\mathcal{C}_{a} . z\right| w>a_{z}(t)
\end{aligned}
$$

In other words,

$$
y^{(1)}(t)=<\mathcal{L}_{a}(t) \triangleleft G \| \mathcal{C}_{a}(t)>=<G \mid \mathcal{C}_{a}(t) \cdot \mathcal{L}_{a}(t)>
$$

(Note that this lemma has been presented by Y.Wang and E.D.Sontag [13] in the input-output functional derivative form, by using concatenated inputs).

Let $a \sharp \mu$ the concatenated input of an input a defined in $\left[0, t_{1}[\right.$, and of an input μ defined in $\left[0, t_{2}[\right.$. According to our formalism, we obtain the corresponding output derivative:

$$
\begin{aligned}
& \text { for } 0<t<t_{1} \\
& \text { for } t_{1}<t_{1}+t<t_{1}+t_{2} \\
& \text { and then } \\
& \dot{\mathrm{y}}(t)=\left\langle G \| \mathcal{C}_{a}(t) \cdot \mathcal{L}_{a}(t)\right\rangle \\
& \dot{\mathbf{y}}(t)=\left\langle G \| \mathcal{C}_{a}\left(t_{1}\right) \cdot \mathcal{C}_{\mu}(t) \cdot \mathcal{L}_{\mu}(t)\right\rangle \\
& \lim _{\mathbf{t} \rightarrow 0^{+}}\left[\dot{\mathrm{y}}\left(t_{1}+t\right)\right]=\left\langle G \| \mathcal{C}_{a}\left(t_{1}\right) \cdot \mathcal{L}_{\mu}\left(0^{+}\right)\right\rangle
\end{aligned}
$$

3 Three proofs about undistinguishability

We recall briefly three proofs of the following proposition:
Proposition: The generating series representation of the input/output functionals is faithful. In other words, any series undistinguishable from 0 is identically null.

3.1 The proof of C. Reutenauer

(See [9]). For $k=1 \cdots p$, let $i_{k} \in[1 \cdots m]$ and let $a_{k}(t)$ the input defined on $\left[0, t_{k}[\right.$ by:

$$
a_{k, 0}(t)=1, \quad a_{k, i_{k}}(t)=\frac{\alpha_{k}}{t_{k}}, \quad a_{k, i}=0 \quad \text { if } \quad i \neq i_{k}
$$

The Chen series of the input a_{k} at time t_{k} is $\mathcal{C}_{a_{k}}\left(t_{k}\right)=e^{t_{k} z_{0}+\alpha_{k} z_{i_{k}}}$. Then the Chen series associated to the input $b=a_{1} \sharp a_{2} \sharp \cdots \sharp a_{p}$ at time $t_{1}+\cdots t_{p}$ is

$$
\mathcal{C}_{a_{1}}\left(t_{1}\right) \cdots \mathcal{C}_{a_{p}}\left(t_{p}\right)=e^{t_{1} z_{0}+\alpha_{1} z_{i_{1}}} \cdots e^{t_{p} z_{0}+\alpha_{p} z_{i p}}
$$

The power series expansion of this exponential product can be reordered toward the $2 p$ variables $t_{1}, \cdots, t_{p}, \alpha_{1}, \cdots, \alpha_{p}$. So, using multi-indices $\mathbf{j}=\left(j_{1}, \cdots \ldots, j_{p}\right)$ and $\mathbf{n}=\left(n_{1}, \cdots, n_{p}\right)$, and standard multi-index power notation, we can write:

$$
y(t)=<G\left\|\sum_{\mathbf{j}, \mathbf{n}} t^{\mathbf{j}} \alpha^{\mathbf{n}} \mathcal{C}_{\mathbf{j}, \mathbf{n}}>=\sum_{\mathbf{j}, \mathbf{n}} t^{\mathbf{j}} \alpha^{\mathbf{n}}<G\right\| \mathcal{C}_{\mathbf{j}, \mathbf{n}}>
$$

The last expression defines an analytical function of the $2 p$ variables t_{i} and α_{k} in a neighbourhood of zero. But by assumption, it must be equal to zero whatever $t_{i}(>0)$ and α_{k} may be . Thus it is identically equal to zero. But the coefficient of the monomial $t_{1}^{j_{1}} \alpha_{1} \cdots t_{p-1}^{j_{p-1}} \alpha_{p-1} t_{p}^{j_{p}}$ in $y(t)$ is exactly reduced to the term: $\langle G| z_{0}^{j 0} z_{1} \cdots z_{0}^{j_{p-1}} z_{i_{p-1}} z_{0}^{j_{p}}>$. Since every word w can be written in the form $w=z_{0}^{j_{0}} z_{1} \cdots z_{0}^{j_{p-1}} z_{i_{p}}$, the series G is identically null.

3.2 The proof of M. Fliess

(See [5]). For $\varepsilon>0, \varepsilon$ small, there are inputs a and b the Chen series of which are

$$
\mathcal{C}_{a}=e^{\varepsilon z_{0}} \quad ; \quad \mathcal{C}_{b}=e^{2 \varepsilon z_{0}}
$$

And then, $\mathcal{C}_{b}-\mathcal{C}_{a}=\epsilon^{2 \varepsilon z_{0}}-e^{\varepsilon z_{0}}=\varepsilon z_{0}+O\left(\varepsilon^{2}\right)$ and $z_{0}=\lim _{t \rightarrow 0} \frac{1}{\varepsilon}\left[\mathcal{C}_{b}-\mathcal{C}_{a}\right]$.
If $z_{i} \neq z_{0}$ an input a_{i} may be defined, the Chen series of which is

$$
\mathcal{C}_{a_{i}}=e^{\varepsilon \tilde{z}_{0}+\varepsilon^{2} z_{i}}
$$

And then, $\mathcal{C}_{a_{i}}-\mathcal{C}_{a}=e^{\varepsilon z_{0}+\varepsilon^{2} z_{i}}-e^{\varepsilon z_{0}}=\varepsilon^{2} z_{i}+O\left(\varepsilon^{3}\right)$ and $z_{i}=\lim _{c \rightarrow 0} \frac{1}{\varepsilon^{2}}\left[\mathcal{C}_{a_{i}}-\mathcal{C}_{a}\right]$
Now, G being undistinguishable from zero, we proof that its left remainders by the letters have the same property. Indeed, we have for any Chen series \mathcal{C} :

$$
\begin{aligned}
\left\langle z_{0} \triangleleft G \| \mathcal{C}\right\rangle=\left\langle G \| \mathcal{C} z_{0}\right\rangle & =\text { lim }_{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\left\langle G \| \mathcal{C} . \mathcal{C}_{b}\right\rangle-\left\langle G \| \mathcal{C} . \mathcal{C}_{b}\right\rangle\right]=0 \\
\forall i \in[1, m], \quad\left\langle z_{i} \triangleleft G \| \mathcal{C}\right\rangle=\left\langle G \| \mathcal{C} z_{i}\right\rangle= & \text { lim }_{\epsilon \rightarrow 0} \frac{1}{\varepsilon^{2}}\left\langle\left\langle G \| \mathcal{C} . \mathcal{C}_{a_{i}}\right\rangle-\left\langle G \| \mathcal{C} . \mathcal{C}_{a}\right\rangle\right]=0
\end{aligned}
$$

Then, the left remainder power series $z_{0} \triangleleft G$ and $z_{i} \triangleleft G$ are undistinguishable from zero. Recursively, we deduce that it is true also for the left remainder of G by any word w. From what follows that G is identically null:

$$
\forall w \in Z^{*}<G|w>=<w \triangleleft G| \varepsilon>=0
$$

3.3 The proof of \mathbb{E}.D. Sontag and \mathbb{Y}. Wang

(See[11]). This proof is based on computation of some noncommutative parameters partial derivatives of the input-output map. With our formalism, let us consider a concatenation of constant inputs:

$$
\begin{gathered}
b=\mu_{1} \sharp \mu_{2} \sharp \cdots \sharp \mu_{p} \\
\text { the input } \mu_{k}=\left(\mu_{k, 1}, \mu_{k, 2}, \cdots, \mu_{k, m}\right) \text { is defined on } \quad\left[0, t_{k}[\right.
\end{gathered}
$$

The Chen series of b is $\mathcal{C}_{b}=\mathcal{C}_{\mu_{1}} \mathcal{C}_{\mu_{2}} \cdots \mathcal{C}_{\mu_{k}}$. The output $y(t)$ is a function of the t_{j}, and we compute the iterated partial noncommuting derivatives as follows:

$$
\begin{aligned}
\frac{\partial}{\partial t_{k}}\left(<G \| \mathcal{C}_{\mu_{1}} \cdots \mathcal{C}_{\mu_{k}}>\right)_{t_{k}=0^{+}} & =<G \| \mathcal{C}_{\mu_{1}} \cdots \mathcal{C}_{\mu_{k-1}} \cdot \mathcal{L}_{\mu_{k}}\left(0^{+}\right)> \\
\frac{\partial}{\partial t_{k-1}} \frac{\partial t_{k}}{\partial t_{k}}\left(<G \| \mathcal{C}_{\mu_{1}} \cdots \mathcal{C}_{\mu_{k}}>\right)_{t_{k-1}=0^{+}} & =<G\| \| \mathcal{C}_{\mu_{1}} \cdots \mathcal{C}_{\mu_{k-2}} \cdot \mathcal{L}_{\mu_{k-1}}\left(0^{+}\right) \cdot \mathcal{L}_{\mu_{k}}\left(0^{+}\right)>
\end{aligned}
$$

By iterating, we obtain:

$$
\begin{aligned}
\left(\frac{\partial}{\partial t_{1}} \cdots \frac{\partial}{\partial t_{k}}(y)\right)_{t_{1}=0+} & =\left\langle G \| \mathcal{L}_{\mu_{1}}\left(0^{+}\right) \cdots \mathcal{L}_{\mu_{k}}\left(0^{+}\right)>\right. \\
& =\sum_{l_{1}, \cdots, l_{k}}<\left(\overrightarrow{ } \mid z_{l_{1}} \cdots z_{l_{k}}>\mu_{1, l_{1}} \mu_{2, l_{2}} \cdots \mu_{k, l_{k}}\right.
\end{aligned}
$$

By assumption, this expression is equal to zero for any value of the parameters $\mu_{i, j_{i}}$. Then we recover the coefficients of G as follows:

$$
<G^{\prime} \| z_{j_{1}} \cdots z_{j_{k}}>=\frac{\partial^{k}}{\partial_{\mu_{\mu_{, 1}}} \cdots \partial_{\mu_{k_{i, j_{k}}}}}\left(\frac{\partial}{\partial t_{1}} \cdots \frac{\partial}{\partial t_{k}}(y)\right)_{t_{1}=0^{+}}=0
$$

Thus G is identically null.

3.4 Conclusion

All these proofs require the knowledge of $y(t)$ and of its iterated derivatives everywhere in some neighbourhood of 0 . None of these proofs provides an exact identification method. They do not give even a way for stable numeric computation. A fortiori, they do not solve the algebraic identification in our meaning.

4 Iterated derivatives of the output.

(See [6]). For any power series G with constant coefficients (satisfying the convergence condition) the $i^{\text {th }}$ time derivative of $y_{G}(t)=<G \| \mathcal{C}(t)>$ is given by the following expansion $y_{G}{ }^{(i)}(t)=<G \| \mathcal{C}^{(i)}(t)>$, convergent in some neighborhood of zero. Then we compute first the iterated time derivatives of the Chen's series.

4.1 Derivatives of Chen series.

Since $\frac{d \mathcal{C}_{a}}{d t}=\mathcal{C}_{a} \cdot \mathcal{L}_{a}$, we obtain by iterating (denoting by D_{t} the usual time derivation operator):

$$
\text { where }\left\{\begin{array}{l}
\mathcal{C}_{a}^{(i)}=\mathcal{C}_{a} A_{i} \tag{R}\\
A_{1}=\mathcal{L}_{a} \\
A_{i+1}=\mathcal{L}_{a} A_{i}+D_{t} A_{i}
\end{array}\right\}
$$

It should be noticed that $C_{a}(0)=1$ and then $\mathcal{C}_{a}^{(i)}(0)=A_{i}(0)$. Consequently

$$
y^{(i)}(0)=\sum_{w \in Z^{*}}<G\left|w><\mathcal{C}_{a}^{(i)}(0)\right| w>=<G \| A_{i}(0)>
$$

4.2 Explicit computation of A_{i}

Let us define the derivative $\mathcal{L}_{a}^{[\rho]}$ of \mathcal{L}_{a} by a multi-index $\rho=\left(\rho_{1}, \cdots, \rho_{p}\right)$ (with $\rho_{i} \in \mathbb{N}$):

$$
\mathcal{L}_{a}^{\left(\rho_{k}\right)}=\sum_{i} a_{i}^{\left(\rho_{k}\right)} z_{i} \quad \quad \mathcal{L}_{a}^{[\rho]}=\mathcal{L}_{a}^{\left(\rho_{1}\right)} \cdots \mathcal{L}_{a}^{\left(\rho_{p}\right)}=\sum_{i_{1}, \cdots i_{p}} a_{i_{1}}^{\left(\rho_{1}\right)} \cdots a_{i_{p}}^{\left(\rho_{p}\right)} z_{i_{1}} \cdots z_{i_{p}}
$$

The degree and the weight of ρ are given by:

$$
\operatorname{deg}(\rho)=p, \quad \operatorname{wgt}(\rho)=\sum_{j=1}^{p}\left(1+\rho_{j}\right)=\operatorname{deg}(\rho)+\sum_{j=1}^{p} \rho_{j}
$$

The polynomials A_{i} can be written as: $A_{i}=\sum_{\text {wgt } \rho)=i} \alpha_{\rho} \mathcal{L}_{a}^{[\rho]}$. We set $A_{0}=1$. Let us denote by \mathcal{A} the formal sum of the A_{i}. Then by a combinatorial analysis of the identity:

$$
\sum_{i \in N} A_{i}=\mathcal{A}=1+\mathcal{L}_{a} \mathcal{A}+D_{t} \mathcal{A}=\sum_{\rho} \alpha_{\rho} \mathcal{L}_{a}^{[\rho]}
$$

we obtain easily the following formula:

$$
\begin{equation*}
\alpha_{\rho}=\prod_{i=1}^{p}\binom{\sum_{j=1}^{i} \rho_{j}+i-1}{\rho_{i}}=\binom{\rho_{1}}{\rho_{1}}\binom{\rho_{1}+\rho_{2}+1}{\rho_{2}} \cdots\binom{\rho_{1}+\cdots \rho_{k}+k-1}{\rho_{k}} \tag{E}
\end{equation*}
$$

4.3 Expression of the output derivatives.

$$
\begin{aligned}
y^{(n)}(t) & =\sum_{\text {wgt }(\rho)=n} \alpha(\rho) \sum_{i_{j}} a_{i_{1}}^{\left(\rho_{1}\right)}(t) \cdots a_{i_{k}}^{\left(\rho_{k}\right)}(t)<z_{i_{1}} \cdots z_{i_{k}} \triangleleft G \| \mathcal{C}_{a}(t)> \\
& =\sum_{\mathrm{wg} t(\rho)=n} \alpha(\rho) \sum_{i_{j}} a_{i_{1}}^{\left(\rho_{1}\right)}(t) \cdots a_{i_{k}}^{\left(\rho_{k}\right)}(t)<G \| \mathcal{C}_{a}(t) z_{i_{1}} \cdots z_{i_{k}}>
\end{aligned}
$$

For an analytical system (Σ), this formula may be interpreted by two means.

- Initializing (Σ) at time t (and by setting $\mathcal{C}_{a}(t)=0$), we get the local expression of $y^{(n)}(t)$ in the state $q(t)$ (formula of Lamnabhi-Lagarrigue and Crouch [8]):

$$
y^{(n)}(t)=\left.\sum \sum \alpha(\rho) a_{i_{1}}^{\left(\rho_{1}\right)}(t) \cdots a_{i_{k}}^{\left(\rho_{k}\right)}(t)\left(g_{i_{1}} \cdots g_{i_{k}} o h\right)\right|_{q(t)}
$$

- Initializing (Σ) at time 0 , we get a global expression of $y^{(n)}(t)$:

$$
y^{(n)}(t)=\sum \sum \alpha(\rho) a_{i_{1}}^{\left(\rho_{1}\right)} \cdots a_{i_{k}}^{\left(\rho_{k}\right)} y_{i_{1} i_{2} \cdots i_{k}}(t)
$$

where $y_{i_{1} i_{2} \cdots i_{k}}$ is the output of (Σ) initialized in $q(0)$, for the observation $g_{i_{1}} g_{i_{2}} \cdots g_{i_{k}} \circ h$. For $t=0$, according to $\mathcal{C}_{a}(0)=1$, we obtain the formula:

$$
\left.\begin{array}{rl}
y^{(n)}(0)= & \sum_{k=0}^{n} \sum_{i_{j}}<G \mid z_{i_{1}} \cdots z_{i_{k}}>. \\
& {\left[\sum_{\rho_{1}+\cdots+\rho_{k}=n-k}\binom{\rho_{1}}{\rho_{1}}\binom{\rho_{1}+\rho_{2}+1}{\rho_{2}} \cdots\binom{\rho_{1}+\cdots \rho_{k}+k-1}{\rho_{k}} a_{i_{1}}^{\left(\rho_{1}\right)}(0) \cdots a_{i_{k}}^{\left(\rho_{k}\right)}(0)\right]} \tag{n}
\end{array}\right\}
$$

5 First step for computing the algebraic identification

This problem consists in computing, by effective formulae, the coefficients of a generating series when we know the Taylor expansions at $t=0$ of some inputs and the Taylor expansions at $t=0$ of the corresponding outputs. This problem remains unsolved. We provide here an algorithm for identifying the coefficients of the input mutiderivatives a^{μ} (as defined below), by solving the following system of equations in order to compute the unknown coefficients $<G \| l_{\mu}>$:

$$
y^{(k)}(0)=\sum_{\mu} a^{\mu}<G \| l_{\mu}>
$$

5.1 Single input without drift

We denote the single input by $a(t)$ and determine it polynomial: $a(t)=\sum_{i=0}^{k} \frac{c_{i}}{i!} t^{i}$. We have:

$$
a^{\left(\rho_{1}\right)} \cdots a^{\left(\rho_{p}\right)}=a^{\mu_{1}} \cdots\left(a^{(k-1)}\right)^{\mu_{k}}=a^{\mu}
$$

So we obtain:

$$
y^{(n)}(0)=\sum_{w g t=n} c_{0}^{\mu_{1}} \cdots c_{k-1}^{\mu_{k}}<G \mid z_{1}^{\mu_{1}+\cdots+\mu_{k}}>\lambda_{\mu}
$$

We get a triangular infinite system of linear equations:

$$
\left\{\begin{aligned}
y(0) & =<G \mid \varepsilon> \\
y^{(1)}(0) & =c_{0}<G \mid z_{1}> \\
y^{(2)}(0) & =a_{0}^{(1)}<G\left|z_{1}>+c_{0}^{2}<G\right| z_{1}^{2}> \\
& \vdots \\
y^{(n)}(0) & =\sum_{\substack{\text { wggtec } \\
\\
\\
\\
\\
\\
\\
\operatorname{deg}^{(\mu)}<n}} a^{\mu}(0) \lambda_{\mu}<G\left|z_{1}^{i}>+c_{0}^{2}<G\right| z_{1}^{n}>
\end{aligned}\right.
$$

The computation of the coefficients $\langle G| z_{1}^{k}>$ is then obvious for a selected input that satisfies: $a(0)=c_{0} \neq 0$, if the resulting output derivatives $y^{(p)}(0)$ are known for $0 \leq p \leq k$.

5.2 Single input with drift

We set the input equal to a polynomial: $a_{1}(t)=\sum_{i=0}^{k} \frac{c_{i}}{i!} t^{i}$ and we set $a_{0}(t) \equiv 1$. We get a linear equation system that must be satisfied for any choice of the coefficients c_{i} :

We take only one equation (FD) ${ }_{n}$ and we prove that we can identify every coefficient of the multiderivatives appearing in this equation, by choosing suitable inputs:

Consider the equation (FD) ${ }_{n}$; there is a determinant T_{n} which is not zero, the columns of which are indexed by the multiderivatives of the input and the rows of which are indexed by several choices of the input and its derivatives at $t=0$.

1. The matrix T_{n} has a lower triangular block form.

- Definition of an order of the columns:
- We order the multiderivatives (the columns) by increasing order of the number q of the different derivation orders, appearing in these multiderivatives.
Δ For the same order q, we put together the multiderivatives containing the common set of derivatives $\left\{a_{1}^{\left(i_{1}\right)}, a_{1}^{\left(i_{2}\right)} \cdots, a_{1}^{\left(i_{q}\right)}\right\}$.
- Choice of the values of the associated c_{i}

For every set of derivatives $\left\{a_{1}^{\left(i_{1}\right)}, a_{1}^{\left(i_{2}\right)} \cdots, a_{1}^{\left(i_{q}\right)}\right\}$, appearing in the multiderivatives indexing the columns, we choose a corresponding set of inputs values such that every c_{i}
is equal to zero except $\left\{c_{i_{1}}, c_{1} \cdots, c_{1_{q}}\right\}$. So, we obtain T_{n} in a lower triangular block form. Let us denote these blocks by $D_{1}, \cdots, D_{q}, \cdots, D_{p}$.
2. Choice of the inputs values .

Select these values in order to obtain every diagonal block determinant $D_{q} \neq 0$:

- First, let us prove the feasibility:
\diamond It is obvious that D_{1} may be constructed different from 0 for some values $\left(c_{1, j}\right)_{1 \leq j \leq r}$ of $a_{1}^{(i)}$, since D_{1} is a Vandermonde determinant.
\diamond We prove that D_{q+1} associated to the set of the derivatives $\left\{a_{1}^{\left(i_{1}\right)}, \cdots, a_{1}^{\left(i_{q+1}\right)}\right\}$ may be constructed $\neq 0$, if D_{q} associated to the set $\left\{a_{1}^{\left(i_{1}\right)}, \cdots, a_{1}^{\left(i_{q}\right)}\right\}$ has been constructed $\neq 0: D_{q+1}$ can be written in a lower triangular block form, by executing some suitable linear combinations of the columns, for some suitable choices of the values $c_{\tau_{q+1}, j}$ of the $a_{1}^{\left(i_{q+1}\right)}$.
Proof : First, we order the columns $\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q+1}\right)}\right)^{e_{q+1}}\right)_{1 \leq e_{j} \leq s u p_{j}}$ of D_{q+1} according to the increasing e_{q+1} and we select only the values of the $a_{1}^{\left(i_{q+1}\right)}$:

Let $c_{q_{q+1}, 1}$ the value associated to $\epsilon_{q+1}=1$, etc $\cdots c_{q_{q+1}, s p_{q+1}}$ the value associated to $e_{q+1}=\sup _{q+1}$ where $c_{i_{q+1}, j} \neq c_{q_{q+1}, k}$ for $j \neq k$.
We remark that every column $\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q+1}\right)}\right)^{e_{q+1}}\right)$ where $2 \leq e_{q+1}$, has a 'column predecessor' $\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q+1}\right)}\right)^{e_{q+1}-1}\right)$ in the same block D_{q+1}. So, we can deduce that D_{q+1} may be written as a lower triangular block determinant, by executing :
for $2 \leq e_{q+1}$,
$\operatorname{column}\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q+1}\right)}\right)^{e_{q+1}}\right) \mapsto$ itself $-c_{q_{q+1}, 1} * \operatorname{column}\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q+1}\right)}\right)^{e_{q+1}-1}\right)$
etc ...
for $s \leq e_{q+1}$,
$\operatorname{column}\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q+1}\right)}\right)^{e_{q+1}}\right) \mapsto$ itself $-c_{q_{q+1},} * \operatorname{column}\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q+1}\right)}\right)^{e_{q+1}-1}\right)$
where $s=\sup _{q+1}-2$. If $1=\sup _{q+1}$, we need not to transform some column, but we need only to factorize the coefficient associated to $a_{1}^{\left(i_{q+1}\right)}$. So we obtain:

$e_{q+1}=1$	$e_{q+1}=2$	\ldots	$e_{q+1}=s u p_{q+1}$
$\begin{gathered} \left(c_{q+1,1}\right)^{o_{1}} \\ D_{q, 1} \end{gathered}$	0		0
α	$\begin{gathered} \left(c_{q+1,2}\right)^{o_{2}} \\ \left(c_{r_{q+1}, 2}-c_{i q+1,1}\right)^{o_{2}} \\ D_{q, 2} \end{gathered}$	$0 \cdots$	0
-	.		
β	γ	\ldots	$\begin{gathered} \left(c_{q+1}, \text { sup }_{q+1}\right)^{o_{s u p_{q+1}}} \\ \prod_{\mathrm{t}}\left(c_{q_{q+1},{ }^{s u p_{q+1}}}-c_{q+1, t}\right)^{o_{s u p_{q+1}}} \\ D_{q, s u p_{q+1}} \end{gathered}$

with o_{j} denoting the dimension of the $i^{\text {th }}$ block and $D_{q, j}$ denoting the determinant associated with q different orders of derivation for the $j^{\text {th }}$ block.

- Effective construction :

\diamond order on the columns of D_{q} :

For the columns $\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q}\right)}\right)^{e_{q}}\right)_{1 \leq e_{k} \leq s u p_{k}}$, order of the increasing ϵ_{q}
For ϵ_{q} constant, order of the increasing ϵ_{q-1}
For e_{q}, \cdots, e_{2} constant, order of the increasing ϵ_{1}

- We propose the following choices of the $\left(a_{1}^{(j)}\right)^{e}$:
\circ values of the $a_{1}^{\left(i_{q}\right)}$:
Let be o_{1}, the dimension of the block $\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q-1}\right)}\right)^{e_{q-1}} a_{1}^{\left(i_{q}\right)}\right)_{1 \leq e_{1} \cdots 1 \leq e_{q-1}}$.
We choose $a_{1}^{\left(i_{q}\right)}=c_{q, 1} \neq 0$ for the $o_{1}^{\text {th }}$ first rows of D_{q}, denoted by $D_{q ; 1}$.
etc...
Let be $o_{s u p_{q}}$, the dimension of the block $\left(\left(a_{1}^{\left(i_{1}\right)}\right)^{e_{1}} \cdots\left(a_{1}^{\left(i_{q-1}\right)}\right)^{e_{q-1}}\left(a_{1}^{\left(i_{q}\right)}\right)^{\text {sup }}\right)_{1 \leq e_{1} \cdots 1 \leq e_{q-1}}$. We choose $a_{1}^{\left(i_{q}\right)}=c_{q_{q}, s p_{q}} \neq 0$ where $c_{q, s, s p_{q}} \neq c_{i q, j} \forall j<s u p_{q}$ for the $o_{s u p_{q}}^{t h}$ last rows of D_{q}, denoted by $D_{q ; s u p_{q}}$.
- values of the $a_{1}^{\left(i_{1}\right)}$:

Let be $o_{e_{q}, e_{q-1}, \cdots, e_{2}, 1}$, the dimension of the block $\left(\left(a_{1}{ }^{\left(i_{1}\right)}\right) \cdots\left(a_{1}{ }^{\left(i_{q-1}\right)}\right)^{e_{q-1}} a_{1}{ }^{\left(i_{q}\right)^{e_{q}}}\right)$.
We choose $a_{1}^{\left(i_{1}\right)}=c_{c_{1}, 1} \neq 0$ for the $o_{e_{q}, e_{q}-1, \cdots, e_{2}, 1}^{t h}$ first rows of $D_{q ; e_{q}, \cdots, e_{2}}$,
denoted by $D_{q ; e_{q}, \cdots, e_{2}, 1}$.
etc...
Let be $o_{\text {eq, } e_{q-1}, \ldots, e_{2}, \text { sup }}$, the dimension of the block $\left(\left(a_{1}{ }^{\left(i_{1}\right)}\right)^{\text {sup }} \cdots\left(a_{1}{ }^{\left(i_{q-1}\right)}\right)^{e_{q-1}} a_{1}{ }^{\left(i_{q}\right)^{e_{q}}}\right)$. We choose $a_{1}^{\left(i_{1}\right)}=c_{i_{1}, \text { sup }} \neq 0$ where $c_{i_{1}, \text { sup }} \neq c_{i_{1}, j} \forall j \leq \sup _{1}$ for the $o_{e_{q}, e_{q-1}, \ldots, e_{2}, s u p_{1}}^{t h}$ last rows of $D_{q ; e_{q}, \cdots, e_{2}}$, denoted by $D_{q ; e_{q}, \cdots, e_{2}, s u p_{1}}$.
example: for T_{13}, let D_{3} be the block containing the derivatives $a_{1}^{(1)}, a_{1}^{(2)}, a_{1}^{(3)}$:

			$e_{3}=1$				$e_{3}=2$
			$a_{1}^{(1)} a_{1}^{(2)} a_{1}^{(3)}$	$\left(a_{1}^{(1)}\right)^{2} a_{1}^{(2)} a_{1}^{(3)}$	$\left(a_{1}^{(1)}\right)^{3} a_{1}^{(2)} a_{1}^{(3)}$	$a_{1}^{(1)}\left(a_{1}^{(2)}\right)^{2} a_{1}^{(3)}$	$a_{1}^{(1)} a_{1}^{(2)}\left(a_{1}^{(3)}\right)^{2}$
$\begin{gathered} a_{1}^{(3)} \\ = \\ c_{\mathfrak{c}, 1} \end{gathered}$	$\begin{aligned} & a_{1}^{(2)} \\ & = \\ & c_{2,1} \end{aligned}$	$\stackrel{a_{1}^{(1)}}{=}$	$\mathrm{G}_{1,1} c_{2,1} c_{3,1}$	$\dot{c}_{1,1}^{2} c_{2,1} c_{3,1}$	$c_{1,1}^{3} c_{2,1} c_{3,1}$	$q_{1,1} \dot{L}_{2,1}^{2} c_{3,1}$	$q_{, 1} c_{2,1} q_{3,1}^{2}$
		$\begin{aligned} & \frac{4.1}{a_{1}^{(1)}} \\ & = \end{aligned}$	$\mathrm{c}_{1,2} c_{2,1} c_{3,1}$	$\dot{c}_{1,2}^{2} c_{2,1} c_{3,1}$	$c_{1,2}^{3} c_{2,1} c_{3,1}$	$q_{1,2} \dot{z}_{2,1}^{2} c_{3,1}$	$q_{1,2} c_{2,1} \dot{1}_{3,1}^{2}$
		$\begin{gathered} \frac{4,2}{a_{1}^{(1)}} \\ = \\ c_{1,3} \\ \hline 111 \end{gathered}$	$c_{1,3} c_{\text {c, }} c_{3,1}$	$\dot{c}_{1,3}^{2} c_{2,1} c_{3,1}$	$c_{1,3}^{3} c_{2,1} c_{3,1}$	$q_{1,3} \dot{c}_{2,1}^{2} \mathcal{C}_{3,1}$	$\mathrm{c}_{1,3} c_{2,1} \mathrm{c}_{3,1}^{2}$
	$\begin{gathered} a_{1}^{(2)} \\ = \\ c_{2,2} \end{gathered}$	$a_{1}^{\text {(1) }}$ $=$ c_{11}	$\mathrm{c}_{1,1} c_{2,2} c_{3,1}$	$\stackrel{c}{1,1}_{2} c_{2,2} c_{3,1}$	$c_{1,1}^{3} c_{2,2} c_{3,1}$	$q_{1,1} \dot{c}_{2,2}^{2} c_{3,1}$	$q_{, 1} c_{2,2} \tau_{3,1}^{2}$
$a_{1}^{(3)}$ $=$ $c_{3,2}$	$\begin{gathered} c_{2,2} \\ a_{1}^{(2)} \\ = \\ c_{2,1} \end{gathered}$	$\begin{gathered} \frac{q_{1}^{1}}{a_{1}^{(1)}} \\ = \\ c_{, 1} \\ \hline \end{gathered}$	$\mathrm{c}_{, 1} c_{2,1} c_{3,2}$	$c_{1,1}^{2} c_{2,1} c_{3,2}$	$c_{1,1}^{3} c_{2,1} c_{3,2}$	$q_{, 1} c_{2,1}^{2} \mathcal{c}_{3,2}$	$q_{, 1} c_{2,1} \dot{1}_{3,2}^{2}$

By executing the following processings on the columns:

$$
\operatorname{column}\left(a_{1}^{(1)} a_{1}^{(2)}\left(a_{1}^{(3)}\right)^{2}\right) \mapsto \text { itsel } f-\epsilon_{\zeta, 1} * \operatorname{column}\left(a_{1}^{(1)} a_{1}^{(2)} a_{1}^{(3)}\right)
$$

by factorizing $c_{3,1}^{4}$ in the block associated to $\epsilon_{3}=1$ and executing

$$
\operatorname{column}\left(a_{1}^{(1)}\left(a_{1}^{(2)}\right)^{2} a_{1}^{(3)}\right) \mapsto \text { itsel } f-c_{2,1} * \operatorname{column}\left(a_{1}^{(1)} a_{1}^{(2)} a_{1}^{(3)}\right)
$$

and by factorizing ${\underset{2}{2,1}}_{3}$ in the block associated to $\epsilon_{3}=1, \epsilon_{2}=1$, we obtain:

$$
\begin{array}{r}
\left(c_{s, 2}-c_{c, 1}\right) * c_{1,1} * c_{, 1} * c_{s, 2} \\
*\left(c_{2,2}-c_{2,1}\right) * c_{1,1} * c_{2,2} * c_{3,1}^{2} \\
\end{array}\left|\begin{array}{ccc}
c_{2,1} & c_{1,1}^{2} & c_{1,1}^{3} \\
c_{1,2} & c_{1,2}^{2} & c_{1,2}^{3} \\
& & \\
c_{1,3} & c_{1,3}^{2} & c_{1,3}^{3}
\end{array}\right|
$$

5.3 Severall inputs with drift

We consider the case of 2 inputs $a_{1}(t)$ and $a_{2}(t)$. We choose them polynomials:

$$
a_{1}(t)=\sum_{i=0}^{l_{1}} \frac{c_{i}}{i!} t^{i}, \quad a_{2}(t)=\sum_{i=0}^{l_{2}} \frac{d_{i}}{i!} t^{i} .
$$

We obtain a linear equations system, which must be satisfied for every coefficients c_{i} and d_{i} :

$$
\begin{aligned}
& y^{(n)}(0)=\sum_{w g t \leq n} \delta_{0}^{\mu_{1,1}} \cdots{c_{k-1}}_{\mu_{1, k}} d_{0}^{\mu_{2,1}} \cdots d_{n-1}^{\mu_{2, n}} \sum_{w}<G \mid w>\lambda_{\mu}^{w} \\
& \mu=\left(\left(\mu_{1,1}, \cdots, \mu_{1, k}\right) ;\left(\mu_{2,1}, \cdots, \mu_{2, n}\right)\right) \quad \operatorname{wgt}(\mu)=\operatorname{wgt}\left(\mu_{1}\right)+\operatorname{wgt}\left(\mu_{2}\right)
\end{aligned}
$$

The identification of the multiderivatives coefficients appearing in the previous equation is solved by the same method as for a single input system:

1. We order the multiderivatives according to the increasing order of the number q of the different derivation orders of $a_{1}(t)$ or $a_{2}(t)$. And then, for the same q, we put together the multiderivatives containing the same q derivatives of the sets

$$
\left\{a_{1}^{\left(i_{1}\right)} a_{2}^{\left(j_{1}\right)}, \cdots, a_{1}^{\left(i_{q}\right)} a_{2}^{\left(j_{q}\right)}\right\}
$$

Then, for every set of derivatives $\left\{a_{1}^{\left(i_{1}\right)} a_{2}^{\left(j_{1}\right)}, \cdots, a_{1}^{\left(i_{q}\right)} a_{2}^{\left(j_{q}\right)}\right\}$, appearing in the multiderivatives indexing the columns, we select a corresponding set of inputs values such that every c_{i} and d_{i} are equal to zero except $c_{1_{1}} d_{j_{1}}, \cdots, c_{\mathrm{t}_{q}} d_{j_{q}}$. So, we obtain T_{n} in a lower triangular form.
2. We select some inputs values in order to get every diagonal block D_{r} of T_{n} different from zero. We order the columns by increasing order of the exponent of the maximal order derivative of a_{1} or a_{2}. For some suitable choices of the inputs values, we prove that every D_{r} may be written as a non degenerated scalar multiple of some non singular Vandermonde determinant.

5.4 Conclusion

A first step has been taken towards the algebraic identification. It remains to separate the coefficients of the words identical except for the order of the letters composing them.

References

[1] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc., vol. 83 (1977) 831-879.
[2] P. Crouch, F. Lamnabhi-Lagarrigue, State realizations of nonlinear systems defined by input-output differential equations, Lecture Notes in Control and Information Sciences, $\mathrm{n}^{\circ} 11$ (1988) 138-149.
[3] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France 109 (1981) 3-40.
[4] M. Fliess, M. Lamnabhi, F. Lamnabhi-Lagarrigue, An algebraic approach to nonlinear functional expansions, IEEE Trans. Circuits and Systems, vol. CAS-30, n${ }^{\circ} 8$ (1983) 554570.
[5] M. Fliess, private communication.
[6] C. Hespel, Iterated derivatives of a non linear dynamic system and Faà di Bruno formula, Mathematics and Computers in Simulation, to appear.
[7] G. Jacob, Algebraic methods and computer algebra for nonlinear systems' study, in: IMACS Symposium MCTS, Modelling and Control of Technochological systems, vol. 2 (lille, 1991) 599-608.
[8] F. Lamnabhi-Lagarrigue, P.E. Crouch, A formula for iterated derivatives along trajectories of nonlinear systems, Systems and Control letters 11 (1988) 1-7.
[9] C. Reutenauer, private communication.
[10] H.J. Sussmann, A product expansion for the Chen series, in: C. Byrnes and A. Lindquist Eds.,Theory and Applications of nonlinear Control Systems (Elsevier Science Publishers, North-Holland 1986) 32 3-335.
[11] Y. Wang, E.D. Sontag, On two definitions of observation spaces, Systems and Control letters 13 (1989) 279-289.
[12] Y. Wang , E.D. Sontag, Generating series and non linear systems: Analytic aspects, local realizability and i/o representations,Forum Math. 4 (1992) 299-322.
[13] Y. Wang , E.D. Sontag Algebraic differential equations and rational Control Systems, SIAM. J. Control and Optimization, vol.30, n $n^{\circ} 5$ (1992) 1126-1149.

[^0]: *This work is partially supported by the European project INTAS-93-30

