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Abstract

This paper presents the first step toward solving the problem of the Exact Algebraic
IdentificaUon. This problem consists in computing the coefificients of a non commuta-
tive generating series when only the Taylor expansion of some inputs (at t = 0), and the
Taylor expansion (at t = 0) of associated outputs are known. *

Get article presente la premiere etape vers la resolution du probleme de 1'Identifi-
calion Algebrique Exacte. Ce probleme consiste a calculer les coefiRcients d'une serie
generatrice non commutalive, connaissant les developpements de Taylor (en t = 0) des
entrees , et les developpements de Taylor (en t = 0) des sorties correspondantes.

1 Introduction

The input/output behaviour of a dynamic system

(S) q = go(q)+^a, {t)gi(q)

y{t) = h{q)

. where the state q belongs to a finite dimensional R-analytic manifold Q,

. the vector fields /, gi and the scalar observadon funcdon h are analytic and defined in
a neighbourhood of 9(0).

. Ae inputs a; are real and piecewise continuous and everywhere nght continuous.

'This work is paniaUy supported by the European project INT^S-93-30
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The output of (E) may be obtained from its generating series [3]

<';=EE^---^°\<, ;:
l^0ij=0

ll - - - ~t(

^ ... 9/1
where g, o h =^ stW^s denotes the Lie derivation of h by the vector field gi.

5=1 'Qq3

This generadng series G is a formal series in the non commutadve variables taken in the
encoding alphabet Z = {-:o, 2-1, ... , -^m} corresponding to Ae system inputs (ao, "i, . . . , am)
(we have to set ao(t) = 1).

In this paper, we are interested in solving the "algebraic identification problem": Is
there an algonthm that enables to compute exacdy all the coefficients of the generating series
G, when only the Taylor expansions (at f = 0) of some finite set of inputs, and the Taylor
expansions (at t = 0) of associated outputs are known?

A prelimmary problem is Ae following: is the generating series encoding a faithful rep-
resentation ? In other words, if the output y(^) is equal to zero whatever the input may be, is the
generating series necessarily equal to zero? Independant posidve proofs have been given by
MPUess [5], C. Reutenauer [9],Y.Wang and E. D. Sontag [11]. The proof of MPUess is based
on defining outputs for generalized inputs. The two other proofs are based on computing out-
puts for some parametrized inputs. The proof of C. Reutenauer uses analytic expansion of the
output on parameters. The proof of Y.Wang and E.D.Sontag uses a noncommutadve partial
denvadve computadon towards parameters. Nevertheless, none of these proofs provides an
exact identification method.

We present here a first step towards solving this problem of the algebraic idendjSca-
tion: At once, \ve compute the iterated derivatives of the output y{t}, as linear combinations
of the input multiderivatives. Hence, the formula ofF. Lamnabhi and P. Crouch [8] is redemon-
strated. Let us remark that an interpretadon of this fonnula has been given by E. D. Sontag and
Y.Wang [11]. Then, we provide an algorithm for the computation of the coefficients of the in-
put multiderivatives appearing in Ae expressions of the iterated derivadves of the output y(t}.
The problem of the Algebraic Idendficadon will be solved when we are able to identify the
coefficients of the generating series, from the coefficients of the input multidenvadves.

2 Preliminaries and notations

See[3, 4, 7, 10]. We associate with (E) the encoding alphabet Z == {zo. zi, --- , z^} . Aword
w   Z* isa finite sequence of letters in Z. The empty word is denoted by e. ^formal series
S (in the noncommuting variables z;) with coefficients in R is any mapping of Z* into R:

.? = ^ < S\w > w.
w6^*

The operadons of sum, and Cauchy product, of two series S and T are defined by

S+T= Y, (< S\w > + <T\w>)
w Z-

w .
<?-T = E E <>91U > . <TIV>

w£Z* uu=u»

w
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In that way, the set of formal series on Z is an associadve algebra denoted byR « Z ».
For each word w   Z* we define recursively both a differential operator y(w) and an iterated

integral / Ja(w), as follows:

. The differential operators >'(w) are defined as follows, starting with y(e) = Id:

my(^) = E^(<7)^; vz °^^1
y(vz, ) = y(v)ay{z, ) \/v^z' v^. ez.

Any word w = z,, --. z.p and any analytical funcdon h give rise to the iterated Lie derivadve:

V(w) oA =(7., .. . fir. p o /?

.t
. Similarly, the iterated integrals / ^(w) are defined as follows:

/c^(e) =1 V^O
S^vz, ) = I { I 5^{v)} a,{r}dr Vu £ Z* Vz, £ Z.

'0 JQ \JQ

We introduce naturally the two following formal series:

G = Y^ \y(w)oh \w is the generating series, or 'Fliess series' of (S).
wTz-L "w

ca W = Z^ \ 1^ Sa(w)\W IS the 'Chen series' of the input a (see [I]).
.. uou/e^*

According to Chen's notadon [I], (Ae order used here being the reverse ofFliess' one [4]),
Ae Fliess fundamental formula can be altemadvely written as:

yW = E[y(w)o^]^^(w)
u Z*

y(t) = ^ <G\w X C^t)\w > =< G\\C^t) >
w 2'*

(where || means infinite sum). More generally, any power series H over 2, the coefficients
of which sadsfy the following convergence condition: "3K, L   JR+ such that any w   Z*
satisfies |< H\w>\<K\w\<L^" defines the causal funcdonal defining the output:

VnW = E <H\W >< CW\W >
w£Z*

We define the concatenated control ajju of the two inputs a defined in [0, <i [ and v defined in
[0, t-i[, as being the input defined on [0, <i + ̂ [ by:

a(t) if 0^t<t,
aK^)= \ ^t-t, ) if t^t<t, +t;

Then we have the reladon between the Chen series [12]: CaSv(ti + r) = Ca(^i). Cu(r).
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Lemma: The derivative of a Chen series Ca is -j^Ca, = Ca. -C. a., where >Cn = ^ a,..:,.
0<i<m

Proof : Let us call left remainder by some polynomial P, noted "P<", the linear map

defined on the power series G"6 IR« 2 » by the property:

Vw ^', < P <iG\w>=<G\w. P >

Hence for any words u and v we have u<u;=vifu;= vu, else 0. We obtain successively:

d^<CJw> = ^[^^<w)]a, (f)
= j^<Ca\z<w>a, {t} = ^ < Ca. z\w >a, (t) D

2£^ s£3

In other words, yW{t) =< £a(t) < G\\Ca{t) >=< G\C^(t). £a(t) >.
(Note that Ais lemma has been presented by Y.Wang and E. D. Sontag [13] in the input-output
funcdonal derivative form, by using concatenated inputs).

Let ajj/x the concatenated input of an input a defined in [0, ti[, and of an input ̂  defined
in [0, t'z[. According to our formalism, we obtain the corresponding output derivadve:

for0<t<ti y(t) = < G\\C^t). C^(t) >
for ti<t, +t<ti+ t-i y(t) = < G\\C^t, ). C^t). C^t) >
and then ^"^[y(<i+<)] = < G\\C^t, ). £, {0+) >

3 Three proofs about undistinguishability

We recall briefly three proofs of the following proposidon:

Proposition: The generating series representation of the input/output functionals is faiA-
ful. In other words, any series undistinguishable from 0 is identically null.

3.1 The proof of C. Reutenauer

(See [9]). For k = 1 .. -p, let^   [1 . . . m] and let a^t) Ae input defined on [0, tk[by:

al.,o(<)=l> ^... ».-^=7^' ^,. =° if i^ik
The Chen series of the input ak at time tk is Ca^ (tk) = et*so+"''-;'fc .
Then the Chen senes associated to the input b = a^a-^ . . . |}ap at dme <i + ... ^p is

Ut, ) . . -C^(^) == e(-'°+tl---i ... e^-°+^.p

The power series expansion of this exponendal product can be reordered toward the 2p vari-
ables ti, ... , tp, ni, . .., rtp. So, using muld-indices j == (ji, ... ..., jp) and n == (ni, . .., rip),
and standard muld-index power notadon, we can write:

y(t) =< GC^"n^ >= Ezjau < G11c-.n >
J,n j,J,n
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The last expression defines an analytical funcdon of the 2p variables t and c^ in a neigh-
bourhoodofzero. But by assumption, it must be equal to zero whatever t(> 0) and c\. maybe.
Thus it is idendcally equal to zero. But the coefficient of the monomial ^la'i . . . t^a^it^"
in y(t) is exactly reduced to the term:< G\zjolzi . . . ZOP~I z^_^z}o" >. Since every word w can
be written in the form w = ^°^i ... ^p-l z, the series G is identically null.

3.2 The proof of M. FIiess

(See [5]). For £ > 0, e small, there are inputs a and & the Chen series of which are

^=e"° ; Ch=e2£zo

And then, d, -Ca= e2ffzo - e"° = e^o + 0(e2) and 20 = ^m^^[Ci, - Ca}.
If z, 7^ zo an input a, may be defined, Ae Chen series of which is

, eza+e2:i
'(1, -

And then, (:".. - C, = g£--°+£2--. - e"° = £22. + 0(e3) and 2;, = ^m^^[^. - (:"]
Now, G being undisdnguishable from zero, we proof that its left remainders by the let-

ters have the same property. Indeed, we have for any Chen senes C:

<ZQ< G\\C >=< G\\Czo > = lim^[< G\\C. Cb >-< G\\C. Cb >] = 0
Vz   [1, m], < z, < G\\C >=< C;||C^, > = ^m. ^o ̂ [< G'llC. C,. > - < G\\C. C^ >] = 0

Then, the left remainder power series ZQ < G and z, < G are undistinguishable from zero.
Recursiveiy, we deduce that it is true also for the left remainder of G by any word w. From
what follows that G is idendcally null:

Vw 6 Z" < G'|w >=< w < G'|£ >= 0

3J The proof of E.D. Sontag and Y. Wang

(See[l 1]). This proof is based on computation of some noncommutative parameters par-
dal derivadves of the input-output map. With our formalism, let us consider a concatenadon
of constant inputs:

6=^lit^2it---^p
the input /^ = (^.,, , ̂  ,. . . , ^, ^) is defined on [0, tk[

The Chen series of bisCb = C^ .C^ ... C^. The output y(t) is a function of the tj, and we
compute the iterated partial noncomraudng derivadves as follows:

^(< GIIC,, ... ^ >).^ = < qi^ ... ^_, ^(o+) >
afcA(<GII^---^>)^-o. = <(?li^

By iteradng, we obtain:

. ^-,.^-. (0+). ^(0+)>

(A---^)), ^ = <ff||r., (o^)... r,, (o+)>
^ <G\ZI, ---Z^ >/A, 1, ^, <3 ... ^, (,

'I,-,;*
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By assumption, this expression is equal to zero for any value of the parameters /^ ̂  . Then we
recover the coefficients of G as follows:

< G'11^7, . --^. >= -
9k

^-... i3T-(y)
^.... ^. ^9tl 8t^')^

=0

Thus G is idendcally null.

3.4 Conclusion

All these proofs require the knowledge of y{t) and of its iterated derivatives everywhere in
some neighbourhood of 0. None of these proofs provides an exact idendficadon method. They
do not give even a way for stable numeric computadon. A fortiori, they do not solve the al-
gebraic identificarion in our meaning.

4 Iterated derivatives of the output.

(See [6]). For any power series G with constant coefficients (satisfying the convergence
condidon) the it!t time derivadve ofy^it) =< G\\C(t) > is given by the foUowing expansion
y(i)(t) =< G\\C(')(t) >, convergent in some neighborhood of zero. Then we compute first
the iterated time dedvadves of the Chen's series.

4.1 Derivatives of Chen series.

Since ̂  = Ca. ^a, we obtain by iterating (denoting by Di the usual time derivadon operator):

C^ == C<. A.
A, = /:" } W

where 1 A;^. = r;A, + D^

It should be nodced that (7a(0) = 1 and then C^(0) = A. (0). Consequendy

y(')(0) = E < Glu; >< CM(°)IW > =< G'IIA'(°) >
w6^*

4.2 Explicit computation of A,

Let us define the denvadve C[^ of Co. by a muld-index ,9 = (pi, - .. , ;0p) (wiA p,   W):

c,^ = ^ ai"fc).. 4P1 
= ^^1) . . . ^pp} = £ a!fl ) . . . aS;p) z^ .2'«'l "'" "'p .

. l. -'p

The degree and the weight of p are given by:

deg(p) = p, wgt(/9) = E(l +^) = deS^) + S ̂ '-
J=l ->=1
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ThepolynomialsAt'canbewrittenas: ^' = 2^ °'^^a . We set Ao = 1. Let us denote
wgt(p)=;

by A the formal sum of the A,. Then by a combinatorial analysis of the idendty:

A, -=A=\+C^A+DtA=^ a, C^
;6/V P

we obtain easily the following formula:

E,
t6/V

01, ^P, + >. - 1 ^ ^Pi^ ^Pl +P2+1^ .. . ^l + ... Pfc +A;- 1N
7=1 | \PU V P2 7 \ PI.

\ ".

4.3 Expression of the output derivatives.

V(n}W - ^a{p)^aw{t).. -aw(t)<^. -. ^<G\\C^>
wgt(p}=n ij

= E ̂ )E«!fl )^)---^fc)(^) < GII^^)., ... z,, >
wgt(p)=7i ij

For an analytical system (S), this formula may be interpreted by two means.

. Inidalizing (S) at time t (and by setting Ca{t) = 0), we get the local expression of
y(n\t) in the state q(t) (fonnula of Lamnabhi-Lagamgue and Crouch [8]):

y(n)(*) = EEft(/))aS:l)M ... ^)(0(^ ... ^^)|,,,.

. Initializing (S) at time 0, we get a global expression of y^")(<):

y(n)(<)=EE^)"!fl )---"!r)yn.. -u(^

where yi^-^ is the output of (S) inidalized in (7(0), for Ae observadon ^, ^, 2 . . . g^ o A.
For ( = 0, according to C^(0) = 1, we obtain the formula:

y(n)(o) =EE<^n---^>-L-^ L-i
k=0

E fc)(/'l+;:+l)---(pl+-;:+fc-l)°. (fl )(0)--^)(0)
,

Pl+-+Pk=n-k

(Fn)

5 First step for computing the algebraic identification

This problem consists in computing, by effective formulae, Ae coefficients of a generadng
senes when we know the Taylor expansions atf = 0 of some inputs and the Taylor expansions
atf = 0 ofthe corresponding outputs. This problem remains unsolved. We provide here an
algonthm for identifying the coefficients of the input mutiderivatives a/i (as defined below),
by solving the following system of equadons m order to compute the unknown coefficients
< G\\l, >:

yW{0) = ^a-<G\\l,>
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5. 1 Single input without drift

We denote the single input by a(t) and determine it polynomial: a(t) == ̂  .̂ ti. We have:
i=0!:

So we obtain:

a(pi)... a^ =a^l. --(ffl(^-l))^ = aM

/»)(0)= ^ ^l... c^<G1<l+-+->A,
Wgt=7l

We get a triangular infinite system of linear equations:

y(0) . = <G\£>
y(l)(0) = <, <G\z,>
y(2)(0) = a^)<G\2, >+^<G\^>

y(")(0) = ^ a/i(0)A, < G^l >+ri; < G|^ >
wgt(»i) = n
= dcg(t>) < n

The computadon of the coefficients < G\z^ > is then obvious for a selected input that sads-
fies: a(0) = co ̂ 0, ifthe resuldng output derivadves y(p)(0) are known forO <, p^k.

5.2 Single input with drift

-v-S.We set the input equal to a polynomial: <ii (f) = ^ -^ti and we set ao{t} = 1. We geta linear
i=0 r.

equadon system that must be sadsfied for any choice of the coefficients c;:

< G\II, >y(")(0) = ^ C---C, .
wgt(^)^n

s:
l"'l«l = fk + Ck-1 + ... + >*1
|u>|, u = n - |u>|,, - (* - l)Mk - ... - d

(FD)^

We take only one equadon (FD)« and we prove that we can identify every coefficient of the
mulddedvadves appearing in this equadon, by choosing suitable inputs:

Consider the equation (FD)n; there is a determinant Tn which is not zero, the columns
of which are indexed by the multidenvadves of the input and the rows of which are indexed
by several choices of the input and its derivadves alt =0.

1. The matrix Tn has a lower triangular block form.
. Definition of an order of the columns:
o We order the mulddenvadves (Ae columns) by increasing order of the number q of
the different derivadon orders, appearing in these muldderivadves.
o For the same order q, we put together the muldderivadves containing the common set
of derivadves {a?0, ait2) .. . , a^)}.
. Choice of the values of the associated c<
For every set ofdenvadves {aj1 0, a[i't) . . . , ait ')}, appearing in the mulddenvadves in-

dexing the columns, we choose a corresponding set of inputs values such that every c,
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is equal to zero except {c,, c^ . . . , c^}. So, we obtain Tn in a lower triangular block
form. Let us denote these blocks by Di, .. . , D,, - . . , Dp.

2. Choice of the inputs values.
Select these values in order to obtain every diagonal block determinant Dq ̂  0:
.First, let us prove the feasibility:
o It is obvious that Di may be constructed different from 0 for some values (c^)i^^r
of a[i), since £>i is a Vandermonde determinant.

,
(',+l)'

c the value associated
-.,+1, '"?<,+!

o We prove that D,+i associated to the set of the derivatives {a\", ... , a\'l+"} may
be constructed ̂  0 , if Dq associated to the set {a;10, . . . , a[}q)} has been constructed
-^ 0: D,+i can be written in a lower triangular block form, by executing some suitable
linear combinadons of the columns, for some suitable choices of the values c ^ of Ae
, (', +!)
al' .

Proof: First, we order the columns ((a(itl))el . . . (ait '+I))e?+l)i<e, <^ of£>,+i accord-

ing to the mcreasing e,+i and we select only the values of Ae a'i"+ /:
Let c the value associated to e,+i = 1, etc

to e,+i =sup^i where c^^^ ^ c^^, for j ^ ^.
We remark that every column ((ail l))el . . . (aii ?+l))^+1) where 2 ^ e, +i, has a 'column

predecessor' ((a(itl))el . . . (aitq+l))eg+l-l) in the same block D,+i. So, we can deduce

that Dg+i may be wntten as a lower triangular block determinant, by executing :
for2^e, +i,
co/umn((ail l))e'... (a;tq+l))^^) ^ ^s.e//-q^, ^co^mn((^tl))^.. . (a^+l;)e^'-1)
etc . . .

for5<e,+i, ^ ^ /..,..
column^Y1 -- . ("il 7+l))e?+l) ^ ^^/-q, ^,,

*^ymn((<zit l))e' ... (a^+I))e. +'-1)

where 5 = supq+i - 2. If 1 = supy+i, we need not ̂ o transform some column, but we
need only to factorize the coefficient associated to a^7+l;. So we obtain:

e,+i = 1
f(T- . t01
s,+l.1-

'^,1

a

ft

Cg+l =2

0

(c,...) 02

(c^. -c,... )02
D^

7

0-

e,+i = 5up, +i
0

0

fc .. _ ')°-'up<?+i
'.q+1 , »"P<;+1

\°^
. t^"<q+l, -'»Pq+l -'»+I''

D.

p»+l
. »+I.

'q, sup^i

wiA oj denoting the dimension of the ith block and Dyj denoting the determinant a^
sociated with q different orders of derivadon for Ae jth block. CD

. Effective construction :

o order on the columns of Dq:
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For the columns ((a(i'l))el . . . («S" )e'?)i^^<, up,., order of the increasing e,
For Cq constant, order of the increasing e, _i

For eg, . . . , ej constant, order of the increasing c;
o We propose the following choices of the (a[j)Y:

o values of the a['<) :
Let be oi, the dimension of the block ((ait l))ei .. . (aSt<'-l))^-laS''))i<ei... i^e, _i.

We choose a['q) = c^, ^ 0 for the o^/l first rows of Dy, denoted by £>, ;i.
etc . . .

Let be o^p,, the dimension of the block ((ait l))e> ... (a[lq-l})e"-^ (a^))SUP^i<ei... i<e,_i.

We choose a[tq) = c^ ,̂  ^ 0 where c^ ,, ^ ^ c^^. V^- < .sup, for the o^ last rows of
D,, denoted by Dg;^p,.

o values of the a^il):o values ot tne a;'':

Let be Oe,, e,-i,..., e,, i, the dimension of the block ((ai(t'))... (ai(t<'-i))e?-lai^)e").
We choose a(itl) = c , 7^ 0 for the o^,e ., ^, 1 first rows of Dqy,,... ^,
denoted by £>, ;e,,,..., e2, i.
etc .. -

Letbeo^, e, _,,.., ^,^, the dimension of the block((ai(tl))'upl-.. (ai^-'))e'-lai^)e?).
We choose a(i'l) = c^ ,^ + 0 where c^ ,^ ^ c^ Vj < 5upi for the o^_^... ^^
last rows of £>, ;^,... ,e^ , denoted by Dy.,^,... ,̂ ,, upi .

example:/or Tis, let Dy be the block containing the derivatives avil /, a\"', a\"' :

, WnWnW
^ u^ u^

, (lh2 ni2 )/, (3'
. ai ' )~ai 'ai

'e-^T
^)w)^) a^(a^)^^

"es^T
awaw(aw)'2

,
(3)

<3,1

J2)

<;,!

.
I^T

(2,2

JTT

_^1
(1, 1(2, 1<3,1 <1<;, 1<3.1 <1(2, 1(3,1 ^, 1^. 1 <3,1 <1, 1<;, 1<1

,
ITT

A2

<l.2<2. 1 <3,1 (?, 2^(3,1 <f,2(;, l<3,l ^,2<^,1 ci,2(2, i<.

JTT

^

cl,3c2, l(3,l (?. 3<;, 1(3,1 ^.^ (1, 3<1C3,1 (1,3<;, 1<1

^T

ci, i (2,2<3,1 ^,2^ <f. l<;, 2<3,l (1, 1<^. 2(3,1 ^l^.l

, I3T

^,:

72T 7TT

cl, l(;, l<3,2 (?. 1<^, 1^,2 (3, 1(2, 1(3,2 (1, 1<1<3,2 ^, i<i, i<2

By executing the following processings on the columns:

column(awaw(aw)2) ^ itself - q , * co/umn(ail )ai2 )ai3 ))
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by factorizing (^ in the block associated to £.3 = 1 and execudng

columrz(a[l\aw)2aw) ^ itself - q , * colm7m(awawaw)

and by factonzing <^ in the block associated to £3 == 1, e^ = 1, we obtain:

DZ = (^, 2-(3, l)* <!, ! *<;, !* <3,2
*(<2, 2 -<2, l)*<l, l *<;.2*<i

^

s <?
1. 1 l'l, l '-1,1

(\.2 (? (?
t'l, 2 ^1,2

^ <3 <3
5.3 Several inputs with drift

We consider the case of 2 inputs ai(it) and a-^t). We choose them polynomials:

"i(^=E^ ^)=E^t.
i=0 '. i=0

We obtain a linear equations system, which must be sadsfied for every coefficients c, and d,:

^y(n)(o)= E ^... ^42 -l---eL<^>A^
Wgt<7l VI

^ = ((^l, l, --- , ^l, fc);(^2, l, --- , ^2,n)) wgt[p. } = wgt((J, i} +wgt{p, i)

The idendficadon of the muldderivadves coefficients appearing in the previous equadon is
solved by the same method as for a single input system:

1. We order the muldderivadves according to the increasing order of the number q of the
different derivadon orders of ai(f) or a-^t). And Aen, for the same q, we put together
the mulddedvadves containing the same q derivadves of the sets

, ('1)/, (-'») ... /, (t'»)/, (.'")'
,
ai "a:i" i .. . , cti "a.ji""^-.

Then, for every set of derivadves {awa^l), . . . , a[i")a^")}, appearing m the muld-
derivatives indexing the columns, we select a corresponding set of inputs values such
that every c, and rf, are equal to zero except c d^, --- , c d^. So, we obtain Tn in a
lower triangular form.

2. We select some inputs values in order to get every diagonal block Dr of Tn different
from zero. We order the columns by increasing order of Ae exponent of the maximal
order derivative of ai or 02. For some suitable choices of the inputs values, we prove
that every Dr may be written as a non degenerated scalar muldple of some non singular
Vandermonde determinant.

5.4 Conclusion

A first step has been taken towards the algebraic identificadon. It remains to separate the co-
efficients of the words identical except for the order of the letters composing Aem.
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