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Abstract

This paper presents the first step toward solving the problem of the Exact Algebraic
Identification. This problem consists in computing the coefficients of a non commuta-
tive generating series when only the Taylor expansion of some inputs (at ¢ = 0), and the
Taylor expansion (at ¢ = 0) of associated outputs are known. *

Cet article présente la premicre étape vers la résolution du probléme de I’Identifi-
cation Algébrique Exacte. Ce probléme consiste a calculer les coefficients d’une série
génératrice non commutative, connaissant les développements de Taylor (en ¢ = 0) des
entrées , et les développements de Taylor (en ¢ = 0) des sorties correspondantes.

1 Introduction

The input/output behaviour of a dynamic system

q = go(q)+§:a;(t)gf(q)
y(t) = h(g)

e where the state q belongs to a finite dimensional R-analytic manifold @),

e the vector fields f, g; and the scalar observation function A are analytic and defined in
a neighbourhood of ¢(0).

e the inputs a; are real and piecewise continuous and everywhere right continuous.

*This work is partially supported by the European project INTAS-93-30
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The output of (X) may be obtained from its generating series [3]

m
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where g; o h = Z g; (q)d—; denotes the Lie derivation of h by the vector field g;.
s=1 q
This generating series (7 is a formal series in the non commutative variables taken in the
encoding alphabet Z = {zo, 21, . . . , Zm } corresponding to the system inputs (ao, a1, - - - G

(we have to set ao(t) = 1).

In this paper, we are interested in solving the “algebraic identification problem”: Is
there an algorithm that enables to compute exactly all the coefficients of the generating series
G, when only the Taylor expansions (at ¢ = 0) of some finite set of inputs, and the Taylor
expansions (at ¢t = 0) of associated outputs are known?

A preliminary problem is the following: is the generating series encoding a faithful rep-
resentation? In other words, if the output y(¢) is equal to zero whatever the input may be, is the
generating series necessarily equal to zero? Independant positive proofs have been given by
M Fliess [5], C.Reutenauer [9],Y Wang and E.D.Sontag [11]. The proof of M Fliess is based
on defining outputs for generalized inputs. The two other proofs are based on computing out-
puts for some parametrized inputs. The proof of C.Reutenauer uses analytic expansion of the
output on parameters. The proof of Y Wang and E.D.Sontag uses a noncommutative partial
derivative computation towards parameters. Nevertheless, none of these proofs provides an
exact identification method.

We present here a first step towards solving this problem of the algebraic identifica-
tion: At once, we compute the iterated derivatives of the output y(t), as linear combinations
of the input multiderivatives. Hence, the formula of F.Lamnabhi and P.Crouch [8] is redemon-
strated. Let us remark that an interpretation of this formula has been given by E.D.Sontag and
Y Wang [11]. Then, we provide an algorithm for the computation of the coefficients of the in-
put multiderivatives appearing in the expressions of the iterated derivatives of the output y(¢).
The problem of the Algebraic Identification will be solved when we are able to identify the
coefficients of the generating series, from the coefficients of the input multiderivatives.

2 Preliminaries and notations

See [3,4, 7, 10]. We associate with (X) the encoding alphabet Z = {zo, z1," - , Zm } . A word
w € Z* is a finite sequence of letters in Z. The empty word is denoted by €. A formal series
S (in the noncommuting variables z;) with coefficients in R is any mapping of Z* into R:

S=> <Sw>w.

weZ*

The operations of sum, and Cauchy product, of two series .5 and T are defined by

S+T=> (<Slw>+<Tlw>)w ST=Y, > <Su>.<Tlhh>w

weZ* wEZ* uw=w



In that way, the set of formal series on Z is an associative algebra denoted by R << Z >>.
For each word w € Z* we define recursively both a differential operator Y(w) and an iterated

t
integral/ d.(w), as follows:
0
e The differential operators Y(w) are defined as follows, starting with Y(¢) = Id:

al 5,
V() = 2 gla)gy Vi 0sism
s=1 q

VY(vz;) = Y(v)o Y(z;) Yve Z* Vz; € Z.

Any word w = z;, - - - z;, and any analytical function / give rise to the iterated Lie derivative:
Y(w)oh=gy - -gi,0h

t
e Similarly, the iterated integrals / §q(w) are defined as follows:
0

/otaa(e) = Vi > 0
/Ot_(fa(vz;) = /Ot (/015(1(1))) ai(r)dr  WveZ' Vi eZ

We introduce naturally the two following formal series:

e G = 2; [y(w)ohlqo] w is the generating series, or ‘Fliess series’ of ().
weZ*

t
o Cu(t)= ), [/0 5a(w)] w  is the ‘Chen series’ of the input a (see [1]).
weZ*

According to Chen’s notation [1], (the order used here being the reverse of Fliess’ one [4]),
the Fliess fundamental formula can be alternatively written as:

vty = = Pwet ] [ aw)

weZ*
y(t) = Y <Glw><Cit)|w> =< G|Calt) >
weZ®

(where || means infinite sum). More generally, any power series H over Z, the coefficients
of which satisfy the following convergence condition: “3JK, L € R* such that any w € Z~
satisfies |[< H|w>|<Kw|'L!*!” defines the causal functional defining the output:

y (1) = Y. < Hlw >< C(t)|w >
weZ*

We define the concatenated control afv of the two inputs a defined in [0, ¢;[ and v defined in
[0,2,[, as being the input defined on [0, ¢; + t,[ by:

a(t) of 0<St<t
)= {0 i o

Then we have the relation between the Chen series [12]: Cagy(t1 + 7) = Ca(t1).Co(T).
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d
Lemma: The derivative of a Chen series C, is —C, = C,.L,, where L, = Z a;.z;.

di 0<i<m
Proof : Let us call left remainder by some polynomial P, noted “P<”, the linear map

defined on the power series G € R << Z >> by the property:

Vwe Z*, < PaG

w >=< Glw.P >

Hence for any words © and v we have u « w = v if w = vu, else 0. We obtain successively:

% <Clw> = Y, [/()tff(zﬂw)]az(t)

zeZ
= Y <Cizaw>a:(t) = D < Cozlw>a,(t) a
z€Z Z€EZ
In other words, yM(t) =< Lo(t) 4 G|ICa(t) >=< G|Ca(t).La(t) >.

(Note that this lemma has been presented by Y.Wang and E.D.Sontag [13] in the input-output
functional derivative form, by using concatenated inputs).

Let afu the concatenated input of an input a defined in [0, ¢, [, and of an input u defined
in [0, ¢3[. According to our formalism, we obtain the corresponding output derivative:

for0 <t <t 1) = =<G|CE).LalE) =
forty <ti +t<ti+ 1t ¥(t) = < GlCa(t1)-Cul?)-Lau(t) >
and then lim_ , [y(t1 +t)] = <G|Ca(t1)-L,(0F) >

3 Three proofs about undistinguishability

We recall briefly three proofs of the following proposition:

Proposition: The generating series representation of the input/output functionals is faith-
ful. In other words, any series undistinguishable from 0 is identically null.

3.1 The proof of C. Reutenauer

(See [9]). Fork =1---p,leti; € [1---m] and let ax(t) the input defined on [0, t¢[ by:

Qe ¢ ‘ v
ak,o(t) =1, ak,ik(t) = 71:’ aq,=0 if 2 # 1k

The Chen series of the input ay at time & is C,, (t5) = €+ T %%k,
Then the Chen series associated to the input b = aqfa.ff- - - f§a, at time ¢; + - - - ¢, is

Cal (tl) e Cap(tp) = Ctlz°+“l:'.1 s 6tp:0+upzip

The power series expansion of this exponential product can be reordered toward the 2p vari-
ables ty,- -+ ,tp, 1, -+, . SO, using multi-indices j = (j1, - -y Jp) and n = (ny,- -+, np),
and standard multi-index power notation, we can write:

y(t) =< G|} Parq, >= Y ta® < GG, >
jn ' jn !
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The last expression defines an analytical function of the 2p variables ¢, and ¢, in a neigh-
bourhood of zero. But by assumption, it must be equal to zero whatever, (> 0) and ¢, may be.
Thus it is identically equal to zero. But the coefficient of the monomial £ ay - - - 77 ap1tP
in y(t) is exactly reduced to the term: < Gz - P :,-p_lzj” >. Since every word w can

be written in the form w = 2z, -+ zg' ' i, the series (7 is identically null.

i
b
’
}
4
o
b
§
{

3.2 The proof of M. Fliess

(See [5D). For ¢ > 0, £ small, there are inputs a and b the Chen series of which are

Ca - 65::0 : Cb - 62520

And then, Gy — C, = €% — e =¢e20 + O(e*) and z = lim,_,2[Cs — Cal- i
If z; # zo an input a; may be defined, the Chen series of which is

- 2 5
Ca,- - 65~o+e zi

And then, C,; — Ca = eerote?a _ go0 = g2z 4+ O(e?) and z; = lim,_,%(Ca; = Cal E

Now, G being undistinguishable from zero, we proof that its left remainders by the let-
ters have the same property. Indeed, we have for any Chen series C:

< 204G|C >=< G||Cz > = lim,_,1[< GIC.Cs > — < G|IC.Co > =8
Vie[l,m], <z<aG|C>=<G|Cz> = lim, % [< GlIC.Ca; > — < GIC.La 5] =10

Then, the left remainder power series zo <« G and z; 9 G are undistinguishable from zero.
Recursively, we deduce that it is true also for the left remainder of G by any word w. From
what follows that G is identically null:

Vw e Z* < Glw >=<waGle >=0

3.3 The proof of E.D. Sontag and Y. Wang

(See[11]). This proof is based on computation of some noncommutative parameters par-
tial derivatives of the input-output map. With our formalism, let us consider a concatenation
of constant inputs:

b= pilfpalt--- e
the input ik = (f41 bz s thm) is defined on [0, tk|

The Chen series of bis Cy = C,, .Cy, - Cuy- The output y(t) is a function of the ¢;, and we
compute the iterated partial noncommuting derivatives as follows:

2 (< GlCu Co Pyee = < OlC+Cons £ (07) >
'B—'_Q‘(< G”cm o 'Cuk >) ok < G“cm o 'Cl‘k—z'ﬁl‘k—l(0+)‘£#k(0+) >

Otp—1 Itk th_1=
By iterating, we obtain:
(- 2W)e = <N L (07)>

C T <Gl > R
lly"'vlk
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By assumption, this expression is equal to zero for any value of the parameters g, ;. Then we
recover the coefficients of G as follows:

Thus G is identically null.

3.4 Conclusion

All these proofs require the knowledge of y(¢) and of its iterated derivatives everywhere in
some neighbourhood of 0. None of these proofs provides an exact identification method. They
do not give even a way for stable numeric computation. A fortiori, they do not solve the al-
gebraic identification in our meaning.

4 Iterated derivatives of the output.

(See [6]).  For any power series G with constant coefficients (satisfying the convergence
condmon) the ¢** time derivative of y, (t) =< G||C(t) > is given by the following expansion
y_O(t) =< G[IC(t) >, convergent in some neighborhood of zero. Then we compute first
the iterated time derivatives of the Chen’s series.

4.1 Derivatives of Chen series.

Since ‘% = C,.L,, we obtain by iterating (denoting by D, the usual time derivation operator):

Cl) = C, A;

h A1 = Ea (R)
WHST® Y A1 = L.Ai+ DA

It should be noticed that C,(0) = 1 and then C{)(0) = A;(0). Consequently

yO(0) = ¥ < Glw>< P (0)|w > =< G||4:(0) >
wezZ®

4.2 Explicit computation of A;
Let us define the derivative LI of £, by a multi-index p = (p1,-- -, pp) (With p; € IN):

S S R R Sl VL ST LA
The degree and the weight of p are given by:

P
deg(p) =p,  wgt(p) = Y_ (1 +p;) = deg(p) + Z pi-

=1
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The polynomials A; can be written as: Ai = ‘(:‘) .ap[:([;’] . Weset Ap = 1. Letusdenote
wgt(p)=1
by A the formal sum of the A;. Then by a combinatorial analysis of the identity:

Y Ai=A=14+LA+DA=Y oLl
teN P
we obtain easily the following formula:

— - in,-&i—l — (p1) (prtp2+1\  (;1+certhk-1 (E)
%o ]-;-[1 =1 (m)( P2 ) ( Pk )

pi

4.3 Expression of the output derivatives.

y™i@) = Y ap)) . a P e p‘)(t) < 2z« &, 4G||C(3) =
—p )—n 5
Z Za p‘) . af-f"')(t) < G|Calt)ziy -+ - 2i, >
Wgt(p)—n i

For an analytical system (¥), this formula may be interpreted by two means.

e Initializing (X) at time ¢ (and by setting C,(¢) = 0), we get the local expression of
y(™)(t) in the state q(t) (formula of Lamnabhi-Lagarrigue and Crouch [8]):

=35 a(p)al(t) - -0l (t) (g, -+~ gi, 0h)

la(e) ~
e Initializing (X) at time 0, we get a global expression of y(™ (¢):

() =3 alp)al™ - alfyis i (t)

where y;,;,..i, is the output of (¥) initialized in ¢(0), for the observation g;, gi, - - - gi, © h.
For t = 0, according to C,(0) = 1, we obtain the formula:

(n)(o) = Z Z < C’lzu % >

k=0 1,

) (;;:) (m +:22 +1) . (pl +--~Z:+k~1)a§f1)(0) ---af:“)(o)

pr+-or=n—k

(Fn)

5 First step for computing the algebraic identification

This problem consists in computing, by effective formulae, the coefficients of a generating
series when we know the Taylor expansions at ¢ = 0 of some inputs and the Taylor expansions
att = 0 of the corresponding outputs. This problem remains unsolved. We provide here an
algorithm for identifying the coefficients of the input mutiderivatives a* (as defined below),
by solving the following system of equations in order to compute the unknown coefficients
< Gl >
yH(0) = Y a* <Gl >
m
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5.1 Single input without drift

k : .
We denote the single input by a(t) and determine it polynomial: a(t) = Y C,—;t’. We have:

i=0 “’
a(ﬁl) S5 % a(pP) —_ a“l PR (a(k—l))u’k = (],u'
So we obtain: y™O0)= > cbt-rek, < ELTTE B )y
wgt=n
We get a triangular infinite system of linear equations:
[(y(0) = <Gle>

y(0) = ¢ <Gla >

y@(0) = al!) <G|z > +E < Gzt >

y™(0) = > a*(0)A, < Glz} >+ & < G|z} >

8ok <

The computation of the coefficients < G|zf > is then obvious for a selected input that satis-
fies: a(0) = co # 0, if the resulting output derivatives y(?)(0) are known for 0 < p < k.

5.2 Single input with drift

k

We set the input equal to a polynomial: a;(¢) = Y %ti and we set ag(t) = 1. We geta linear
. 1.

=
equation system that must be satisfied for any choice of the coefficients c;:

v = X geegh Y <G>
wet(p)<n W (FD),,
lwlsy = pe+ Be—1+ -+ 1
lwlsg = n = |wls, — (k= 1)pge —--—p2

We take only one equation (FD),, and we prove that we can identify every coefficient of the
multiderivatives appearing in this equation, by choosing suitable inputs:

Consider the equation (FD),,; there is a determinant T, which is not zero, the columns
of which are indexed by the multiderivatives of the input and the rows of which are indexed
by several choices of the input and its derivatives at ¢ = 0.

1. The matrix 7, has a lower triangular block form.

e Definition of an order of the columns:

- o We order the multiderivatives (the columns) by increasing order of the number q of
the different derivation orders, appearing in these multiderivatives.
o For the same order ¢, we put together the multiderivatives containing the common set
of derivatives {a{""),a{" . .. Ll ),
e Choice of the values of the associated c;
For every set of derivatives {alV, g\ e ag"') }, appearing in the multiderivatives in-
dexing the columns, we choose a corresponding set of inputs values such that every c;
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is equal to zero except {¢ ,¢_ - ,qq}. So, we obtain T, in a lower triangular block

form. Let us denote these Bloéks by Dysese ; Dygyusv ; Dy

. Choice of the inputs values .

Select these values in order to obtain every diagonal block determinant Dy # 0:
eFirst, let us prove the feasibility:

o It is obvious that D; may be constructed different from 0 for some values (¢, )i<j<r
of agi), since D, is a Vandermonde determinant. '

o We prove that D, associated to the set of the derivatives {aﬁ"”, “e ,a§'°+"} may
be constructed # 0, if D, associated to the set {agi‘), s ,ag"’)} has been constructed
# 0: D,y can be written in a lower triangular block form, by executing some suitable
linear combinations of the columns, for some suitable choices of the values ¢__ ; of the

(tq+1)
al .

Proof : First, we order the columns ((“(1{[))81 e (agi"“))"‘q*‘ )1<e, <sup; Of Dg41 accord-
(iq+1).

ing to the increasing e,4+1 and we select only the values of the a;

Letc .., the value associated t0 €41 = 1, €tC - ¢ ., . the value associated

0 €q41 = SUPg1 where¢ # Gornst for j 7£ k.
We remark that every column ((al)er - .. (aﬁ""”))%+l ) where 2 < €441, hasa ‘column
predecessor’ ((a(,”))el e (ag“’“))"'v““) in the same block D,41. So, we can deduce
that D,,; may be written as a lower triangular block determinant, by executing :

for 2 S €q+1,

column((agu))"‘- .- (agt"“))eq“) — itself—-c‘qﬂ,l*column((ag“))el e (a£1q+l))ev+1'1)

etc -

for s < eg41,

column((a,g"))‘ll e (agl"“))"q“) — itself—qq“’_,* column((ag"))el ‘s (ag"'“))cqﬂ"l)

where s = sup,+1 — 2. If | = sup,41, we need not t(9 Er;)msfonn some column, but we
q+1

need only to factorize the coefficient associated to a; ****. So we obtain:
| €gt1 =1 €q+1 = 2 wae | €q+1 = SUPg+1
ol ...
(Gpia) 0 0
D, -
(6,412)"
- 02 .o
« (qq+1’2 Clq+l,l) 0 O
9,2

CTENTIN et

,[3 Y cee 1_‘[‘(c"r’.l,..“PT'-1 —_ c'q+l,‘ )osqu+l

D q,3UPg41

with o; denoting the dimension of the it" block and D, ; denoting the determinant as-
sociated with g different orders of derivation for the j** block. a

e Effective construction :
o order on the columns of D,:
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For the columns ((a{"))e - (aﬁ‘q))eq)lgekgsupk, order of the increasing e,
For €, constant, order of the increasing e,_,

For eq, -+ , e, constant, order of the inéreasing €1

o We propose the following choices of the (a(f ))":

o values of the a(liq) : . .

Let be oy, the dimension of the block ((a{")e - -- (a{""V)e-1a{") 0y 1 <ep s -

We choose ag“’) =¢_, # 0 for the of* first rows of Dy, denoted by D,;.

etc - - -

Let be 0,4, , the dimension of the block ((a{™)e1 - - (a{'=1))2a (aﬁ'q))s"*’q)lgel.ulse,_l .
We choose ai ) = G, oupg 7 OWhereg . #¢  Vj < sup, forthe o_,up last rows of
D,, denoted by Dg;sup,-

o values of the a( 1,

Let be 0c, e, , - e5,1, the dimension of the block ((a; (1)) - -« (@ (a=1)) %771 g, () °7)

We choose ay' 0'Z =¢ , #0fortheol . . firstrowsof Dy, e,
denoted by Dye, .- ez,1-
etc -

. : e
Letbe Ongeq_i - ea,5upy » the dimension of the block ((a; )™ - .- (al(‘q-l))e" T
We choose ag W _ = Gy #OWhereg . #c  Vj<sup fortheol, | . . .

last rows of Dg,,... ,, denoted by Dq,eq, —

example: for Ty3, let D3 be the block containing the derivatives agl), a(lz), a§3) 2
€3 = 1 €3 = 2
B O U U r T U O
alt)
= | 616161 | £,6.6: ¢.,816. 6.1%,6. 61649,
() [
a;
— = G2G616G ‘%2 G16G, é:_z G1G, G2 Lf_l G G261 ‘3'1
o |
2 a
= = | 636,61 | ©36.164 €616, 658, % 68,8,
G, G3
agz) agu
= = | 162G "?,Icz,z Ga c?,l G26G, G, Lf,z G G1G, "f,l
G2 G
a§3) agz) agl)
= | = | '= | §38:&y &1'162,1 G, C?_;Q,x‘%,z "1,1‘12',1 G ‘1,19.1‘3,2
c3 2 6,1 cl 1

By executing the following processings on the columns:

column(a{"a{?(a{?)?) — itself — G, * column(ay (N (g
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by factorizing ¢ | in the block associated to e3 = 1 and executing

column(agl)(agz))zag:g)) > itself — ¢, * colunm(a(ll)a(lz)agm)

and by factorizing ¢ in the block associated to e3 = 1, e, = 1, we obtain:

G G S
Ds = (6,—6,)*%q,*6,*g, _
*(('2.2 - (‘2,1) *¥GL*¥Gy * Cf,l G Lf,z 6?,2
*O *
B .
Gz (’f,s (?,3

5.3 Several inputs with drift

We consider the case of 2 inputs a;(¢) and a,(t). We choose them polynomials:

I ¢ lo di'
ai(t) =) :i—'t', as(t) = Z—i—’t.
i=0 i=0 "

We obtain a linear equations system, which must be satisfied for every coefficients ¢; and d;:

y(n)(g) - Z i "'{l’fdgz'l ...diﬁ'{z < Glw > AY

wgtin

p= (1,1, p1k)5 (K20, 00 H2m)) wgt(u) = wgt(u1) + wgt(p)

The identification of the multiderivatives coefficients appearing in the previous equation is
solved by the same method as for a single input system:

1. We order the multiderivatives according to the increasing order of the number q of the
different derivation orders of a,(t) or a;(t). And then, for the same ¢, we put together
the multiderivatives containing the same q derivatives of the sets
{agil)a.gjl), & o ,ag"q)a.(zjq)}.

Then, for every set of derivatives {agi‘)agjl), e ,a(,iq)a.(zjq)}, appearing in the multi-
derivatives indexing the columns, we select a corresponding set of inputs values such
that every ¢; and d; are equal to zero except ¢ d;;,- - ,¢_dj,. So, we obtain T, in a
lower triangular form.

2. We select some inputs values in order to get every diagonal block D, of T,, different
from zero. We order the columns by increasing order of the exponent of the maximal
order derivative of a; or a,. For some suitable choices of the inputs values, we prove
that every D, may be written as a non degenerated scalar multiple of some non singular
Vandermonde determinant.

5.4 Conclusion

A first step has been taken towards the algebraic identification. It remains to separate the co-
efficients of the words identical except for the order of the letters composing them.
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