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Abstract

A unifying approach to the problem of constructing vertex-transitive
graphs that are not Cayley is presented. The construction is based on
representing vertex-transitive graphs as coset graphs of groups, and on
simple but powerful necessary arithmetic conditions for Cayley graphs.
We present new constructions of infinite families of (finite as weU as
infimte) vertex-transitive non-Cayley graphs; many of these turn out
to be even arc-transitive. The method is flexible enough for obtammg
new results and reproving several older residts conceraing non-Cay ley
numbers (i. e., orders of vertex-transitive graphs that are not Cayley).

Nous presentons une approche uniflee pour Ie probleme de la con-
struction de graphes qui sont transitifs par rapport a-vLX. sommets, mais
qui ne sont pas des graphes de Cayley. La construction est basee sur
une representation de ces graphes comme graphes de dasses a gauche
de groupes, ainsi que sur une condition necessaire arithmetique, sim-
pie mais puissante, pour les graphes de Cayley. Nous presentons des
constructions nouveUes de families infinies de graphes (fuiis on mftnis)
qui sont transitifs par rapport aux sommets mais qui ne sont pas des
graphes de Cayley; U se trouve que beaucoup panni eux sont transitifs
par rapport aux aretes aussi. La methode est assez flexible pour nous
permettre d' obtenir de nouveaux resultats ainsi que de redemontrer
plusieurs residtats andeas conceraant les nombres non-Cayley (nom-
bres de sommets des graphes transitifs par rapport aux sommets qui
ne sont pas des graphes de Cayley).
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1 Introduction

Vertex-transitive graphs are interesting from both combinatorial as well as
group-theoretical point of view, and have been studied extensively for more
than a century. Although the well-known Cayley graphs have played a promi-
nent role here, there has been an increasing interest in the other side of the
fence - that is, in vertex-transitive graphs that are not Cayley graphs (we bor-
row the acronym VTNCG for such objects from [14]). By [11] , the problem
of constructing VTNCG's is equivalent to the widely studied problem of the
existence of certain permutation groups that do not have regular subgroups.
And yet, only a few infinite families of VTNCG's have been described in the
literature before 1980.

The situation, however, has dramatically changed in the last four years.
Initiated originally by the problem of determining the so-called non-Cayley
numbers, the orders of VTNCG's, posed by Marusic in [6], the search for
VTNCG's has brought a wide range of different constructions ( [3], [4], [6], [7],
[8], [9], [10], and [14]). The general question of cliaracterizing all VTNCG's
is probably beyond our reach in the foreseeable future, but much progress
has been done for orders that have only a few prime factors (see again [8] for
references). New constructions of iiifimte families of VTNCG's are therefore
of growing interest.

Basically, there seem to be two main approaches to the problem. The
iirst assumes that we have enough information on the automorphism group
of a given graph to show that it is transitive and cannot contain a regular
subgroup. Examples with this property are mostly found among graphs that
are related to some of the well-known families of finite groups, and most of
the constructions listed or cited in [8] would fall in this category. The second
approach consists in trying to reveal (without invoking the automorphism
group) some structural conditions that a Cayley graph has to satisfy, and
then show that these are not met by a particidar class of vertex-transitive
graphs. For such necessary conditons and corresponding constructions the
reader is referred to [2, 3, 14].

We present new constructions of infinite families of (finite as well as iu-
finite) VTNCG's. Moreover, imposing additional conditions we even obtain
arc-traasitive non-Cayley graphs (ATNCG's, for short). In a way, our method
is a combination of the above ones. First, we represent a vertex-transitive

graph by means of a suitable coset graph as in [5, 13, 12]. Then, we show
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that under some restrictions, our coset graphs do not satisfy simple but effi-
cient necessary conditions for Cayley graphs. The results are constructioDs
general enough for obtaining infinite families of vertex-transitive non-Cayley
graphs as well as for reproving previously known results iu a more efl&cient
and systematic way. For the sake of brevity, proofs are not included in this
extended abstract; some of them may be found in [4].

2 Preliminaries

Graphs considered may be fimte or infinite, but are always locally finite (i. e.,
every vertex has finite valency), loop less and without multiple edges.

Let Gf be a (fimte or infinite) group and X be a unit-free symmetric

subset of G, that is, 1 ^ X and x~l   X whenever x   X. The Cayfey ̂ rap/i
r = C{G, X) has G as its vertex set, and two vertices a, 6   G are adjacent
if and only if a-16   X. Note that we do not require the set X to be a
generating set for G and therefore we allow also disconnected Cayley graphs.
The graph T is locally finite if and only if the set X is finite. In any case,
the group G acts regularly (as a subgroup of automorphisms) on the yertex

set of F = C{G, X} by left multipUcation, which shows that every Cayley
graph is vertex-transit! ve. This necessary condition is not sufficient, and it is
therefore reasonable to ask for more conditions imposed by the Cayley graph
structure.

The following generalizations of a result originally proved in [2] seem to
be quite powerful in applications. They focus on oriented closed wallcs based
at a fixed vertex, that is, on ordered sequences (ao, ai,... , an = flo) of (not
necessarily distinct) vertices such that a,_i and a. are adjacent for each i,
1 <i < n.

Lemma 1 Let V = C{G, X) be a locally finite Cayley graph and p be an odd
prime. Then the number of closed oriented walks of length pn, n>. I, based

at any fixed vertex of Y, is congruent (mod p) to the number of elements in
X for which x^n =1.

Lemma 2 Let T = C{G, X} be a locally finite Cayley graph, and p and q be
two distinct odd primes. Let n = pq and let jn &e th-e number of generators
x e X for which xn =1. Then the number of closed oriented walks of length
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n, based at any fixed vertex of Y, is congruent (mod p) to jn + kq, where k
is a nonnegative integer.

The central concept of this paper is the one of a coset graph. Such graphs
have apparently been known as "folklore" for decades (see [12] , or [5] for
a more recent treatment; they happen to be a special case of the two-sided
coset graphs introduced in [13] ). Let G' be a group, H a. subgroup of G
and X a symmetric subset of elements of G such that H C\ X = 0. The
vertex set of the coset graph Cos{G, H, X) is the set of all left cosets of H
in G\ two vertices (cosets) aH and bH are adjacent in Cos(G, H, X) if and
only if a~lb 6 HXH = {hxh'; x ^ X and h, h'   H}. It is easy to check
that this definition is correct, i.e., it does not depend on the choice of coset
representatives and it produces graphs without loops aud parallel edges.

An alternate way to define the incidence relation on Cos{G, H, X) is by
referring to the associated Cayley graph C{G, X): Two cosets aH, bH are
adjacent in Cos{G, H, X) provided that there exist h, h' ̂  H such that ah
and bhf are adjacent vertices in the associated Cayley graph C{G, X). The
coset graph Cos(G, H, X) can therefore be viewed as a graph obtained by
"factoring" the associated Cayley graph C(G, X) by the subgroup H. It is
an easy exercise to show that the coset graph Cos{G, H, X) is connected if
and only if the set HXH is a generating set for the group G. Observe that in
the special case when H = {I}, the coset graph reduces to a Cayley graph.
For more information on coset graphs we refer the reader to [5].

As in the case of Cayley graphs, the group G dcts transitively as a group
of automorphisms of the coset graph Cos{G, H, X) by left multiplication,
and therefore every coset graph is vertex-transitive. (However, the action is
no longer regular in general. ) The converse has been proved in [5, 13, 12]
for finite graphs, but the same proof applies also to iufiiute graphs (possibly
of infinite valency): Given a vertex-transitive graph F, take a transitive sub-
group of its automorphisms for G, the G'-stabilizer of a fixed vertex for H,
and define X to be the subset of automorphisms of G that are sending the
fixed vertex to its neighbours. Then Y is isomorphic to Cos{G, jff, X).

Lemma 3 A graph T is vertex-transitive if and only if it is isomorphic to
some coset graph Cos{G, H, X).

In some cases we can guarantee even a higher degree of symraetry of the
coset graphs, namely, their arc-transitivity. The following simple observation
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shows how the existence of suitable group automorphisms can be used in this
context. For notational convenience, if Cos(G, H, X) is a coset graph, let
AutH;x{G) be the group of all the automorphisms of G which fix both X
and the subgroup H setwise.

Lemma 4 Let V = Cos(G, H, X) be a coset graph. Assume that the group
Auti{.^[G) contains a subgroup that acts transitively on X. Then T is an
arc-transitive graph.

3 ]VEain results

The coset graph construction is general enough to yield all vertex-transitive
graphs. In order to obtain VTNCG's, we need to impose certain restrictions
on the triple (G, H, X). Applying Lemma 1, we then are able to show that
the resulting graphs aj-e not Cayley; the proof itsetf is not trivial.

Theorem 1 Let G be a group, let H be a finite subgroup of G, and let X be
a finite symmetric unit-free subset of G such that XHXHH = {1}. Further,
suppose that there are at least \X\ + I distinct ordered pairs (x, h) ̂ X x H
such that {xh)p = 1 for some fixed prime p > \X\\H\ . Then the coset graph
r = Cos{G, H, X) is a vertex-transitive non-Cayley graph.

Combining Theorem 1 with Lemma 4 we obtain a means of constructing
not only vertex-transitive, but even arc-transitive non-Cayley graphs:

Theorem 2 Let a group G, a subgroup H < G, and a subset X C G satisfy
all assumptions of Theorem 1. Moreover, suppose that the group Autf{.^{G)
contains a subgroup that acts transitively on X. Then the coset graph T =
Cos[G, H, X) is an arc-transitive non-Cayley graph.

The following examples illustrate the use of Theorems 1 and 2. We start
with the simplest case when the set X contains only one element (which
is necessarily an involution). Note that the coset graphs built with a one-
element set X are automatically arc-transitive (see Lemma 4).

Example 1. Let G be a non-trivial (finite or iufmite) quotient of the
triangle group (2, r, p), that is, G = <a:, y|.r2 == yr = {xy)p =... =!>.
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Assume that the presentation of G contains no relation of type xyf x = y3.

Further, let r ^ 3 and let p be a prime greater than r2. Then, Theorem
2 implies that the graph Cos{G, <y>, {x}) is a (connected) arc-transitive
non-Cayley graph. Indeed, let H = <y> and X = {x}. It is easy to see
that the set HXH generates G. The absence of relations of the above type
guarantees that XHXC\H = {1}. Now, since a;2 = 1, {xy)p = 1 implies that
also (.ry-l)p = 1. Hence if r ^ 3 then there are at least 2 (= \X\ +1) pairs
(a;, h) eX xH such that {xh^ = 1 for the prime p > r2 (= |Xj|^|2). The
rest follows from Theorem 2. a

Note that any graph constructed in this way Is an underlying graph of a
(finite or infinite) regular map. We thus obtained a special case of a more
general result of [3], where it is shown that the underlying graph of any r-
valent p-covalent regular map is an ATNCG provided that r ^ 3 and p is a
prime greater thau r(r - 1).

Example 2. Let r ^ 2 and s ^ 2 be such that r+s is odd. Let 5'p be the
full symmetric group acting on the set {1, 2,..., ?} where p^r+s+2isa
prime. Let H = <y, z> be the subgroup of Sp generated by the permutations
y = (l, 2,..., r) and 2= (r + l, r + 2,..., r + s). Obviously, R ^ Zr ̂  Z,,
and so \H\ = rs. Further, let 3; = (1, 2,... , j>) be a cyclic permutation of the
entire underlying set and let X = {a;, a;"1}. Let us consider the coset graph
T, =Cos(S,, H, X).

It is easy to see that if r+ 5 is odd then <x, y, z> = Sp. For instance, if r
is even, then the permutatlon w = (xy~'lx~lyxy~'i)p~T is just a transposition
of the elements 1 and r (the composition is to be read from the right to the
left). Since p is a prime, the p-cycle x together with the ticinsposition w
are sufl&dent to generate 5'p. Consequently, the coset graph Fp is connected.
A routine checking of the conditions of Theorem 1 shows that F is also a
vertex-transitive graph that is not Cayley. D

Eample 3. Again, let Sp be the symmetric group on the set {1, 2,... ,p},
where p ^ 2(r+s)+l is a prime and r + 5 is odd (r, s ^ 2). We consider
the same X = {x, x~1} where a; = (1, 2,... , p). However, this time we pick
a larger subgroup of 5'p: Let H' = <y, y', z, z'> where y = (l, 2,..., r),
yi = (p _ i^p_2,..., p- r), z = (r+ l, r+ 2,..., r +s), and fmaUy,

~z' = (p - r - l, p-r -2,..., p - r - 5). Now, H' ̂  Zr-x Z^y. Z, x Z,, and
\H'\ = (r5)2.
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Again, the coset graph Fp = Cos{S^H', X) is a (connected) VTNCG if
p > \X\\H'\2 = 2(r5)4. But we can show more. Letp=2k+l and let a   Sp
be the involution (l, p - l)(2, p -2)... (k, k+ 1). Denote by ^ the inner
automorphism of Sp defined by o-, that is, ^(w) = (TWO- for every w   Sp.
It is easy to verify that the subgroup K = {id, ^} C Aut{Sp) fixes both H'
and X and (obviously) acts transitively on X. It follows from Theorem 2
that T' is an ATNCG ifj?> 2(r5)4; it has order p\/{rs)2 and valency 2(rs)2.
a

We have seen how to construct coset graphs that are VTNCG's (and also
ATNCG's) using a cyclic group or some products of cyclic groups in place
of H. Our next example presents a sufficiently general principle that can be
adopted to construct finite as well as infinite VTNCG's by means of fairly
arbitrary (abstract) groups H, and with arbitrarily large sets X.

Example 4. Let m >. I and let M. (-m ^ i ^ m)bea system of
pairwise disjoint sets of equal cardinality |M,-| = q where g > 3is an odd
number. Let p >. (2m + l)g be a prime number. Take a finite set M disjoint
from aU M, such that |M/| = p- (2m + l)g. Let L = (U-n»^,-<mAf. ) U M/;
clearly, \L\ = p. Further, let M" be an arbitrary (finite or infinite) set disjoint
from L and let n = LU M".

Denote by 5'n the (full) symmetric group on the set H. For 1 <i" ̂  mlet
x, 6 5'n be a permutation of order p (i. e., x^ = iJ) such that its restriction to
the set I, is a cyclic permutation of L with the property that a:, (M-, ) = Mo
and Xi{Mo) = M, (that is, the images of the set MQ under a;,- and a;,"1 are
Mi and M-,, respectively). Consider next the action of the permutation
a:i on the set MQ. Let MQ = {01, 02.... , a, } and let the restriction of a;i
on L be the cyclic permutation {a^,. .., a^,...,..., a^. .. ), where the dots
represent the remaining p- q elements of the set L. This way, 0:1 defines a
unique permutation a;o   Sfi whose restriction to Mo is the cyclic pennutation
3;o = (a^, dj2> . . . aj<) °^ -^o, and such that a;o fixes every element in Q \ MQ.
The important fact to observe is that (a;ia;o)p = id (this is the place where
we use the fact that q is odd).

Now, let X = {a;., a;,"1; 1 ^ i ^ m}; note that |X| = 2m. Let ^ be
an arbitrary subgroup of So fixing the set fl \ Mo pointwise and such that
XQ   H. Let G'H, X be the subgroup of Sfi generated by the elements in
HUX. Since X-1 = X, the coset graph YH^C = COS{GHJC, H, X) is weU
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defined and connected. Moreover, if the set M" (and hence H) is infinite,
the group GH, X may be infinite as well (observe that we did not restrict the
action of the permutations in X on the set 0 \ L in any other way except for
the requirement that xp, = id). But in any case, the group H and the set X
are finite, and so our coset graph is always a locally finite VTNCG. D

A close examination of the proof of Theorem 1 in [4] reveals a possibility
for an immediate improvement of the original lower bound on p. Let Ip denote
the number of distinct pairs {x, h)'mXxH such that {xh)p = 1. For obvious
reasons, Ip <: \X\\H\, and, in general, Ip is considerably smaUer than |^||^|.
Without any alteration of the proof, the original bound p > \X\\H\2 can be
replaced by p > lp\H\. This is usually a considerable improvement of the
size of p used in applications. Consider, for instance, the case of the triangle
group (2, r, p) (Example 1 of [4]). The original lower bound p > r2 can be
improved by using the fact that (.r, 1) obviously does not satisfy the identity
(a; . l)p = 1. Thus Ip is not bigger than r - 1 and therefore it is enough to
require p > r{r - 1). This lower bound matches the one in [3] obtained by
much more subtle methods. A number of other improvements finally lead to
the following result.

Theorem 3 Let G be a group, let H be a finite subgroup of G, and let X be
a finite symmetric unit-free subset of G such that XHX F\ H = {1}. Let m
fee an orfJ positive integer, m = p^1.. .p^ be its prime factorization, and let
1^1 <^ i <, r, denote the number of distinct pairs (x, h) in X x H such that
{xh)p^ = 1. Suppose that ̂ , r^ /. > \X\, and, for all i, pi > [i\H\. Then the
coset graph T = Cos(G, H, X] is a vertex-transitive non-Cayley graph.

We have stated Theorem 3 in a very general setting with m being quite
arbitrary. For practical applications we would like to make the following
remark. Suppose that G is fimte and p is an odd prime that does not divide
the order of G>. Then p does not divide the size of the vertex set of F =
Cos(G', H, X) either, and therefore F, even if it happens to be C^-yley, cannot
possibly have generators of order p. On the other hand, since G contains no
elements of order p, the number of pairs (a;, h) m X x H, satisfying the
equality (xh)p = 1, is zero as well. Thus, p contributes 0 to both sides of
our inequality and therefore carries no infonnation of whether the obtained
graph is Cayley or not. Consequently, to construct finite VTNCG s, we are
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only interested in numbers m that divide the order of G. Obviously, there
are no limits on the choice of m for infinite G"s.

The obvious advantage of Theorem 3 against Theorem 1 is well illustrated
in the following simple example.

Example 5. Let p> qbe two odd primes such that 2(p-q)(p-q+l) < q.
Take y=(12... p-q+l) and x = (p-q+1.. . p), two permutations of the
set {1, 2,... ,p}, and consider the permutation group G = <x, y>, generated
by x and y. Let H = <y> and X = {.c, a:-1}. Obviously, XHX ̂  H = {1}.
Furthermore, /, ̂  2, since x and .r-l are both of order 9, and /p ̂  2, since
(xy)p = (a;-ly)p = 1. Thus, l, +lp>4 > 2 = \X\. Also, p > q >
2(p - g)(p - g + 1), where 2(p - 9)(p -94- 1) is an upper bound for both
lg\H\ and lp\H\. Theorem 2 implies that Cos^G, H, X) is a vertex-transitive
non-Cay ley graph. D

One of the basic questions related to VTNCG's is the problem of charac-
terizmg the positive integers n, for which there exists a VTNCG of order n,
the so-called non-Cayley numbers ([6]). Since any of the midtiples of a non-
Gay ley niunber is also non-Cayley, most of the work in the area is devoted
to products of small powers of prime factors ( [7], [8], [9], [10]).

The previous constructioDS are easy to use and yield a large niunber of
possible alterations, and, eventually, of new VTNCG's. The sizes of the ob-
tained graphs, however, are usually close to factoricds. It is also hard to have
control over the sizes of the obtained graphs. This mdkes this construction
unsmtable for finding non-Cay ley numbers. The following theorem. gives rise
to several other constructions, more feasible for constructing VTNCG's of a
prechosen order. (Recall that Cos(G, H, X} is connected iff the set HXH
generates the group G.)

Theorem 4 LetT == Cos(G, H, X) be a connected coset graph and p be an
odd integer which satisfy the following conditions:

. XHXr\H={l},

. no finite group G' of order \G\f\H\ can be generated by a set of elements
all of which are of order divisible by p,

. the number Ip, of pairs {x, h) eX x H for which {xk)p =1, is greater
than or equal to \X\, and
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. P>W\.

Then F is a vertex-transitive non-Cayley graph.

We illustrate the above result in our last example.

Example 6. Let p > q be two primes and n < p/2 be a positive inte-
ger. Suppose that p does not divide any of the numbers g* - 1, 1 ^ i <. n.
Then any group of order (pq)n contains a Dormal Sylow p-group and can-
not be generated by elements of order divisible by p alone. Once more, this
conclusion allows us to construct a coset graph satisfying the conditions of
Theorem 3. Let G be the wreath product of the group 2p x Zy with 2n
acting on {1, 2,... , n) in the usual cyclic way. Then |G'| = {pq)nn. Let H =
<((0, 0),..., (0, 0);(12... n))> be the isomorphic copy of Zn in G, and let
X = {((1, 0), (0, 0), (0, 0),..., (0, 0); zrf), ((p-l, 0), (0, 0), (0, 0),..., (0, 0); id)}.
Then XHXHH = {((0, 0),.. ., (0, 0);^)}, /p = 2 (since? > n, H cannot
contain elements of order di visible by p), and p > lp\H\ = 2n, by assiunptlon.
All this together proves that Cos{G, H, X) is a VTNCG of order (pq)n. D
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