ENUMERATING HOMOMORPHISMS AND SURFACE-COVERINGS
by Gareth A. Jones

Abstract. Mobius inversion (in finite groups) and representation theory are used to enumerate homomor-
phisms from a finitely-generated group to a finite group, and hence to enumerate regular coverings of a
surface with a given finite covering-group.

Coverings. Let v: ¥ — ¥ be an unbranched covering of a compact, connected, orientable surface £ = T, of
genus g > 0. The covering transformations of y (the self-homeomorphisms & of ¥ such that yoa = v) form

a group G = Aut+y which preserves each fibre y~1(p), p € I. Suppose that G is finite, and that 7 is regular
(so G acts transitively on each fibre, or equivalently ¥ = >/ G and 7 is induced by the projection I, Y G).
Then degy = |G|, that is, |y~1(p)| = |G| for all p € T, and ¥ is compact, of genus § = 1+ |G|(g — 1).

This situation can be described algebraically using the fundamental group I, = 7;(X,). The covering
v : £ — I, induces a monomorphism 7. : I; — II,;, with image N = 7.(II3) = II; of index degy in II,.
Two coverings 11 and 72 : 3 — I, are equivalent if 71 = 72 o a for some self-homeomorphism « of Zg;
this happens if and only if the corresponding subgroups N; = (v;).(II3) are conjugate in II;. A covering vy
is regular if and only if it corresponds to a normal subgroup N of Iy, in which case II;/N = G. It follows
that, for a given group G and genus g, the equivalence classes [7] of regular coverings v of I,, with covering
group G, are in one-to-one correspondence with the elements of the set

Ny(G)={Nall, |II,/N=G}

of normal subgroups of I, with quotient group G. My aim is to find the number ny(G) = |Ny(G)| of such
subgroups N (and hence the number of equivalence classes [7]), as a function of g for each finite group G.

Counting normal subgroups. Hall [3] introduced a general technique for finding the number np(G)
of normal subgroups N of any finitely generated group I' with a given finite quotient group I'/N = G.
Such subgroups are the kernels of the epimorphisms 6 : ' — G; the set Epi (T, G) of such epimorphisms
is finite, since the generators of ' can be mapped into G in only finitely many ways, so np(G) is finite.
If 6,,02 € Epi(T,G), then kerd; = ker@; if and only if §2 = 6; o o for some automorphism « of G, so
nr(G) = |Epi (T, G)/Aut G|, the number of orbits of Aut G acting by composition on Epi (T, G). This action
is fixed-point-free, so all orbits have length |Aut G| and hence

_ |Epi(T,G)|
() = Tawar

As an cxamgple, let T be e fundamental group II,, with presentation

g
I, = (A1, By, ..., Aq, By | [[[4i, Bi] = 1)

i=1

(where [A, B] denotes the commutator A=*B~'AB), and let G = Cjp, a cyclic group of prime order p.
The homomorphisms § : [, — G correspond to mappings of the generators A;, B; of II; to elements
a; = Aif,b; = B;f of G (since G = C, is abelian, [][a;, 5] = 1 and hence each such mapping extends to a
homomorphism).

There are p?Y mappings, and since G is prime the only one which does not extend to an epimorphism is
the trivial mapping given by a; = b; = 1 for all 4, so |Epi(Ily, Cp)| = p?? — 1. Now [AutCp| = ¢(p) =p —
‘where ‘¢ is Euler’s function on N, so we obtain Mednykh’s formula [7]
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In general, one can count epimorphisms I' — G by first counting homomorphisms and then eliminating
those which map I onto proper subgroups K < G. We have

[Hom(T,G)| = > |Epi(T, K)|,

K<G

and one can invert this equation, to count epimorphisms in terms of homomorphisms, by introducing the
Mobius function for G. This assigns an integer p(K) to each subgroup K of G by the recursive formula

1 fK=G
E IJ(H)_——&K,G: . )
HSK {0 ifK<G.

One then easily deduces Hall’s formula

|Epi(T,G)| = S u(H)[Hom (T, H)|.

H<G

For many groups G, it is a routine task to find |Aut G| and u(H) for all H < G, so one is left with the
problem of counting homomorphisms I' — H.

When I’ = II; the number
oy(H) = |[Hom(I,, H)|

of homomorphisms § : I, — H is equal to the number of solutions a;, b; in H of the equation [{_,[a;,b:] = 1.

One can evaluate this number by means of the following theorem, proved for ¢ = 1 by Frobenius [1], and for
g > 1 by Mednykh [6].

Theorem. For any finite group H,

a ()= |[H2 Y S,
P

where p ranges over the irreducible complex representations of H, and d, denotes the degree of p.

Applying this to all H < G, one can now compute n4(G) for many finite groups G (see [4]). For example:
1) For a cyclic group Cj, of order n we have

ng(Cn) = é(n )Z 29}‘( ==

where u is the Mdbius function on N.

2) If G = Cp x -+~ x Cp (k factors, p prime) is an elementary abelian p-group of rank k, then ny(G) is the
Gaussian coefficient
(29) —__ (29)
k P (k)p-(29 — k)p’
the number of k-dimensional subspaces in a 2g-dimensional vector space over GF(p), where
() =" = 1" =1)...(a- 1)
-3) The formula for ny(Dy) less pleasant, but for n = p (an odd prime) it simplifies to

(2% = )@= = 1)

ny(Dp) (p__ 1)
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9 ng(As) = £(3%9 = (472 _ 1)
and

ng(Ss) = %(229 —1)(8%9-2 — 1) (42 — 1),

Non-orientable surfaces. A similar theory applies to unbranched coverings of a non-orientable surface
L =X] of genus g > 1. The only essential difference is that the fundamental group of ¥ is now

o; = (Ry,..., Ry | Rf...Rz =1),
so in place of o4(H) one needs
o, (H) = [Hom (II;, H)|, the number of solutions r; in H of the equation rZ...r? = 1. Again, one can

count these using representation theory. Let x : H — C,h — tr(p(h)) be the character of an irreducible
complex representation p of H. The Frobenius-Schur indicator of p is

1 if p is real,
cp = { —1 if x is real but p is not,
0  if x is not real.

Frobenius and Schur [2] (with no apparent topological motivation) proved the following result.

Theorem. For any finite group H,
og (H) = HI""' 3 cjd3™s,
p
where p ranges over the irreducible complex representations of H.

Using this, one can find the number n;(G) of equivalence classes of regular unbranched coverings of
E,, with covering group G, for many finite groups G (see [4]). For example:

1) 77 (Cn) = g5 L M)
min

where 7, = 1 or 2 as m is odd or even.

& " (D) = 745(17) D H(ImI " (m 4 (2 - 2).
m|n

3) ny (Ag) = (31 - 1)(@=2 - 1),

Punctured surfaces and branched coverings. If I, . and I, are formed by removing r points from
L, and E; respectively, where 0 < r < oo, then one has to add r generators X, ..., X, (corresponding to
loops around the punctures) to the fundamental groups II; and II;, and change their defining relations to
[41,B1]...[44,By] X} ... X, =1 and R‘f...RgXl...X,- = 1 respectively.
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Using representation theory, one can calculate the numbers of solutions of the corresponding equations
in any finite group H (with z; = X6 restricted to various unions of conjugacy classes, such as the elements
of a given order, if necessary). From this, one can count the equivalence classes of regular unbranched
coverings of these punctured surfaces. Similarly, one can count regular branched coverings by removing
branch-points to create unbranched coverings of punctured surfaces. For example the number of equivalence
classes of regular branched coverings of Xg, with r given branch-points and with covering group Cp, (p
prime), is p?9~((p — 1)7=! 4+ (=1)7). In [5] this method is extended to count normal subgroups of a non-
euclidean crystallographic group without reflections; these correspond to regular coverings of an orbifold
whose underlying surface is without boundary.

Self-homeomorphisms of . Finally, one can consider the effect of self-homeomorphisms of & = X4
(in addition to those of Ij) in counting regular coverings. By the Dehn-Nielsen Theorem [8, 10], two
such coverings are equivalent under self-homeomorphisms of £, if and only if the corresponding normal
subgroups N of II; are equivalent vnder AutII, so the number 74(G) of such equivalence classes is equal
to |Ny(G)/AutTly|. When G = Cp X - -+ X Cp, an elementary abelian p-group of rank k (p prime), one can
calculate this number by using the facts that all such subgroups N contain the commutator subgroup IIy,
and that AutII; acts on the first homology group
H\(Z4,Z) = H;b = Hg/H;

as the general symplectic group GSp(29,Z) corresponding to the bilinear intersection form on ¥,4. Using
Witt’s Theorem [9] on equivalence of subspaces in a symplectic space, one finds that

L.
A(G)=1+ [-2- min(k, 29 — k)],
where |z] denotes the integer part of . (See [4] for details.)

For instance, by putting k = 1 we have 7y(Cp) = 1, so all ng(Cp) = (p* —1)/(p — 1) coverings are
equivalent in this sense. Putting k =2, we see that 7,(Cp x Cp) =lor2asg=1org2 2, and in the case
g = 2 one can easily illustrate two inequivalent actions of Cp x Cp on g = i 4pa-
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