ENUMERATING HOMOMORPHISMS AND SURFACE-COVERINGS

by Gareth A. Jones

Abstract. Möbius inversion (in finite groups) and representation theory are used to enumerate homomorphisms from a finitely-generated group to a finite group, and hence to enumerate regular coverings of a surface with a given finite covering-group.

Coverings. Let $\gamma: \tilde{\Sigma} \rightarrow \Sigma$ be an unbranched covering of a compact, connected, orientable surface $\Sigma=\Sigma_{g}$ of genus $g \geq 0$. The covering transformations of γ (the self-homeomorphisms α of $\tilde{\Sigma}$ such that $\gamma \circ \alpha=\gamma$) form a group $\bar{G}=$ Aut γ which preserves each fibre $\gamma^{-1}(p), p \in \Sigma$. Suppose that G is finite, and that $\underset{\tilde{\Sigma}}{\boldsymbol{\gamma}}$ is regular (so G acts transitively on each fibre, or equivalently $\Sigma \approx \tilde{\Sigma} / G$ and γ is induced by the projection $\tilde{\Sigma} \rightarrow \tilde{\Sigma} / G$). Then $\operatorname{deg} \gamma=|G|$, that is, $\left|\gamma^{-1}(p)\right|=|G|$ for all $p \in \Sigma$, and $\tilde{\Sigma}$ is compact, of genus $\tilde{g}=1+|G|(g-1)$.

This situation can be described algebraically using the fundamental group $\Pi_{g}=\pi_{1}\left(\Sigma_{g}\right)$. The covering $\gamma: \Sigma_{\bar{g}} \rightarrow \Sigma_{g}$ induces a monomorphism $\gamma_{*}: \Pi_{\tilde{g}} \rightarrow \Pi_{g}$, with image $N=\gamma_{*}\left(\Pi_{\tilde{g}}\right) \cong \Pi_{\tilde{g}}$ of index $\operatorname{deg} \gamma$ in Π_{g}. Two coverings γ_{1} and $\gamma_{2}: \Sigma_{\tilde{g}} \rightarrow \Sigma_{g}$ are equivalent if $\gamma_{1}=\gamma_{2} \circ \alpha$ for some self-homeomorphism α of $\Sigma_{\tilde{g}}$; this happens if and only if the corresponding subgroups $N_{i}=\left(\gamma_{i}\right)_{*}\left(\Pi_{\bar{g}}\right)$ are conjugate in Π_{g}. A covering γ is regular if and only if it corresponds to a normal subgroup N of Π_{g}, in which case $\Pi_{g} / N \cong G$. It follows that, for a given group G and genus g, the equivalence classes [γ] of regular coverings γ of Σ_{g}, with covering group G, are in one-to-one correspondence with the elements of the set

$$
\mathcal{N}_{g}(G)=\left\{N \triangleleft \Pi_{g} \mid \Pi_{g} / N \cong G\right\}
$$

of normal subgroups of Π_{g} with quotient group G. My aim is to find the number $n_{g}(G)=\left|\mathcal{N}_{g}(G)\right|$ of such subgroups N (and hence the number of equivalence classes $[\gamma]$), as a function of g for each finite group G.

Counting normal subgroups. Hall [3] introduced a general technique for finding the number $n_{\Gamma}(G)$ of normal subgroups N of any finitely generated group Γ with a given finite quotient group $\Gamma / N \cong G$. Such subgroups are the kernels of the epimorphisms $\theta: \Gamma \rightarrow G$; the set $\operatorname{Epi}(\Gamma, G)$ of such epimorphisms is finite, since the generators of Γ can be mapped into G in only finitely many ways, so $n_{\Gamma}(G)$ is finite. If $\theta_{1}, \theta_{2} \in \operatorname{Epi}(\Gamma, G)$, then $\operatorname{ker} \theta_{1}=\operatorname{ker} \theta_{2}$ if and only if $\theta_{2}=\theta_{1} \circ \alpha$ for some automorphism α of G, so $n_{\Gamma}(G)=|\operatorname{Epi}(\Gamma, G) / \operatorname{Aut} G|$, the number of orbits of Aut G acting by composition on Epi (Γ, G). This action is fixed-point-free, so all orbits have length \mid Aut $G \mid$ and hence

$$
n_{\Gamma}(G)=\frac{|\operatorname{Epi}(\Gamma, G)|}{|\operatorname{Aut} G|}
$$

As an cxample, let. Γ be ine iundamental group Π_{g}, with presentation

$$
\Pi_{g}=\left\langle A_{1}, B_{1}, \ldots, A_{g}, B_{g} \mid \prod_{i=1}^{g}\left[A_{i}, B_{i}\right]=1\right\rangle
$$

(where $[A, B]$ denotes the commutator $A^{-1} B^{-1} A B$), and let $G=C_{p}$, a cyclic group of prime order p. The homomorphisms $\theta: \Pi_{g} \rightarrow G$ correspond to mappings of the generators A_{i}, B_{i} of Π_{g} to elements $a_{i}=A_{i} \theta, b_{i}=B_{i} \theta$ of G (since $G=C_{p}$ is abelian, $\Pi\left[a_{i}, b_{i}\right]=1$ and hence each such mapping extends to a homomorphism).

There are $p^{2 g}$ mappings, and since G is prime the only one which does not extend to an epimorphism is the trivial mapping given by $a_{i}=b_{i}=1$ for all i, so $\left|\operatorname{Epi}\left(\Pi_{g}, C_{p}\right)\right|=p^{2 g}-1$. Now \mid Aut $C_{p} \mid=\phi(p)=p-1$, where ϕ is Euler's function on \mathbf{N}, so we obtain Mednykh's formula [7]

$$
n_{g}\left(C_{p}\right)=\frac{p^{2 g}-1}{p-1}
$$

In general, one can count epimorphisms $\Gamma \rightarrow G$ by first counting homomorphisms and then eliminating those which map Γ onto proper subgroups $K<G$. We have

$$
|\operatorname{Hom}(\Gamma, G)|=\sum_{K \leq G}|\operatorname{Epi}(\Gamma, K)|
$$

and one can invert this equation, to count epimorphisms in terms of homomorphisms, by introducing the Möbius function for G. This assigns an integer $\mu(K)$ to each subgroup K of G by the recursive formula

$$
\sum_{H \geq K} \mu(H)=\delta_{K, G}= \begin{cases}1 & \text { if } K=G \\ 0 & \text { if } K<G\end{cases}
$$

One then easily deduces Hall's formula

$$
|\operatorname{Epi}(\Gamma, G)|=\sum_{H \leq G} \mu(H)|\operatorname{Hom}(\Gamma, H)|
$$

For many groups G, it is a routine task to find \mid Aut $G \mid$ and $\mu(H)$ for all $H \leq G$, so one is left with the problem of counting homomorphisms $\Gamma \rightarrow H$.

When $\Gamma=\Pi_{g}$ the number

$$
\sigma_{g}(H)=\left|\operatorname{Hom}\left(\Pi_{g}, H\right)\right|
$$

of homomorphisms $\theta: \Pi_{g} \rightarrow H$ is equal to the number of solutions a_{i}, b_{i} in H of the equation $\prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=1$. One can evaluate this number by means of the following theorem, proved for $g=1$ by Frobenius [1], and for $g>1$ by Mednykh [6].

Theorem. For any finite group H,

$$
\sigma_{g}(H)=|H|^{2 g-1} \sum_{\rho} d_{\rho}^{2-2 g},
$$

where ρ ranges over the irreducible complex representations of H, and d_{ρ} denotes the degree of ρ.
Applying this to all $H \leq G$, one can now compute $n_{g}(G)$ for many finite groups G (see [4]). For example:

1) For a cyclic group C_{n} of order n we have

$$
n_{g}\left(C_{n}\right)=\frac{1}{\phi(n)} \sum_{m \mid n} m^{2 g} \mu\left(\frac{n}{m}\right)
$$

where μ is the Möbius function on N .
2) If $G=C_{p} \times \cdots \times C_{p}$ (k factors, p prime) is an elementary abelian p-group of rank k, then $n_{g}(G)$ is the Gaussian coefficient

$$
\binom{2 g}{k}_{p}=\frac{(2 g)_{p}}{(k)_{p} \cdot(2 g-k)_{p}}
$$

the number of k-dimensional subspaces in a $2 g$-dimensional vector space over $G F(p)$, where

$$
(n)_{q}=\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots(q-1)
$$

3) The formula for $n_{g}\left(D_{n}\right)$ less pleasant, but for $n=p$ (an odd prime) it simplifies to

$$
n_{g}\left(D_{p}\right)=\frac{\left(2^{2 g}-1\right)\left(p^{2 g-2}-1\right)}{(p-1)}
$$

$$
n_{g}\left(A_{4}\right)=\frac{1}{6}\left(3^{2 g}-1\right)\left(4^{2 g-2}-1\right)
$$

and

$$
n_{g}\left(S_{4}\right)=\frac{1}{2}\left(2^{2 g}-1\right)\left(3^{2 g-2}-1\right)\left(4^{2 g-2}-1\right)
$$

Non-orientable surfaces. A similar theory applies to unbranched coverings of a non-orientable surface $\Sigma=\Sigma_{g}^{-}$of genus $g \geq 1$. The only essential difference is that the fundamental group of Σ is now

$$
\Pi_{g}^{-}=\left\langle R_{1}, \ldots, R_{g} \mid R_{1}^{2} \ldots R_{g}^{2}=1\right\rangle
$$

so in place of $\sigma_{g}(H)$ one needs
$\sigma_{g}^{-}(H)=\left|\operatorname{Hom}\left(\Pi_{g}^{-}, H\right)\right|$, the number of solutions r_{i} in H of the equation $r_{1}^{2} \ldots r_{g}^{2}=1$. Again, one can count these using representation theory. Let $\chi: H \rightarrow \mathbf{C}, h \mapsto \operatorname{tr}(\rho(h))$ be the character of an irreducible complex representation ρ of H. The Frobenius-Schur indicator of ρ is

$$
c_{\rho}= \begin{cases}1 & \text { if } \rho \text { is real, } \\ -1 & \text { if } \chi \text { is real but } \rho \text { is not } \\ 0 & \text { if } \chi \text { is not real. }\end{cases}
$$

Frobenius and Schur [2] (with no apparent topological motivation) proved the following result.
Theorem. For any finite group H,

$$
\sigma_{g}^{-}(H)=|H|^{g-1} \sum_{\rho} c_{\rho}^{g} d_{\rho}^{2-g}
$$

where ρ ranges over the irreducible complex representations of H.
Using this, one can find the number $n_{g}^{-}(G)$ of equivalence classes of regular unbranched coverings of Σ_{g}^{-}, with covering group G, for many finite groups G (see [4]). For example:
1)

$$
n_{g}^{-}\left(C_{n}\right)=\frac{1}{\phi(n)} \sum_{m \mid n} \mu\left(\frac{n}{m}\right) \eta_{m} m^{g-1}
$$

where $\eta_{m}=1$ or 2 as m is odd or even.
2)

$$
n_{g}^{-}\left(D_{n}\right)=\frac{1}{\phi(n)} \sum_{m \mid n} \mu\left(\frac{n}{m}\right) m^{g-2}\left(m+\eta_{m}\left(2^{g}-2\right)\right)
$$

3)

$$
n_{g}^{-}\left(A_{4}\right)=\frac{1}{6}\left(3^{g-1}-1\right)\left(4^{g-2}-1\right)
$$

Punctured surfaces and branched coverings. If $\Sigma_{g, r}$ and $\Sigma_{g, r}^{-}$are formed by removing r points from Σ_{g} and Σ_{g}^{-}respectively, where $0<r<\infty$, then one has to add r generators X_{1}, \ldots, X_{r} (corresponding to loops around the punctures) to the fundamental groups Π_{g} and Π_{g}^{-}, and change their defining relations to $\left[A_{1}, B_{1}\right] \ldots\left[A_{g}, B_{g}\right] X_{1} \ldots X_{r}=1$ and $R_{1}^{2} \ldots R_{g}^{2} X_{1} \ldots X_{r}=1$ respectively.

Using representation theory, one can calculate the numbers of solutions of the corresponding equations in any finite group H (with $x_{i}=X_{i} \theta$ restricted to various unions of conjugacy classes, such as the elements of a given order, if necessary). From this, one can count the equivalence classes of regular unbranched coverings of these punctured surfaces. Similarly, one can count regular branched coverings by removing branch-points to create unbranched coverings of punctured surfaces. For example the number of equivalence classes of regular branched coverings of Σ_{g}, with r given branch-points and with covering group C_{p} (p prime), is $p^{2 g-1}\left((p-1)^{r-1}+(-1)^{r}\right)$. In [5] this method is extended to count normal subgroups of a noneuclidean crystallographic group without reflections; these correspond to regular coverings of an orbifold whose underlying surface is without boundary.
Self-homeomorphisms of Σ. Finally, one can consider the effect of self-homeomorphisms of $\Sigma=\Sigma_{g}$ (in addition to those of $\Sigma_{\bar{g}}$) in counting regular coverings. By the Dehn-Nielsen Theorem [8, 10], two such coverings are equivalent under self-homeomorphisms of Σ_{g} if and only if the corresponding normal subgroups N of Π_{g} are equivalent under Aut Π_{g}, so the number $\bar{n}_{g}(G)$ of such equivalence classes is equal to $\mid \mathcal{N}_{g}(G) /$ Aut $\Pi_{g} \mid$. When $G=C_{p} \times \cdots \times C_{p}$, an elementary abelian p-group of rank k (p prime), one can calculate this number by using the facts that all such subgroups N contain the commutator subgroup Π_{g}^{\prime}, and that Aut Π_{g} acts on the first homology group

$$
H_{1}\left(\Sigma_{g}, \mathbf{Z}\right)=\Pi_{g}^{\mathrm{ab}}=\Pi_{g} / \Pi_{g}^{\prime}
$$

as the general symplectic group $\operatorname{GSp}(2 g, \mathbf{Z})$ corresponding to the bilinear intersection form on Σ_{g}. Using Witt's Theorem [9] on equivalence of subspaces in a symplectic space, one finds that

$$
\bar{n}_{g}(G)=1+\left\lfloor\frac{1}{2} \min (k, 2 g-k)\right\rfloor
$$

where $\lfloor x\rfloor$ denotes the integer part of x. (See [4] for details.)
For instance, by putting $k=1$ we have $\bar{n}_{g}\left(C_{p}\right)=1$, so all $n_{g}\left(C_{p}\right)=\left(p^{2 g}-1\right) /(p-1)$ coverings are equivalent in this sense. Putting $k=2$, we see that $\bar{n}_{g}\left(C_{p} \times C_{p}\right)=1$ or 2 as $g=1$ or $g \geq 2$, and in the case $g=2$ one can easily illustrate two inequivalent actions of $C_{p} \times C_{p}$ on $\Sigma_{\bar{g}}=\Sigma_{1+p^{2}}$.

REFERENCES

1. G.Frobenius, Über Gruppencharaktere, Sitzber. Königlich Preuss. Akad. Wiss. Berlin, (1896), 985-1021.
2. G.Frobenius and I.Schur, Über die reellen Darstellungen der endlichen Gruppen, Sitzber. Königlich Preuss. Akad. Wiss. Berlin, (1906), 186-208.
3. P.Hall, The Eulerian functions of a group, Quarterly J. Math. Oxford 7 (1936), 134-151.
4. G.A.Jones, Enumeration of homomorphisms and surface-coverings, Quarterly J. Math. Oxford, to appear.
5. G.A.Jones, Counting normal subgroups of non-euclidean crystallographic groups, submitted.
6. A.D.Mednyh, Determination of the number of nonequivalent coverings over a compact Riemann surface, Dokl. Akad. Nauk SSSR, 239 (1978), $269 \cdots 71$ (Russian); Soviet Math. Dokl., 19 (1978), 318-320 (English transl.)
7. A.D.Mednyh, On unramified coverings of compact Riemann surfaces, Dokl. Akad. Nauk SSSR, 244 (1979), 529-532 (Russian); Soviet Math. Dokl., 20 (1979), 85-88 (English transl.).
8. J.Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen I, Acta Math. 50 (1927), 189-358.
9. E.Witt, Theorie der quadratischen Formen in beliebigen Körpen, J. reine angew. Math. 176 (1937), 31-44.
10. H.Zieschang, E.Vogt and H-D.Coldewey, Surfaces and Planar Discontinuous Groups, Lecture Notes in Mathematics 835, Springer-Verlag, Berlin / Heidelberg / New York, 1980.
Department of Mathematics
University of Southampton
Southampton SO17 1BJ
United Kingdom
