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Abstract. Mobius inversion (in finite groups) and representation tAeory are used to enumerate bomomor-
pbisms from a finitely-geaerated group to a. finite group, asd hence to enumerate regular coverings of a.
surface with a given finite covering-group.

Coverktgs. Let 7 : E-*Sbe an uabranched covering of a compact, coimected, orientable surface E = E, of
genus g >^0. The covering transformations of 7 (the self-homeomorphisms a- of E such that 7 oo; = 7) form
a group G = Aut7 which preserves each fibre 7~ (p), p   E. Suppose that G is finite, and that -y is regular
(so G acts transitively on each fibre, or equivalently E w E/G and 7 is induced by the projection E -> E/G).
Then deg7 = \G\, that is, |7-l(p)l = |G'l for all p   S, and E is compact, ofgeaus 5 = 1 + |G[(5 - 1).

This situation can be described algebraically using the fundamental group Ilg = 7Ti(S,). The covering
7 :I;3 -" S, induces a monomorphism 7. : H, -<. H,, with image ̂ V = 7. (II, ) S 11, of index deg7 in II,.
Two coverings 71 and 72 : Sg ->Sg are equivalent if 71 = 72 o a; for some self-homeomorphism a of S,;
this happens if and only if the corresponding subgroups Ni = (fi)*(V-g) are conjugate in H,. A covering 7
is regular if and only if it corresponds to a normal subgroup N of H,, in which case Ilg/N £ G. It follows
that, for a given group G and genus g, the equivalence classes [7] of regular coverings 7 of S,, with covering
group G, are in one-to-one correspondence with the elements of the set

^f, {G)={N<^\U, /N^G}

of normal subgroups of II,, with quotient group G. My aim is to find the number n, (G) = |^, (G)| of such
subgroups N (and hence the number of equivalence classes [7]), as a function of g for each finite group G.

Countuig norinal subgroups. Hall [3] introduced a general technique for findmg the nmnber nr(G')
of normal subgroups N of any finitely geuerated group F with a given finite quotient group T/N S G.
Such subgroups are the kernels of the epimorphisins ff :T -r G; the set Epi (F, G) of such epimorphisms
is finite, smce the generators of F can be mapped into G in only finitely many ways, so nr(G) is finite.
If ̂ ^^3   Epi(F, G), then ker^i = ker^2 if and only if 9t .=- 0-iO a for some automorphism cr of G, so
nr(G') = |Epi(F, G)/AutG|, the number of orbits ofAutG acting by composition on Epi(F, G). This action
is fixed-point-free, so sdl orbits have length |Aut G| and hence

"r(G) = |Epi(F, G)|
|AutG!|

As an cxs.mpk, 1c': F bt L'uc FiLadamental group II,, with presentation

H, = <Ai, Bi,... ,A,, BJ HtA.., Bi] = 1)
t=l

(where [A, B] denotes the commutator A-1B-1AJ3), and let G = Cp, a cyclic group of prime order p.
The homomorphisms 0 : H, -+G correspond to mappmgs of the generators A; , B, of II, to elements
a, = AiO, bi == BiO of G (since G' = Cp is abeliaa, n[a,-, 6,] = 1 and hence each such mapping extends to a
homomorphism).

There are p23 mappings, and since G is prime the only one which does not extend to an epimorphism is
the trivial mapping given by a, = 6, == 1 for all»", so |Epi(H,, Cp)| = p2? 

- 1. Now |AutCp| = <^(p) = p - 1,
where <^ is Euler's function on N, so we obtain Mednykh's formula [7]

n, (C'p) =
P23-l
T^r
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In general, one can count epimorphisms F -+ G by first counting homomorphisms and then eliminating
those which map F onto proper subgroups K < G. We have

|Hom(r, G)|= ^ |Epi(r, A:)|,
K<G

and one can invert this equation, to count epimorphisms in terms of homomorphisms, by introducmg the
Mobius function for G. This assigns an integer f^{K) to each subgroup K of G by the recursive formula

V" ,, tn\-f,, ^ -J'1 '^K=G,
^/w=^G=to if ̂^G:

One then easily deduces Hall's formula

|Epi(F, G)|= ^^(ff)|Hom(r, ff)|.
H<G

For many groups G, it is a routine task to find [Aut G\ and ̂ (H) for all H < G, so one is left with the
problem of counting homomorphisms T -r H.

When F = II, the number
<T, (fi-)=|Hom(H,, ff)|

ofhomomorphisins 0 :Jlj-* H \s equal to the number of solutions a,, &, in H of the equation nf=i[ai, &i] = 1.
One can evaluate this nuinber by means of the following theorem, proved for gr = 1 by Frobeniiis [I], and for
ff > 1 by Mednykh [6].

Theorena. For any Gnite group H,

^(H)=\H\2"-^d2^,
p

where p ranges over the irreducible complex representations of H, and dp denotes the degree of p.

Applying this toal\H <: G, one can now compute n, (G) for many finite groups G (see [4]). For example:
1) For a cyclic group Cn of order n we have

»,(^)=^E "."<>.
where /i is the Mobiiis fanction on N.
2) IfG!=Cp x ... x Cp (fc factors, p prime) is an elementary abeliaa p-group of rank fc, then ng(G) is the
Gaussian coefBcient

(2ff)p(29\ -
<^.=!, -(k),. (2g-k),'

the number of fc-dimensional subspaces in a 2g-dunensional vector space over GF(p), where

(n), =(gn-l)(g"-l-l)... (g-l).

. 3) The formula for nj(Dn) less pleasant, but for n = p (an odd prime) it simplifies to

, _(22^-1)(^-2-1)
nsW=^ - ^---.
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4)

and

n, (A4) = ^ - 1)(42^-2 - 1)

n, (5-4) = ^(22^ - 1)(32^-2 - 1)(42^-2 - 1)

Non-orientable surfaces. A similar theory applies to unbranched coverings of a non-onentable surface
S = Sj" of genus g >, !. The only essential difference is that the fundsimental group of S is now

n;= ,..., ^|^... ^=i),

so in place of crg{H) one needs
cTj(H) = [Horn (It, ', 5')|, the number of solutions r, in H of the equation r?... ^ = 1. Again, one can

count these using representation theory. Let ̂ : H -r C, h^ tr(p(/i)) be the character of an irreducible
complex representation p of H.. The Frobenius-Schur indica. tor of /» is

1 if p is real,
Cp = .{ -1 if ̂  is real but p is not,

0 if X is aot real.

Frobenius and Schur [2] (with no apparent topological motivation) proved the following result.

Theorem. For any finite group H,

<r;(ff)=|^r1 ^^^,
p

where p ranges over the irreducible complex representations of H.

Using this, one can find the number nj(G) of equivcdence classes of regular unbranched coverings of
EJ', with covering group G, for many finite groups G (see [4]). For example:

D n,-^)=^E^>-5-l>
where 77^ = lor2 as mis odd or even.

m|n

2) n^Dn)=^)s^^m'-2(m+^2'-2))'

3) n,-(A4)=^-l-l)(4^-2-l).

Punctured surfaces and branched coveruigs. If E, ^ and E^r are formed by removing r points from
E, and E^ respectively, where 0< r < oo, then oue has to add r generators X^,..., Xr (corresponding to
loops around the punctures) to the fundamental groups H, and IIj", emd change their defining relations to
[Ai, Bi]... [A,, 5, ]Xi... Xr = 1 and ̂ ... ^Xi... Xr = 1 respectively.
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Using representation theory, one can calculate the numbers of solutions of the corresponding equations
in any finite group H (with a;, = X, 0 restricted to various unions of conjugacy classes, such as the elements
of a given order, if necessary). From this, one can count the equivalence classes of regular unbranched
coverings of these punctured surfaces. Similarly, one can count regular branched coverings by removing
branch-points to create unbraached coverings of punctured surfaces. For example the number of equivalence
classes of regular branched coverings of T,j, with r given branch-points and with coveriug group Cp (p
prime), is p g~ ((p - l)r-l + (-1)''). In [5] this method is extended to count normal subgroups of a noa-
euclidean crystallographic group without reflections; these correspond to regular coverings of an orbifold
whose underlying surface is without boundary.

Self-hoineoiaorphisnis of E. Finally, one can consider the effect of self-homeomorphisms of E = E,
(in addition to those of E, ) in counting regular coverings. By the Dehn-Nielsea Theorem [8, 10], two
such coverings are equivalent under self-homeomorphisms of E, if and only if the corresponding aormal
subgroups N of H, are equivalent under AutII,, so the number fig^C) of such equivalence classes is equal
to |^(G')/AutII, |. When G==Cp x ... x Cp, an elementary abelian p-group of rank k {p prime), one can
calculate this number by using the facts that all such subgroups N contain the commutator subgroup Uj,
and that Aut II, acts on the first homology group

ffi(E,, z)=n^=n, /n,
as the general symplectic group GSp(2^, Z) corresponding to the bilinear intersection form on E^,. Using
Witt's Theorem [9] on equivalence ofsubspaces in a symplectic space, one finds that

n, (G)=l+[^mm(k, 2g-k)\,
where [a;J denotes the integer part of z. (See [4] for details.)

For instance, by putting fc = 1 we have fij(Cp) = 1, so all rig(Cp] = (p2 9 
- l)/(p - 1) coverings axe

equivalent in this sense. Putting ifc = 2, we see that n, (C'p x Cp) =lor2asg=lorg^2, and in the case
g =2 one can easily illustrate two inequivaleat actions of Cp x Cp on E, = £i+p2.
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