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Abstract

We have conducted extensive experiments with a novel software
tool Order Explorer in order to advance the heretofore computation-
aUy inaccessible theme of perpendicular orders - orders on the same
underlying set which have no common isotone self-map, besides the
constants and the identity.

Isotone SeIf-Maps and Perpendicular Pairs

An isotone self-map of an ordered set P is a map f o!P to P such that,
for every x < y, f{x} <, f{y). Of course, the identity id{x) = x, for every
.r   P is a isotone self-map and so is every constant map : for every c 6 P,
const^x) = c, for every a-   P. There are many more : in fact, for any n-
element ordered set P, \PP\ ^ 2°^ isotone self-maps, where Pp stands for
the set of all isotone self-maps'of P to P (cf.. the survey [Zaguia (1993)]).
Figure 1 illustrates some small examples each with its associated number of
isotone self-maps.
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Let P and Q be ordered sets defined on the same n-element underlying
set. Thus, the identity map on this underlying set is isotone for both P and
Q. Every constant map, too, of either, is an isotone self-map of both. Call P
and Q perpendicular, and write P ± Q, ii these are the only common isotone
self-maps, that is, if P n Q^ consist just of the n constant self-maps and
one identity self-map.

The concept of perpendicular orders has a quite recent origin, due to
[Demetrovics, Miyakawa, Rosenberg, Slmovici, and Stojmenovic
(1990)] who first showed that there exist (bipartite) perpendicular pairs on
a set of size n, for each n ^ 4. They were motivated by the older problem to
describe the structure of the lattice of "clones" on a set. (A clone on a set
5 is a composition-closed subset of the set of all maps of Sm to5', m > 1,
which contains all of the projection maps projm (ai, 02,..., a^) = a», for all
ai, a2,... , Qm   5'-) Any perpendicular pair of orders yields a pair of isotone
clones whose intersection is precisely the cloue consisting of all projections
and all constant maps (cf. [[Langer and Poschel (1984)], [Palfy (1984)]).

All evidence to date suggests that almost every ordered set has a perpen-
dicular, although it is easy to check that there are no perpendicular orders
on a set of size n ^ 3. Moreover, any complete bipartite ordered set Km^n
cannot have a perpendicular. There seem to be few other exceptions.

Conjecture 1 Every ordered set without autonomous subset has a perpen-
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dicular.

A proper subset S, with at least two elements, of an order P, is au-
tonomous if, for every x, y G 5 and for every z G P\S, x ^ -z, a-^ z if
and only ify ̂  z, y^ z, respectively. Loosely speaking, the elements of an
autonomous set "see" all outside elements the "same way". A perpendicular
pair P ± Q cannot have a common autonomous subset at all. For, suppose,
A were an autonomous subset of P and of Q. Let a £ A. Then the self^map
defined by

a if 2- £ A
[x)=\ x [ix^A

is a common isotone self-map of both which is neither a constant map nor the
identity. Among the few positive results is this: an order is perpendicular to
any complementary order if and only if it has no autonomous subset [Rival
and Zaguia (1993)].

The purpose of this paper is to illustrate the advances that we have made
on this conjecture using Order Explorer.

Order Explorer

Wherever and whenever data is presented for decision-makiug, it is common
to display it pictorially, or, at least, graphically. Interactivity and visualiza-
tion are key features driving the current graph drawing enterprise.

Although there is a widespread recognition of the importance of upward
drawings of ordered sets, there is still little practical progress on the problem
to display them in a conceptually transparent manner. And there is little
evidence of any graph editor that serves as a substantial research tool. The
major stumbling block is the Initial Value Problem

This is the problem to construct any upward drawing at all - subject to
the customary constraints, and subject, especially, to the tradeoff between
space limitations and unwanted collineations.

What are the customary constraints?
The elements of the ordered set P are drawn on a surface, traditionally a

plane, as disjoint small circles, arranged in such a way that, for a, 5 e P, the
circle corresponding to a is higher than the circle corresponding to b whenever
a > 6 and an arc, monotonic with respect to a fixed direction, usually south
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to north, and straight, is drawn to join them just if a covers b (that is, for
each r -P, a > x ~^b implies x = b~). We say that a is an upper cover of 6
or 6 is a lower cover of a, and write a> bo^b ̂  a.

What are unwanted collineations?

Apart from simple blackboard illustrations, much more need be said.
With limited space (e. g., a standard 14" computer screen) layout of the
vertices is crucial. However, as anyone who has ever drawn more than a few
upward drawings will appreciate, constricting the space on which it is drawn
risks unwanted coincidences of vertices with edges.

While there are various artifacts to resolve the problem of unwanted com-
parabilities they all result in sacrifice of considerable space, thereby limiting
the size of the orders whose upward drawings may effectively be illustrated.
(For instance, we may locate the vertices, according to some linear exten-
sion of the ordered set, monotonically along the arc of a circle. All covering
edges will lie properly in the interior of the circle, thus avoiding unwanted
coincidences. Not a helpful upward drawing, however!) Indeed, except for
the apparently exceptional case of ordered sets which are embeddable on a
two-dimensional grid, there seems little1 (even theoretical) hope.

The Initial Value Problem for upward drawings is the problem to exhibit,
automatically, an upward drawing of an ordered set.

Order Explorer is a novel software tool which, already in the laboratory
setting, has made substantial inroads both as a visual display of hierarchical
structures as well as a research tool. In brief, Order Explorer replaces the
cumbersome tradition of graph edges by the flexibility and ease of interac-
tivity. Simple "mouse clicks reveal comparabilities, adjacencies, upper and
lower covers, etc. Order Explorer draws on a small (but growing) library
of algorithmic tools from the classical order-theoretlc literature. It is ironic
that, while Order Explorer would seem to complicate the graph drawing en-
terprise by concealing what is, heretofore, commonly regarded ds the graph's
essence, it thereby removes the source of much graphical reading and writing

XA common industrial approach is to add subdivision (dummy) vertices until the or-
dered is graded and draw the ordered set according to an antichain decomposition. Finally,
the dummy vertices may be removed by replacing paths on which they lie by a spline
approximation.

2 Order Explorer is written in Visual Basic. It easily manipulates orders of size 75 - 100
elements, having an essentially instantaneous response time for such algorithms as chain
decomposition, antichain decomposition, dimension two testing and others.
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difficulties!

Computer technology is largely of use in experimental mathematics where,
typically, the computational advantage is dedicated to complicated calcula-
tions. On the other hand, in the tradition of modern combinatorial theory, it
is common, in the ordered sets literature, to find numerous pictures as aids
to reasoning, to communicate and explain the maiu ideas, and, moreover,
to motivate and illustrate conjectures. Ideal would be a visualization tool
driven by a sophisticated computational engine.

Order Explorer as Research Tool

To verify that a particular pair P, Q of orders is perpendicular - even small
ones of size ten elements - takes many hours of manual work. On the other
hand, the trouble with a direct computational check, using matrix input,
(incidence matrix) say, is that, once a negative outcome obtains, how are we
to modify Q, to obtain Q' and then check whether P J- <5/? That is, how to
decide what is the obstruction to the perpendicularity of P and Q? Indeed,
if the outcome is negative, it is because there are nontrivial common isotone
self-maps, which, therefore, must be understood, with a view to modifying
Q appropriately. Order Explorer provides a tool.

Given a comparable pair a > 6in an ordered set P, it is clear that

/(^)=
a if 2: > a

b if 2- ̂  a

is an isotone self-map. Moreover, although it is not always the case, one
typical obstruction3 to P ±Q is the existence of a common comparable
pair, that is, a pair a, b of elements such that a > bin P and either a > b
or a < b in Q. Our opening strategy to construct a perpendicular to an
order P (without autonomous .subset) is to construct an order Q, on the
same set as P, and with no comparabilities in common with P. To avoid
a trivial construction for Q (e. g. Q an antichain) we intend to construct Q
without autonomous subset, too. Order Explorer has the facility to easily
display upward drawings as well as to visualize a common nontrivial isotone
self-map - if one exists.

3There exist perpendicular pairs P ± Q which contain common comparable pairs, e. g.,
P={a<b<c<d}l. {c<a<d<b}=Q.
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Question 1 If orders P and Q on the same set have no common compara-
bility is P LQ?

With Order Explorer it is possible, for an order P, to construct, on-
line, an order Q with no common comparability. Despite the fact that a
given, order P has many isotone self-maps, Order Explorer is able to detect
common isotone self-maps quickly. Indeed, for a given order P, there are
many orders <5, without common comparabilities, and we uncovered many
which are not perpendicular to P at all4. Ironically, the relative ease of this

computation led us to this conjecture.

Conjecture 2 Orders, on the same underlying set, which have no common
comparability and no autonomous subset, have "few" common isotone self-
.maps.

It is evident that progress on the question of perpendicular orders relies
much on the availability of examples, to nourish conjectures and to disprove
them. Is there a construction which furnishes new perpendicular pairs from
existing ones? Order Explorer made it edsy to consider this natural question.

4In laboratory trials with ordered sets of size up to thirteen, in which there is no
autonomous subset, we were able to use Order Explorer to construct, after a few iterations,
a perpendicular - typically within fifteen minutes of interactivity.

618



/A
1 0 2^ 3^0

p

I? ?4

20 5C

Q

C3

4P 5(

St

Id 2'J 3'Q 2

!:'_
/\

50 0 3

P' Q'

F:gu-ra3: P andQ atBpeipffidru3ar, butP andQ acenot.

1^

4Q 6Q 5(

id 2^5 3'o
p'

3Q 05
,s

20

^

F jguze 4: P andQ are pecpendi=u^r, but P and Q 'axe not.

^ 69. 3

1? ̂ Kb ?5
2 (^ 7 ^4

Q

Ql

Fjguxe 5 :P andQ aze perpaidxuJar.P 'andQ 'are perpendjcu3ar,

619



Question 2 Let P L Q. If P' = P\j{a} and Q' = Qu{a} are both obtained
by subdividing an edge such that P and Q' have no common compar bility,
is?' ±Q'?

Given a covering edge x > y {aP (that is, a comparability x > y such
that, for any z ^. P, x > z>^y'mP implies z = y), the ordered set
P' = P U {a} whose order is the transitive closure of P with x >- a> y, [s
called a subdivision of P. Evidently, an isotone self-map / of P is readily
extended to an isotone self-map of P' by /(a) == 2; or /(a) = y. Thus, there
would seem to be little difference between P and P'p .

Again, using Order Explorer we were able to find examples of orders sat-
isfying the conditions of Question 2 which, however, are not perpendicular,
and that has led to this conjecture.

Conjecture 3 Let P L Q, neither containing an autonomous subset. Then
P' ± Q' where P', Q' have no common comparability and are obtained from
jP, Q, respectively, by subdivision.

Finally, here is an instance of a theorem which was inspired largely by
experiments with numerous such examples.
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Theorem 1 (Zaguia (1994)) Let P be a complete multipartite order and
let C be a chain on the same underlying set. The P 1- C if and only if P
and C have neither a common convex subset containing at least one level of
P nor a common autnomous subset.
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