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ABSTRACT

We study the subgroup generated by the exponentials of formal Lie series.
We show three different way to represent elements of this subgroup. These
elements induce Lie series automorphisms. Relations among these family of
transformations furnish algorithms of composition. Starting from the Lazard
elimination theorem and the Witt’s formula, we show isomorphisms between
some submodules of free Lie algebras. Combining different results, we also
show that the subalgebra generated by the homogeneous term of the Hausdorff
series is free.

RESUME

Nous étudions le sous-groupe engendré par les exponentielles de séries
formelles de Lie. Nous montrons trois maniéres de représenter les-éléments de
ce sous-groupe, lesquels fournissent des automorphismes de Lie. Les relations
entre ces familles de transformations fournissent des algorithmes de compo-
sition. A partir du théoréme d’élimination de M. Lazard et de la formule
de Witt, nous mettons en évidence des isomorphismes entre sous-modules
d’algébres de Lie libres. En combinant ces résultats, on montre également
que la sous-algébre engendrée par les composantes homogénes de la série de
Hausdorff est libre.
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1. Introduction

Lie series automorphisms or Lie transformations play an important role in clas-
sical mechanics. They can be seen, for example, as time evolution in an hamiltonian
system. The product of two such transformations may therefore be seen as the
combined effects of two Hamiltonians.

The use of this formalism becomes efficient when it becomes easy to manipulate
formal Lie series, to compute composition of Lie transformations or to express such
transformations in several ways. They are universal identities in Lie algebras and
we will work in a free Lie algebra. Instead of considering exponentials of Lie se-
ries, we will consider the group of Lie series automorphisms. Actually after having
defined the Lie transformation, historically introduced by Deprit ([3]), the factored
product transform introduced by Dragt and Finn ([4]) and the exponential of an
inner derivation, we will show that these transformations are the same subgroup of
the Lie series automorphisms close to identity. They can be seen as conjugation in
the algebra of formal Lie series. All of them are defined by generating Lie series.

After having reminded some notations in free algebras in section 2., we will
introduce formal Lie series on a weighted alphabet and define the Lie series trans-
formations and their properties in section 3.. In section 4., we will consider Lie
series automorphisms they generate and their relations. In the last section, we will
show several isomorphisms between free Lie algebras or subalgebras. We will prove,
using combinatorial identities like the Witt’s formula and a theorem of M. Lazard,
that the subalgebra generated by the homogeneous terms of the Hausdorff series is

a free Lie algebra.

2. Notations

In this paper X will denote a weighted alphabet, that is to say an ordered set
(possibly endless), in which each letter z has a positive integer weight ||z||.

R is a ring which contains the rational numbers Q.

X~ is the free monoid generated by X. Y™ is ic.ally ordered with the lexico-
graphic order.

M(X) is the free magma generated by X.

Ag(X) is the associative algebra, that is to say the R-algebra of X~.

La(X) or L(X) is the free Lie algebra on X. It is defined as the quotient of the
R-algebra of M(X) by the ideal generated by the elements (u,u) and (u, (v,w)) +
(v, (w,u)) + (w, (u,v)). Its multiplication law [,] is bilinear, alternate and satisfies
the Jacobi identity

[a, (b, c]] + [, [c; a]] + [e [a, )] = 0. (1)

An element of M (X) considered as element of L(X) will be called a Lie monomial.
By posing for z,y € X, [z,y] = zy — yz, we have L(X) C A(X).
On L(X) so as on A(X), one considers the following gradations:
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e Gradation by the length (the unique morphism that extends the function z —
1 on X). For z € X~ (resp. M(X)) |z| denotes the length. Ln(X) (resp.
An(X)) is the submodule generated by monomials of length n.

e One defines on X~ (resp. M(X)) the weight z s Jlz|| as the unique mor-
phism that extends the weight on X. L.(X) (resp. A, (X)) is the submodule
generated by monomials of weight n.

o The multi-degree is the unique morphism from X~ (resp. M (X)) onto IN¥)
that extends  — 1. For a given a in N®Y)| L2(X) (resp. A%(X)) denotes
the submodule generated by monomials of degree a.

RemarI\ — When ||z|| =1 for each x € X, then obviously L,(X) = L.(X) (resp.
An(X) = Au(X)).

For z € L(X), we denote by L, the inner derivation y ~— [z,y]. The set of inner
derivations of X is the adjoint Lie algebra with commutator as Lie bracket and we

have from the Jacobi identity (1)
Liew = [Le, Ly) = LoL, — L,L.. 2)

For z, € L.(X), (see [2]) let Dz, = nz,. For z, € L.(X), let Dz, = nz, We
thus define two derivations D and D on L(X). They are not inner derivations.
We define the formal Lie series L(X) and .A(X ) as

LX) =[] La(X) and A(X) =[] Au(X (3)

n>0 n>0

We will write z € L(X) as a series 2 n>0 Tn- L(X) is a complete Lie algebra with
the Lie bracket

([z,y])n = Z [zmyq]- (4)

ptg=n

3. Lie series automorphisms

3.1. The exponential _
Denoting by L(X)* (resp. A(X)* ) the ideal of L(X) (resp. A(X)) generated by

the elements of non-negative weight, one defines the exponential and the logarithm
as

exp: A(X)t — 1+ AX)*
r - YT
log: 1+ AX)* — AX)*

>

They are mutually reciprocal functions and we have (see [1, Ch. II, §5]) the
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THEOREM 1 (Campbell-Hausdorff). — For z,y € L(X)*,
H(z,y) = log [exp(z) exp(y)] € L(X)". (7)
More precisely, we have the following
LEMMA 2. — Given z,y € L(X)*, we have form >0
H(Z,Y)ms1 — Tm+1 = Ymt1 € Lmt1 (T1,+ 0 Tmy Yo e o5 Ym) - (8)
Given z € L(X)*, we consider exp(L) defined as

Li
exp(La)y = 3 7 ©)
i>0 v
THEOREM 3. — Forz € f,(X)*’, exp(L;) is a Lie series automorphism (see
[2]). We also have ([1, 6]) fory € L(X)
exp(z)yexp(z) = exp(Lz)y, (10)
exp(z) exp(y) exp(z) = exp(exp(Lz)y)- (11)

Proof. — From the Jacobi identity (1), we have ([11]) by induction on k 2> 0, for

any f,g9,h € L(X)*,
k

Lila.h = 3 (5) [Lye, Lih)-

1=0
We therefore deduce that

exp(Ls)lg, k] = 2}:

;!‘,._4

PRWIEZEAL
1 !
) P-§>0 (p+49)! (pp—:-q?) [L’}g, L}h]
= [exp(Lys)g,exp(Lg)h]. 0O -

From the Campbell-Hausdorff theorem (1), the set of all exp(L;) is a group G
that we will call the Lie transformations group.

3.2. Factored Product Transform

Using the preceding lemmas we deduce (see [11]) the

PROPOSITION 4 (Factored product expansion). — For k € L(X)*, there is
a unique g € L(X)* such that ‘
exp(Lnz1kn) = -+ -exp(gn) - --exp(g1) = (Mg) ™. (13)

Proof. — The above proposition is proved by induction, constructing g € L(X) and
k(P € [Tnsp La(X) such that, for each p > 1,

exp(k) = exp(k®) exp(gy) - --exp(gn). O (14)

Remark. — This fact is also a variant of the Zassenhaus formula (see [9]).
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3.3. The Lie transform

We also define the Lie transform T : A(X)* — 1 + A(X)* by

(Tz)o=1, (Tz)a==) 2(Tz)npzp, n>1. (15)
p=1
We therefore deduce that D(T'z) =~—Ta:f)x.
Conversely, the series y in 1 + A(X)* given by

Yo = L Yn = — Z syn-pmpy n2l, ' (16)
p=1

is the unique solution of Dy = —yDz. From Tz(Tz)™' = 1, we deduce that
D (Tz(Tz)™) = ~TeDz(Te)™ + TeD(Tz) ™ = 0, (17)

that is to say D(Tz)™! = Dz(Tz)~!. We thus have

(Tz)o=1, (Tz)™)a =2 2zp((T2) )n-p, n 2 1. (18)
p=1
Remark. — If :z,Da:] = 0, then Tz = exp(z). The Lie transform appears as a

generalized exponential.

3.4. Relations between transformations

PROPOSITION 5. — Let g € L(X)*, there is a unique series w € L(X)* such
that

Tw= Mg =exp(—g)--exp(—gn) . | (19)

Proof. — Let £ =z, € Ln(X), we have

Dexp(z,) = > %Dzﬁ =3 llpn:z:’;’l = Nty €XP(Ta)- (20)

p20 £ p20 £
We have therefore

D(Mg)™ = 3 [--exp(gns)] [D lexp(gn)]] [exp(gnr) -+~ exp(g1)]

= > [~ exp(gn+1)] [ngn €xp(gn)] [exP(gn—1) - - - exp(g1)]

n>1
= > [+~ exp(gn+1)] [ngn] [exp(—gns1) - -] (Mg)~"
= Z n [ o exp(L9n+1 )gn} (Alg)—l'
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Let Dw = Zn>ln [ . 'exp(Lgn“)] gn, that is to say

= K L[Mn—k ... [Mk+1

Wnp = E s E In—k Gk+1 9k, (21)
n m looom !
k=1 (k+1)myp g+ k41 e

+(n=k)ym,_=n—k
we have
D(Mg)™ = Dw(Mg)™, D(Tw)™'= Duw(Tw)™". (22)

We thus deduce that Mg = Tw. (]
Combining propositions 5 and 4, we deduce the

PROPOSITION 6. — Given w, k,g € L(X)*, there ezist
— K € L(X)* with k!, — wn € L(wy,...wn_1) such that exp(k’)- = (Tw)™ !,
— ¢' € L(X)* with g, — kn € L(ky,...kao1) such that (Mg')™" = exp(k),
— w' € L(X)* with w), — gn € L(g1,. - gn—1) such that Tw' = Myg.

4. Lie Transformations

For any Lie series automorphism T, we have by definition [T f,Tg] = T(f,q] i
We call Lie transformation a Lie automorphism close to the identity, that is to say, "
which satisfies for each z € X, |
i

Tz—z€ [[ L.(X,R). (23) %

n>||zl| g«,

The Lie series automorphisms act on the adjoint Lie algebra by :

TLJ'T_1 = Lry. (24)

Using preceding lemmas and proposition (6), we deduce that for each z € L(X)*,

exp(Lz) :y — exp(z)yexp(—z), (25)
T.:y — (Tz)y(Tz)™, (26)
M,:y — (Mar:)y(Man)_1 (27)

are conjugations in L(X) and therefore Lie series automorphisms.
4.1. The Lie transform

Given w € L(X)*, T, is defined by (26). For y € L(X), we have

D(T;'y) = D [(Tw)'yTw| = Dw(Tw)'yTw+ (Tw) ' DyTw — (Tw) 'yTwDw

= [Dw,(Tw)—lyTw]+(Tw)-11')y:rw (28)
= Lp,T5'y + T, Dy. (29)
322
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Let G =T5'9 = X n,m>0 Gnm where

G = (T3'9m) . = 3 (Tw)™)pgm(Tw)y € Lsm(X). (30)

n+m W o

Using (29), we get

DGn,m == (Tl + m)Gn,m = Zpr,Gn—p.m + mGn.ma (31)
p=1
SO
= 5 BB (32)
p=1

Using this algorithm, we show that G, = ©nym=r Gn,m may be calculated in o(r?)
Lie brackets evaluations, by an iterative way.

4.2. Composition

Let wy,ws € L(X)* and T = Ty, Tw,. From (29) we deduce that
D(T™'y) = Lp,, T 'y+To ! D(T.ly)
= (Lpu, + T3 Lpy,Tu)T ™'y + T7' Dy
= Lpureipwn T 'y +T 7' Dy. (33)
We thus deduce that T, Tw, = T\ where
Dw = T;'Dw; + Dw,. (34)

Composition of two Lie transformations appears clearly as a Lie transformation.
Furthermore, the product may be expressed as Lie transformations by an iteration
algorithm, in a polynomial time of Lie brackets evaluations. Using Lie operators or
Lie series exponentials, we should have computed the so-called Hausdorff product

of w; and ws.

4.3. The Dragt-Finn transform

The Dragt-Finn transform is the infinite product of exponential maps (see [4]).
Given g = ¥ n>1 gn, We define M, and M as

M, = exp(~Lg,) - exp(=Ly,) -+, M;' =+ exp(Lg,) - exp(Ly,).  (35)
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4.4. Relations

The three above transformations are totally defined by generating series which
satisfy the following

PROPOSITION 7. — Given w,k,g € L(X)*, the series defined in proposition

6 satisfy
exp(Lp) =T34 To' = MY, M3 = exp(Lk). (36)
Remark. — We deduce in passing that the Lie transform is a Lie series automor-

phism close to identity and that any Lie transformation T' € G may be expressed as
an exponential of a Lie operator or as an infinite product of single exponentials or as
a proper Lie transform. The use of a representation depends deeply on the result we
look for. For example, if we have to compose transformations, it is much easier to
consider Lie transforms because their product is a Lie transform whose generating
function appears easily from (34).

We will not explain in this paper how to compute explicitly the relations between
these transformations, but that can be made, using the Lyndon basis and does not
require to go through the associative algebra (see [6])-

Proposition 7 may be turned in

PROPOSITION 8. — Given w, g,k € L(X)*, such that
exp(L) = T = M,,
then for each n € IN, we have
wn — b € En_1(X), Wa = gn € Lae1(X), gn — kn € Laa(X),

and ) ) )
La(wi,...,wn) = La(kiy.... ka) = La(g1y---+9n)-

5. Free Lie algebras isomorphisms

Let us first remind the elimination theorem of M. Lazard [1].
THEOREM 9. — Let SC X and

T = {(s1,-++r5n, %), n 20, S1,...,5, € S,z € X — S}

o L(X) is the direct sum of L(X — 5) and of the ideal S generated by S.
o L(T) and S are isomorphic through (s1,. .., Sn, z) =+ Ly, o+ Ly, 2.

By considering X = {a,b} and S = {a}, we get the following isomorphism

L({a,b}) = L({a}) ® L({L3b, n 2 0}) = K.a® L({L]b, n 2 0}). (37)
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By posing X = {L%b, £ >0} and S = {L%b, k > p}, we deduce that

L({a,b}) = K.a® L({L:b, k>0})
= Ka®L({L,0<k<p—1})&® (L5, k> p). (38)

We therefore conclude that

L({a,b})/(Lb) = L({a,b})/(Lsb, k = p)
= A.aeaL({L{;b,oskgp—u). (39)
That proves that the algebra generated by {a,b, LPb = 0} is isomorphic to the
weighted free Lie algebra L({L*6,0 < k < p—1}) and the line generated by a.

We will show now that these isomorphisms are isomorphisms between homoge-
neous submodules.

5.1. Dimension of the homogeneous components

Let us first remind some well-known identities. Given an indexed alphabet X, we
consider the dimension {(a) of L%(X). Using the following identity between formal
series (see [1]), which results from the Poincaré-Birkhoff-Witt’s theorem:

1-YT.= JI Q-7 (40)

zeX aeN(X)_{0}
we deduce that
_ af!

(el fo!
R WIC or 3 181(8) = —- (41)

dfa (d ) Bla

" el

Let us take now the gradation by the length and calculate I, = 3",z [(@), the
dimension of L,(X). In (40), let us substitute the same unknown U to T, we get

for a finite alphabet of cardinality ¢:

1-qU= J[ @-Ueh@=TJ1-U")". (42)

aeINX -{0} r>0

that is to say, the Witt’s formula ([1]): Zd'ndld =q".

*
* *

Let X = ly,5; X, be a weighted alphabet where each letter of X, has a weight p.
Let I, = Ylloll=n {(@) be the dimension of L.(X). In (40), substituting U* to T, for
T € X;, we get

1-5SqUi =] II (1-Ulelh= =TT - U')’.'.’ (43)

i>1 >0 |lo||=r r>0
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In the particular case where ¢; = p for each ¢ € IN, we thus deduce

[Ta-u)- -1—pZU‘————p—ﬂ. (44)
r>0 1>0 U
***

From identities (42) and (44), we then obtain:

ISOMORPHISM 1.
Let X = {z1,...,24} and Y =W;» Vi, where CardY; = ¢ — 1. We have

dimL(X) = ¢, &imLy(Y) = ¢ = 1, dim Lo(X) =dimL.(Y), n 22,  (49)
that can be also expressed as

S ddim Ly(X) = ¢", Y ddim La(Y) = ¢" = 1. (46)

d|n d|n

In the particular case where ¢ = 2, we recover the isomorphism 9, by posing

Y = {L?b,p > 0}.

5.2. The Hausdorff series

Let us suppose now that X = {a,b} and |la|| = ||b]] = 1. Let H(a,b) the
Hausdorff series of a, b defined in theorem 1, page 3. We have

exp(H(a, b)) = exp(a) exp(d).

From the definition (13)

i IR S e R s B N DR P R TRAD ST s ot st

A o B

n

((Ta)™)n = 3 2ay((Ta) a-p = 2((Ta) -
p=1
we deduce that (Ta)™! = exp(a) and that (T'h)™" = exp(b).
Let G(a, b) be the solution of (T'G(a,b))™! = exp(a) exp(b), we get using relation
(34) i
DG(a,b) = DG(a,b) = exp(L.)Db + Da,

that is to say

L om
G(a, b)_a+b+nz>jl _H)'Lab
***

We can now prove the following result:

ISOMORPHISM 2. — Let X = {a,b} and H(a,b) = .51 Hn. The subalgebra
L({Hy, n > 0}) is isomorphic to the free Lie algebra L({L3b, n 2> 0}). i
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Proof. — Using proposition 8, we know that for d > 1
La({Gn(a,b), n > 1}) = La({Hn(a,b), n > 1}). (47)
But Gn(a,b) = ;L77'b, and from isomorphism 1, we know that the subalgebra

n

L({L?b, n > 0}) is free and that
La({L2b, n > 0}) = Ly({a,b}), d > 2. (48)

We thus deduce that the subalgebra generated by the homogeneous terms of the
Hausdorff series is free and therefore isomorphic to the free Lie algebra L({a, b})
without a line.

6. Conclusion

We have shown in this in paper how to express any transformation that belongs
to the subgroup of Lie transformations in three different ways,. In hamiltonian
mechanics this subgroup is exactly the group of Lie series automorphisms close to
identity. These methods have many applications like the search of the so-called
symplectic integrators that are numerical methods to integrate dynamical systems
([7]). Using this formalism, one can also compute formal first integral for perturbed
hamiltonian systems ([3, 6, 11]). Regards to the computational cost, these methods
have the advantage that all the series we manipulate are formal Lie series. It avoids
calculations in the associative algebra ([12]) and the use of the Poincaré-Birkhoff-

Witt basis ([10]).
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